1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util (* Type of regular trees: - Param denotes tree variables (like de Bruijn indices) the first int is the depth of the occurrence, and the second int is the index in the array of trees introduced at that depth. Warning: Param's indices both start at 0! - Node denotes the usual tree node, labelled with 'a - Rec(j,v1..vn) introduces infinite tree. It denotes v(j+1) with parameters 0..n-1 replaced by Rec(0,v1..vn)..Rec(n-1,v1..vn) respectively. *) type 'a t = Param of int * int | Node of 'a * 'a t array | Rec of int * 'a t array (* Building trees *) let mk_rec_calls i = Array.init i (fun j -> Param(0,j)) let mk_node lab sons = Node (lab, sons) (* The usual lift operation *) let rec lift_rtree_rec depth n = function Param (i,j) as t -> if i < depth then t else Param (i+n,j) | Node (l,sons) -> Node (l,Array.map (lift_rtree_rec depth n) sons) | Rec(j,defs) -> Rec(j, Array.map (lift_rtree_rec (depth+1) n) defs) let lift n t = if Int.equal n 0 then t else lift_rtree_rec 0 n t (* The usual subst operation *) let rec subst_rtree_rec depth sub = function Param (i,j) as t -> if i < depth then t else if i = depth then lift depth (Rec (j, sub)) else Param (i - 1, j) | Node (l,sons) -> Node (l,Array.map (subst_rtree_rec depth sub) sons) | Rec(j,defs) -> Rec(j, Array.map (subst_rtree_rec (depth+1) sub) defs) let subst_rtree sub t = subst_rtree_rec 0 sub t (* To avoid looping, we must check that every body introduces a node or a parameter *) let rec expand = function | Rec(j,defs) -> expand (subst_rtree defs defs.(j)) | t -> t (* Given a vector of n bodies, builds the n mutual recursive trees. Recursive calls are made with parameters (0,0) to (0,n-1). We check the bodies actually build something by checking it is not directly one of the parameters of depth 0. Some care is taken to accept definitions like rec X=Y and Y=f(X,Y) *) let mk_rec defs = let rec check histo d = match expand d with | Param (0, j) -> if Int.Set.mem j histo then failwith "invalid rec call" else check (Int.Set.add j histo) defs.(j) | _ -> () in Array.mapi (fun i d -> check (Int.Set.singleton i) d; Rec(i,defs)) defs (* let v(i,j) = lift i (mk_rec_calls(j+1)).(j);; let r = (mk_rec[|(mk_rec[|v(1,0)|]).(0)|]).(0);; let r = mk_rec[|v(0,1);v(1,0)|];; the last one should be accepted *) (* Tree destructors, expanding loops when necessary *) let dest_param t = match expand t with Param (i,j) -> (i,j) | _ -> failwith "Rtree.dest_param" let dest_node t = match expand t with Node (l,sons) -> (l,sons) | _ -> failwith "Rtree.dest_node" let is_node t = match expand t with Node _ -> true | _ -> false let rec map f t = match t with Param(i,j) -> Param(i,j) | Node (a,sons) -> Node (f a, Array.map (map f) sons) | Rec(j,defs) -> Rec (j, Array.map (map f) defs) module Smart = struct let map f t = match t with Param _ -> t | Node (a,sons) -> let a'=f a and sons' = Array.Smart.map (map f) sons in if a'==a && sons'==sons then t else Node (a',sons') | Rec(j,defs) -> let defs' = Array.Smart.map (map f) defs in if defs'==defs then t else Rec(j,defs') end (** Structural equality test, parametrized by an equality on elements *) let rec raw_eq cmp t t' = match t, t' with | Param (i,j), Param (i',j') -> Int.equal i i' && Int.equal j j' | Node (x, a), Node (x', a') -> cmp x x' && Array.equal (raw_eq cmp) a a' | Rec (i, a), Rec (i', a') -> Int.equal i i' && Array.equal (raw_eq cmp) a a' | _ -> false let raw_eq2 cmp (t,u) (t',u') = raw_eq cmp t t' && raw_eq cmp u u' (** Equivalence test on expanded trees. It is parametrized by two equalities on elements: - [cmp] is used when checking for already seen trees - [cmp'] is used when comparing node labels. *) let equiv cmp cmp' = let rec compare histo t t' = List.mem_f (raw_eq2 cmp) (t,t') histo || match expand t, expand t' with | Node(x,v), Node(x',v') -> cmp' x x' && Int.equal (Array.length v) (Array.length v') && Array.for_all2 (compare ((t,t')::histo)) v v' | _ -> false in compare [] (** The main comparison on rtree tries first physical equality, then the structural one, then the logical equivalence *) let equal cmp t t' = t == t' || raw_eq cmp t t' || equiv cmp cmp t t' (** Intersection of rtrees of same arity *) let rec inter cmp interlbl def n histo t t' = try let (i,j) = List.assoc_f (raw_eq2 cmp) (t,t') histo in Param (n-i-1,j) with Not_found -> match t, t' with | Param (i,j), Param (i',j') -> assert (Int.equal i i' && Int.equal j j'); t | Node (x, a), Node (x', a') -> (match interlbl x x' with | None -> mk_node def [||] | Some x'' -> Node (x'', Array.map2 (inter cmp interlbl def n histo) a a')) | Rec (i,v), Rec (i',v') -> (* If possible, we preserve the shape of input trees *) if Int.equal i i' && Int.equal (Array.length v) (Array.length v') then let histo = ((t,t'),(n,i))::histo in Rec(i, Array.map2 (inter cmp interlbl def (n+1) histo) v v') else (* Otherwise, mutually recursive trees are transformed into nested trees *) let histo = ((t,t'),(n,0))::histo in Rec(0, [|inter cmp interlbl def (n+1) histo (expand t) (expand t')|]) | Rec _, _ -> inter cmp interlbl def n histo (expand t) t' | _ , Rec _ -> inter cmp interlbl def n histo t (expand t') | _ -> assert false let inter cmp interlbl def t t' = inter cmp interlbl def 0 [] t t' (** Inclusion of rtrees. We may want a more efficient implementation. *) let incl cmp interlbl def t t' = equal cmp t (inter cmp interlbl def t t') (** Tests if a given tree is infinite, i.e. has a branch of infinite length. This corresponds to a cycle when visiting the expanded tree. We use a specific comparison to detect already seen trees. *) let is_infinite cmp t = let rec is_inf histo t = List.mem_f (raw_eq cmp) t histo || match expand t with | Node (_,v) -> Array.exists (is_inf (t::histo)) v | _ -> false in is_inf [] t (* Pretty-print a tree (not so pretty) *) open Pp let rec pp_tree prl t = match t with Param (i,j) -> str"#"++int i++str","++int j | Node(lab,[||]) -> hov 2 (str"("++prl lab++str")") | Node(lab,v) -> hov 2 (str"("++prl lab++str","++brk(1,0)++ prvect_with_sep pr_comma (pp_tree prl) v++str")") | Rec(i,v) -> if Int.equal (Array.length v) 0 then str"Rec{}" else if Int.equal (Array.length v) 1 then hov 2 (str"Rec{"++pp_tree prl v.(0)++str"}") else hov 2 (str"Rec{"++int i++str","++brk(1,0)++ prvect_with_sep pr_comma (pp_tree prl) v++str"}")