1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open Names module Dyn = Dyn.Make () type 'a substitutivity = Dispose | Substitute of 'a | Keep of 'a | Anticipate of 'a type object_name = Libnames.full_path * Names.KerName.t type 'a object_declaration = { object_name : string; cache_function : object_name * 'a -> unit; load_function : int -> object_name * 'a -> unit; open_function : int -> object_name * 'a -> unit; classify_function : 'a -> 'a substitutivity; subst_function : Mod_subst.substitution * 'a -> 'a; discharge_function : object_name * 'a -> 'a option; rebuild_function : 'a -> 'a } let default_object s = { object_name = s; cache_function = (fun _ -> ()); load_function = (fun _ _ -> ()); open_function = (fun _ _ -> ()); subst_function = (fun _ -> CErrors.anomaly (str "The object " ++ str s ++ str " does not know how to substitute!")); classify_function = (fun atomic_obj -> Keep atomic_obj); discharge_function = (fun _ -> None); rebuild_function = (fun x -> x)} (* The suggested object declaration is the following: declare_object { (default_object "MY OBJECT") with cache_function = fun (sp,a) -> Mytbl.add sp a} and the listed functions are only those which definitions actually differ from the default. This helps introducing new functions in objects. *) let ident_subst_function (_,a) = a type obj = Dyn.t (* persistent dynamic objects *) (** {6 Substitutive objects} - The list of bound identifiers is nonempty only if the objects are owned by a functor - Then comes either the object segment itself (for interactive modules), or a compact way to store derived objects (path to a earlier module + substitution). *) type algebraic_objects = | Objs of objects | Ref of Names.ModPath.t * Mod_subst.substitution and t = | ModuleObject of substitutive_objects | ModuleTypeObject of substitutive_objects | IncludeObject of algebraic_objects | KeepObject of objects | ExportObject of { mpl : ModPath.t list } | AtomicObject of obj and objects = (Names.Id.t * t) list and substitutive_objects = MBId.t list * algebraic_objects type dynamic_object_declaration = { dyn_cache_function : object_name * obj -> unit; dyn_load_function : int -> object_name * obj -> unit; dyn_open_function : int -> object_name * obj -> unit; dyn_subst_function : Mod_subst.substitution * obj -> obj; dyn_classify_function : obj -> obj substitutivity; dyn_discharge_function : object_name * obj -> obj option; dyn_rebuild_function : obj -> obj } let object_tag (Dyn.Dyn (t, _)) = Dyn.repr t let cache_tab = (Hashtbl.create 223 : (string,dynamic_object_declaration) Hashtbl.t) let declare_object_full odecl = let na = odecl.object_name in let (infun, outfun) = Dyn.Easy.make_dyn na in let cacher (oname,lobj) = odecl.cache_function (oname,outfun lobj) and loader i (oname,lobj) = odecl.load_function i (oname,outfun lobj) and opener i (oname,lobj) = odecl.open_function i (oname,outfun lobj) and substituter (sub,lobj) = infun (odecl.subst_function (sub,outfun lobj)) and classifier lobj = match odecl.classify_function (outfun lobj) with | Dispose -> Dispose | Substitute atomic_obj -> Substitute (infun atomic_obj) | Keep atomic_obj -> Keep (infun atomic_obj) | Anticipate (atomic_obj) -> Anticipate (infun atomic_obj) and discharge (oname,lobj) = Option.map infun (odecl.discharge_function (oname,outfun lobj)) and rebuild lobj = infun (odecl.rebuild_function (outfun lobj)) in Hashtbl.add cache_tab na { dyn_cache_function = cacher; dyn_load_function = loader; dyn_open_function = opener; dyn_subst_function = substituter; dyn_classify_function = classifier; dyn_discharge_function = discharge; dyn_rebuild_function = rebuild }; (infun,outfun) let declare_object odecl = fst (declare_object_full odecl) let declare_object_full odecl = declare_object_full odecl (* this function describes how the cache, load, open, and export functions are triggered. *) let apply_dyn_fun f lobj = let tag = object_tag lobj in let dodecl = try Hashtbl.find cache_tab tag with Not_found -> assert false in f dodecl let cache_object ((_,lobj) as node) = apply_dyn_fun (fun d -> d.dyn_cache_function node) lobj let load_object i ((_,lobj) as node) = apply_dyn_fun (fun d -> d.dyn_load_function i node) lobj let open_object i ((_,lobj) as node) = apply_dyn_fun (fun d -> d.dyn_open_function i node) lobj let subst_object ((_,lobj) as node) = apply_dyn_fun (fun d -> d.dyn_subst_function node) lobj let classify_object lobj = apply_dyn_fun (fun d -> d.dyn_classify_function lobj) lobj let discharge_object ((_,lobj) as node) = apply_dyn_fun (fun d -> d.dyn_discharge_function node) lobj let rebuild_object lobj = apply_dyn_fun (fun d -> d.dyn_rebuild_function lobj) lobj let dump = Dyn.dump let local_object_nodischarge s ~cache = { (default_object s) with cache_function = cache; classify_function = (fun _ -> Dispose); } let local_object s ~cache ~discharge = { (local_object_nodischarge s ~cache) with discharge_function = discharge } let global_object_nodischarge s ~cache ~subst = let import i o = if Int.equal i 1 then cache o in { (default_object s) with cache_function = cache; open_function = import; subst_function = (match subst with | None -> fun _ -> CErrors.anomaly (str "The object " ++ str s ++ str " does not know how to substitute!") | Some subst -> subst; ); classify_function = if Option.has_some subst then (fun o -> Substitute o) else (fun o -> Keep o); } let global_object s ~cache ~subst ~discharge = { (global_object_nodischarge s ~cache ~subst) with discharge_function = discharge } let superglobal_object_nodischarge s ~cache ~subst = { (default_object s) with load_function = (fun _ x -> cache x); cache_function = cache; subst_function = (match subst with | None -> fun _ -> CErrors.anomaly (str "The object " ++ str s ++ str " does not know how to substitute!") | Some subst -> subst; ); classify_function = if Option.has_some subst then (fun o -> Substitute o) else (fun o -> Keep o); } let superglobal_object s ~cache ~subst ~discharge = { (superglobal_object_nodischarge s ~cache ~subst) with discharge_function = discharge }