1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Names module RelDecl = Context.Rel.Declaration (*********************) (* Occurring *) (*********************) exception LocalOccur (* (closedn n M) raises FreeVar if a variable of height greater than n occurs in M, returns () otherwise *) let closedn n c = let rec closed_rec n c = match Constr.kind c with | Constr.Rel m -> if m>n then raise LocalOccur | _ -> Constr.iter_with_binders succ closed_rec n c in try closed_rec n c; true with LocalOccur -> false (* [closed0 M] is true iff [M] is a (de Bruijn) closed term *) let closed0 c = closedn 0 c (* (noccurn n M) returns true iff (Rel n) does NOT occur in term M *) let noccurn n term = let rec occur_rec n c = match Constr.kind c with | Constr.Rel m -> if Int.equal m n then raise LocalOccur | _ -> Constr.iter_with_binders succ occur_rec n c in try occur_rec n term; true with LocalOccur -> false (* (noccur_between n m M) returns true iff (Rel p) does NOT occur in term M for n <= p < n+m *) let noccur_between n m term = let rec occur_rec n c = match Constr.kind c with | Constr.Rel p -> if n<=p && p<n+m then raise LocalOccur | _ -> Constr.iter_with_binders succ occur_rec n c in try occur_rec n term; true with LocalOccur -> false (* Checking function for terms containing existential variables. The function [noccur_with_meta] considers the fact that each existential variable (as well as each isevar) in the term appears applied to its local context, which may contain the CoFix variables. These occurrences of CoFix variables are not considered *) let isMeta c = match Constr.kind c with | Constr.Meta _ -> true | _ -> false let noccur_with_meta n m term = let rec occur_rec n c = match Constr.kind c with | Constr.Rel p -> if n<=p && p<n+m then raise LocalOccur | Constr.App(f,_cl) -> (match Constr.kind f with | Constr.Cast (c,_,_) when isMeta c -> () | Constr.Meta _ -> () | _ -> Constr.iter_with_binders succ occur_rec n c) | Constr.Evar (_, _) -> () | _ -> Constr.iter_with_binders succ occur_rec n c in try (occur_rec n term; true) with LocalOccur -> false (*********************) (* Lifting *) (*********************) let exliftn = Constr.exliftn let liftn = Constr.liftn let lift = Constr.lift (*********************) (* Substituting *) (*********************) (* (subst1 M c) substitutes M for Rel(1) in c we generalise it to (substl [M1,...,Mn] c) which substitutes in parallel M1,...,Mn for respectively Rel(1),...,Rel(n) in c *) (* 1st : general case *) type info = Closed | Open | Unknown type 'a substituend = { mutable sinfo: info; sit: 'a } let lift_substituend depth s = match s.sinfo with | Closed -> s.sit | Open -> lift depth s.sit | Unknown -> let sit = s.sit in if closed0 sit then let () = s.sinfo <- Closed in sit else let () = s.sinfo <- Open in lift depth sit let make_substituend c = { sinfo=Unknown; sit=c } let substn_many lamv n c = let lv = Array.length lamv in if Int.equal lv 0 then c else let rec substrec depth c = match Constr.kind c with | Constr.Rel k -> if k<=depth then c else if k-depth <= lv then lift_substituend depth (Array.unsafe_get lamv (k-depth-1)) else Constr.mkRel (k-lv) | _ -> Constr.map_with_binders succ substrec depth c in substrec n c (* let substkey = CProfile.declare_profile "substn_many";; let substn_many lamv n c = CProfile.profile3 substkey substn_many lamv n c;; *) let make_subst = function | [] -> [||] | hd :: tl -> let len = List.length tl in let subst = Array.make (1 + len) (make_substituend hd) in let s = ref tl in for i = 1 to len do match !s with | [] -> assert false | x :: tl -> Array.unsafe_set subst i (make_substituend x); s := tl done; subst (* The type of substitutions, with term substituting most recent binder at the head *) type substl = Constr.t list let substnl laml n c = substn_many (make_subst laml) n c let substl laml c = substn_many (make_subst laml) 0 c let subst1 lam c = substn_many [|make_substituend lam|] 0 c let substnl_decl laml k r = RelDecl.map_constr (fun c -> substnl laml k c) r let substl_decl laml r = RelDecl.map_constr (fun c -> substnl laml 0 c) r let subst1_decl lam r = RelDecl.map_constr (fun c -> subst1 lam c) r (* Build a substitution from an instance, inserting missing let-ins *) let subst_of_rel_context_instance sign l = let rec aux subst sign l = let open RelDecl in match sign, l with | LocalAssum _ :: sign', a::args' -> aux (a::subst) sign' args' | LocalDef (_,c,_)::sign', args' -> aux (substl subst c :: subst) sign' args' | [], [] -> subst | _ -> CErrors.anomaly (Pp.str "Instance and signature do not match.") in aux [] (List.rev sign) l let adjust_subst_to_rel_context sign l = List.rev (subst_of_rel_context_instance sign l) let adjust_rel_to_rel_context sign n = let rec aux sign = let open RelDecl in match sign with | LocalAssum _ :: sign' -> let (n',p) = aux sign' in (n'+1,p) | LocalDef (_,_c,_)::sign' -> let (n',p) = aux sign' in (n'+1,if n'<n then p+1 else p) | [] -> (0,n) in snd (aux sign) (* (thin_val sigma) removes identity substitutions from sigma *) let rec thin_val = function | [] -> [] | (id, c) :: tl -> match Constr.kind c with | Constr.Var v -> if Id.equal id v then thin_val tl else (id, make_substituend c) :: (thin_val tl) | _ -> (id, make_substituend c) :: (thin_val tl) let rec find_var id = function | [] -> raise Not_found | (idc, c) :: subst -> if Id.equal id idc then c else find_var id subst (* (replace_vars sigma M) applies substitution sigma to term M *) let replace_vars var_alist x = let var_alist = thin_val var_alist in match var_alist with | [] -> x | _ -> let rec substrec n c = match Constr.kind c with | Constr.Var x -> (try lift_substituend n (find_var x var_alist) with Not_found -> c) | _ -> Constr.map_with_binders succ substrec n c in substrec 0 x (* (subst_var str t) substitute (Var str) by (Rel 1) in t *) let subst_var str t = replace_vars [(str, Constr.mkRel 1)] t (* (subst_vars [id1;...;idn] t) substitute (Var idj) by (Rel j) in t *) let substn_vars p vars c = let _,subst = List.fold_left (fun (n,l) var -> ((n+1),(var,Constr.mkRel n)::l)) (p,[]) vars in replace_vars (List.rev subst) c let subst_vars subst c = substn_vars 1 subst c (** Universe substitutions *) open Constr let subst_univs_level_constr subst c = if Univ.is_empty_level_subst subst then c else let f = Univ.Instance.subst_fn (Univ.subst_univs_level_level subst) in let changed = ref false in let rec aux t = match kind t with | Const (c, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (changed := true; mkConstU (c, u')) | Ind (i, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (changed := true; mkIndU (i, u')) | Construct (c, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (changed := true; mkConstructU (c, u')) | Sort (Sorts.Type u) -> let u' = Univ.subst_univs_level_universe subst u in if u' == u then t else (changed := true; mkSort (Sorts.sort_of_univ u')) | _ -> Constr.map aux t in let c' = aux c in if !changed then c' else c let subst_univs_level_context s = Context.Rel.map (subst_univs_level_constr s) let subst_instance_constr subst c = if Univ.Instance.is_empty subst then c else let f u = Univ.subst_instance_instance subst u in let rec aux t = match kind t with | Const (c, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (mkConstU (c, u')) | Ind (i, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (mkIndU (i, u')) | Construct (c, u) -> if Univ.Instance.is_empty u then t else let u' = f u in if u' == u then t else (mkConstructU (c, u')) | Sort (Sorts.Type u) -> let u' = Univ.subst_instance_universe subst u in if u' == u then t else (mkSort (Sorts.sort_of_univ u')) | _ -> Constr.map aux t in aux c let univ_instantiate_constr u c = let open Univ in assert (Int.equal (Instance.length u) (AUContext.size c.univ_abstracted_binder)); subst_instance_constr u c.univ_abstracted_value (* let substkey = CProfile.declare_profile "subst_instance_constr";; *) (* let subst_instance_constr inst c = CProfile.profile2 substkey subst_instance_constr inst c;; *) let subst_instance_context s ctx = if Univ.Instance.is_empty s then ctx else Context.Rel.map (fun x -> subst_instance_constr s x) ctx let universes_of_constr c = let open Univ in let rec aux s c = match kind c with | Const (_c, u) -> LSet.fold LSet.add (Instance.levels u) s | Ind ((_mind,_), u) | Construct (((_mind,_),_), u) -> LSet.fold LSet.add (Instance.levels u) s | Sort u when not (Sorts.is_small u) -> let u = Sorts.univ_of_sort u in LSet.fold LSet.add (Universe.levels u) s | _ -> Constr.fold aux s c in aux LSet.empty c