1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *) (* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *) (* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *) (* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *) (* Support for universe polymorphism by MS [2014] *) (* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey, Matthieu Sozeau, Pierre-Marie Pédrot *) open Pp open CErrors open Util (* Universes are stratified by a partial ordering $\le$. Let $\~{}$ be the associated equivalence. We also have a strict ordering $<$ between equivalence classes, and we maintain that $<$ is acyclic, and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$. At every moment, we have a finite number of universes, and we maintain the ordering in the presence of assertions $U<V$ and $U\le V$. The equivalence $\~{}$ is represented by a tree structure, as in the union-find algorithm. The assertions $<$ and $\le$ are represented by adjacency lists *) module RawLevel = struct open Names module UGlobal = struct type t = DirPath.t * int let make dp i = (DirPath.hcons dp,i) let equal (d, i) (d', i') = DirPath.equal d d' && Int.equal i i' let hash (d,i) = Hashset.Combine.combine i (DirPath.hash d) let compare (d, i) (d', i') = let c = Int.compare i i' in if Int.equal c 0 then DirPath.compare d d' else c end type t = | SProp | Prop | Set | Level of UGlobal.t | Var of int (* Hash-consing *) let equal x y = x == y || match x, y with | SProp, SProp -> true | Prop, Prop -> true | Set, Set -> true | Level l, Level l' -> UGlobal.equal l l' | Var n, Var n' -> Int.equal n n' | _ -> false let compare u v = match u, v with | SProp, SProp -> 0 | SProp, _ -> -1 | _, SProp -> 1 | Prop,Prop -> 0 | Prop, _ -> -1 | _, Prop -> 1 | Set, Set -> 0 | Set, _ -> -1 | _, Set -> 1 | Level (dp1, i1), Level (dp2, i2) -> if i1 < i2 then -1 else if i1 > i2 then 1 else DirPath.compare dp1 dp2 | Level _, _ -> -1 | _, Level _ -> 1 | Var n, Var m -> Int.compare n m let hequal x y = x == y || match x, y with | SProp, SProp -> true | Prop, Prop -> true | Set, Set -> true | Level (n,d), Level (n',d') -> n == n' && d == d' | Var n, Var n' -> n == n' | _ -> false let hcons = function | SProp as x -> x | Prop as x -> x | Set as x -> x | Level (d,n) as x -> let d' = Names.DirPath.hcons d in if d' == d then x else Level (d',n) | Var _n as x -> x open Hashset.Combine let hash = function | SProp -> combinesmall 1 0 | Prop -> combinesmall 1 1 | Set -> combinesmall 1 2 | Var n -> combinesmall 2 n | Level (d, n) -> combinesmall 3 (combine n (Names.DirPath.hash d)) end module Level = struct module UGlobal = RawLevel.UGlobal type raw_level = RawLevel.t = | SProp | Prop | Set | Level of UGlobal.t | Var of int (** Embed levels with their hash value *) type t = { hash : int; data : RawLevel.t } let equal x y = x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data let hash x = x.hash let data x = x.data (** Hashcons on levels + their hash *) module Self = struct type nonrec t = t type u = unit let eq x y = x.hash == y.hash && RawLevel.hequal x.data y.data let hash x = x.hash let hashcons () x = let data' = RawLevel.hcons x.data in if x.data == data' then x else { x with data = data' } end let hcons = let module H = Hashcons.Make(Self) in Hashcons.simple_hcons H.generate H.hcons () let make l = hcons { hash = RawLevel.hash l; data = l } let set = make Set let prop = make Prop let sprop = make SProp let is_small x = match data x with | Level _ -> false | Var _ -> false | SProp -> true | Prop -> true | Set -> true let is_prop x = match data x with | Prop -> true | _ -> false let is_set x = match data x with | Set -> true | _ -> false let is_sprop x = match data x with | SProp -> true | _ -> false let compare u v = if u == v then 0 else RawLevel.compare (data u) (data v) let to_string x = match data x with | SProp -> "SProp" | Prop -> "Prop" | Set -> "Set" | Level (d,n) -> Names.DirPath.to_string d^"."^string_of_int n | Var n -> "Var(" ^ string_of_int n ^ ")" let pr u = str (to_string u) let apart u v = match data u, data v with | SProp, _ | _, SProp | Prop, Set | Set, Prop -> true | _ -> false let vars = Array.init 20 (fun i -> make (Var i)) let var n = if n < 20 then vars.(n) else make (Var n) let var_index u = match data u with | Var n -> Some n | _ -> None let make qid = make (Level qid) let name u = match data u with | Level (d, n) -> Some (d, n) | _ -> None end (** Level maps *) module LMap = struct module M = HMap.Make (Level) include M let lunion l r = union (fun _k l _r -> Some l) l r let subst_union l r = union (fun _k l r -> match l, r with | Some _, _ -> Some l | None, None -> Some l | _, _ -> Some r) l r let diff ext orig = fold (fun u v acc -> if mem u orig then acc else add u v acc) ext empty let pr f m = h 0 (prlist_with_sep fnl (fun (u, v) -> Level.pr u ++ f v) (bindings m)) end module LSet = struct include LMap.Set let pr prl s = str"{" ++ prlist_with_sep spc prl (elements s) ++ str"}" let of_array l = Array.fold_left (fun acc x -> add x acc) empty l end type 'a universe_map = 'a LMap.t type universe_level = Level.t type universe_level_subst_fn = universe_level -> universe_level type universe_set = LSet.t (* An algebraic universe [universe] is either a universe variable [Level.t] or a formal universe known to be greater than some universe variables and strictly greater than some (other) universe variables Universes variables denote universes initially present in the term to type-check and non variable algebraic universes denote the universes inferred while type-checking: it is either the successor of a universe present in the initial term to type-check or the maximum of two algebraic universes *) module Universe = struct (* Invariants: non empty, sorted and without duplicates *) module Expr = struct type t = Level.t * int (* Hashing of expressions *) module ExprHash = struct type t = Level.t * int type u = Level.t -> Level.t let hashcons hdir (b,n as x) = let b' = hdir b in if b' == b then x else (b',n) let eq l1 l2 = l1 == l2 || match l1,l2 with | (b,n), (b',n') -> b == b' && n == n' let hash (x, n) = n + Level.hash x end module H = Hashcons.Make(ExprHash) let hcons = Hashcons.simple_hcons H.generate H.hcons Level.hcons let make l = (l, 0) let compare u v = if u == v then 0 else let (x, n) = u and (x', n') = v in if Int.equal n n' then Level.compare x x' else n - n' let sprop = hcons (Level.sprop, 0) let prop = hcons (Level.prop, 0) let set = hcons (Level.set, 0) let type1 = hcons (Level.set, 1) let is_small = function | (l,0) -> Level.is_small l | _ -> false let equal x y = x == y || (let (u,n) = x and (v,n') = y in Int.equal n n' && Level.equal u v) let hash = ExprHash.hash let leq (u,n) (v,n') = let cmp = Level.compare u v in if Int.equal cmp 0 then n <= n' else if n <= n' then (Level.is_prop u && not (Level.is_sprop v)) else false let successor (u,n) = if Level.is_small u then type1 else (u, n + 1) let addn k (u,n as x) = if k = 0 then x else if Level.is_small u then (Level.set,n+k) else (u,n+k) type super_result = SuperSame of bool (* The level expressions are in cumulativity relation. boolean indicates if left is smaller than right? *) | SuperDiff of int (* The level expressions are unrelated, the comparison result is canonical *) (** [super u v] compares two level expressions, returning [SuperSame] if they refer to the same level at potentially different increments or [SuperDiff] if they are different. The booleans indicate if the left expression is "smaller" than the right one in both cases. *) let super (u,n) (v,n') = let cmp = Level.compare u v in if Int.equal cmp 0 then SuperSame (n < n') else let open RawLevel in match Level.data u, n, Level.data v, n' with | SProp, _, SProp, _ | Prop, _, Prop, _ -> SuperSame (n < n') | SProp, 0, Prop, 0 -> SuperSame true | Prop, 0, SProp, 0 -> SuperSame false | (SProp | Prop), 0, _, _ -> SuperSame true | _, _, (SProp | Prop), 0 -> SuperSame false | _, _, _, _ -> SuperDiff cmp let to_string (v, n) = if Int.equal n 0 then Level.to_string v else Level.to_string v ^ "+" ^ string_of_int n let pr x = str(to_string x) let pr_with f (v, n) = if Int.equal n 0 then f v else f v ++ str"+" ++ int n let is_level = function | (_v, 0) -> true | _ -> false let level = function | (v,0) -> Some v | _ -> None let get_level (v,_n) = v let map f (v, n as x) = let v' = f v in if v' == v then x else if Level.is_prop v' && n != 0 then (Level.set, n) else (v', n) end type t = Expr.t list let tip l = [l] let cons x l = x :: l let rec hash = function | [] -> 0 | e :: l -> Hashset.Combine.combinesmall (Expr.ExprHash.hash e) (hash l) let equal x y = x == y || List.equal Expr.equal x y let compare x y = if x == y then 0 else List.compare Expr.compare x y module Huniv = Hashcons.Hlist(Expr) let hcons = Hashcons.recursive_hcons Huniv.generate Huniv.hcons Expr.hcons let make l = tip (Expr.make l) let tip x = tip x let pr l = match l with | [u] -> Expr.pr u | _ -> str "max(" ++ hov 0 (prlist_with_sep pr_comma Expr.pr l) ++ str ")" let pr_with f l = match l with | [u] -> Expr.pr_with f u | _ -> str "max(" ++ hov 0 (prlist_with_sep pr_comma (Expr.pr_with f) l) ++ str ")" let is_level l = match l with | [l] -> Expr.is_level l | _ -> false let rec is_levels l = match l with | l :: r -> Expr.is_level l && is_levels r | [] -> true let level l = match l with | [l] -> Expr.level l | _ -> None let levels l = List.fold_left (fun acc x -> LSet.add (Expr.get_level x) acc) LSet.empty l let is_small u = match u with | [l] -> Expr.is_small l | _ -> false let sprop = tip Expr.sprop (* The lower predicative level of the hierarchy that contains (impredicative) Prop and singleton inductive types *) let type0m = tip Expr.prop (* The level of sets *) let type0 = tip Expr.set (* When typing [Prop] and [Set], there is no constraint on the level, hence the definition of [type1_univ], the type of [Prop] *) let type1 = tip Expr.type1 let is_sprop x = equal sprop x let is_type0m x = equal type0m x let is_type0 x = equal type0 x (* Returns the formal universe that lies just above the universe variable u. Used to type the sort u. *) let super l = if is_small l then type1 else List.Smart.map (fun x -> Expr.successor x) l let addn n l = List.Smart.map (fun x -> Expr.addn n x) l let rec merge_univs l1 l2 = match l1, l2 with | [], _ -> l2 | _, [] -> l1 | h1 :: t1, h2 :: t2 -> let open Expr in (match super h1 h2 with | SuperSame true (* h1 < h2 *) -> merge_univs t1 l2 | SuperSame false -> merge_univs l1 t2 | SuperDiff c -> if c <= 0 (* h1 < h2 is name order *) then cons h1 (merge_univs t1 l2) else cons h2 (merge_univs l1 t2)) let sort u = let rec aux a l = match l with | b :: l' -> let open Expr in (match super a b with | SuperSame false -> aux a l' | SuperSame true -> l | SuperDiff c -> if c <= 0 then cons a l else cons b (aux a l')) | [] -> cons a l in List.fold_right (fun a acc -> aux a acc) u [] (* Returns the formal universe that is greater than the universes u and v. Used to type the products. *) let sup x y = merge_univs x y let empty = [] let exists = List.exists let for_all = List.for_all let smart_map = List.Smart.map let map = List.map end type universe = Universe.t (* The level of predicative Set *) let type0m_univ = Universe.type0m let type0_univ = Universe.type0 let type1_univ = Universe.type1 let is_type0m_univ = Universe.is_type0m let is_type0_univ = Universe.is_type0 let is_univ_variable l = Universe.level l != None let is_small_univ = Universe.is_small let pr_uni = Universe.pr let sup = Universe.sup let super = Universe.super open Universe let universe_level = Universe.level type constraint_type = AcyclicGraph.constraint_type = Lt | Le | Eq type explanation = (constraint_type * Level.t) list let constraint_type_ord c1 c2 = match c1, c2 with | Lt, Lt -> 0 | Lt, _ -> -1 | Le, Lt -> 1 | Le, Le -> 0 | Le, Eq -> -1 | Eq, Eq -> 0 | Eq, _ -> 1 (* Universe inconsistency: error raised when trying to enforce a relation that would create a cycle in the graph of universes. *) type univ_inconsistency = constraint_type * universe * universe * explanation Lazy.t option exception UniverseInconsistency of univ_inconsistency let error_inconsistency o u v p = raise (UniverseInconsistency (o,make u,make v,p)) (* Constraints and sets of constraints. *) type univ_constraint = Level.t * constraint_type * Level.t let pr_constraint_type op = let op_str = match op with | Lt -> " < " | Le -> " <= " | Eq -> " = " in str op_str module UConstraintOrd = struct type t = univ_constraint let compare (u,c,v) (u',c',v') = let i = constraint_type_ord c c' in if not (Int.equal i 0) then i else let i' = Level.compare u u' in if not (Int.equal i' 0) then i' else Level.compare v v' end module Constraint = struct module S = Set.Make(UConstraintOrd) include S let pr prl c = v 0 (prlist_with_sep spc (fun (u1,op,u2) -> hov 0 (prl u1 ++ pr_constraint_type op ++ prl u2)) (elements c)) end let empty_constraint = Constraint.empty let union_constraint = Constraint.union let eq_constraint = Constraint.equal type constraints = Constraint.t module Hconstraint = Hashcons.Make( struct type t = univ_constraint type u = universe_level -> universe_level let hashcons hul (l1,k,l2) = (hul l1, k, hul l2) let eq (l1,k,l2) (l1',k',l2') = l1 == l1' && k == k' && l2 == l2' let hash = Hashtbl.hash end) module Hconstraints = Hashcons.Make( struct type t = constraints type u = univ_constraint -> univ_constraint let hashcons huc s = Constraint.fold (fun x -> Constraint.add (huc x)) s Constraint.empty let eq s s' = List.for_all2eq (==) (Constraint.elements s) (Constraint.elements s') let hash = Hashtbl.hash end) let hcons_constraint = Hashcons.simple_hcons Hconstraint.generate Hconstraint.hcons Level.hcons let hcons_constraints = Hashcons.simple_hcons Hconstraints.generate Hconstraints.hcons hcons_constraint (** A value with universe constraints. *) type 'a constrained = 'a * constraints let constraints_of (_, cst) = cst (** Constraint functions. *) type 'a constraint_function = 'a -> 'a -> constraints -> constraints let enforce_eq_level u v c = (* We discard trivial constraints like u=u *) if Level.equal u v then c else if Level.apart u v then error_inconsistency Eq u v None else Constraint.add (u,Eq,v) c let enforce_eq u v c = match Universe.level u, Universe.level v with | Some u, Some v -> enforce_eq_level u v c | _ -> anomaly (Pp.str "A universe comparison can only happen between variables.") let check_univ_eq u v = Universe.equal u v let enforce_eq u v c = if check_univ_eq u v then c else enforce_eq u v c let constraint_add_leq v u c = (* We just discard trivial constraints like u<=u *) if Expr.equal v u then c else match v, u with | (x,n), (y,m) -> let j = m - n in if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then Constraint.add (x,Lt,y) c else if j <= -1 (* n = m+k, v+k <= u <-> v+(k-1) < u *) then if Level.equal x y then (* u+(k+1) <= u *) raise (UniverseInconsistency (Le, Universe.tip v, Universe.tip u, None)) else anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints.") else if j = 0 then Constraint.add (x,Le,y) c else (* j >= 1 *) (* m = n + k, u <= v+k *) if Level.equal x y then c (* u <= u+k, trivial *) else if Level.is_small x then c (* Prop,Set <= u+S k, trivial *) else Constraint.add (x,Le,y) c (* u <= v implies u <= v+k *) let check_univ_leq_one u v = Universe.exists (Expr.leq u) v let check_univ_leq u v = Universe.for_all (fun u -> check_univ_leq_one u v) u let enforce_leq u v c = match is_sprop u, is_sprop v with | true, true -> c | true, false | false, true -> raise (UniverseInconsistency (Le, u, v, None)) | false, false -> List.fold_left (fun c v -> (List.fold_left (fun c u -> constraint_add_leq u v c) c u)) c v let enforce_leq u v c = if check_univ_leq u v then c else enforce_leq u v c let enforce_leq_level u v c = if Level.equal u v then c else Constraint.add (u,Le,v) c (* Miscellaneous functions to remove or test local univ assumed to occur in a universe *) let univ_level_mem u v = List.exists (fun (l, n) -> Int.equal n 0 && Level.equal u l) v let univ_level_rem u v min = match Universe.level v with | Some u' -> if Level.equal u u' then min else v | None -> List.filter (fun (l, n) -> not (Int.equal n 0 && Level.equal u l)) v (* Is u mentioned in v (or equals to v) ? *) (**********************************************************************) (** Universe polymorphism *) (**********************************************************************) (** A universe level substitution, note that no algebraic universes are involved *) type universe_level_subst = universe_level universe_map (** A full substitution might involve algebraic universes *) type universe_subst = universe universe_map module Variance = struct (** A universe position in the instance given to a cumulative inductive can be the following. Note there is no Contravariant case because [forall x : A, B <= forall x : A', B'] requires [A = A'] as opposed to [A' <= A]. *) type t = Irrelevant | Covariant | Invariant let sup x y = match x, y with | Irrelevant, s | s, Irrelevant -> s | Invariant, _ | _, Invariant -> Invariant | Covariant, Covariant -> Covariant let check_subtype x y = match x, y with | (Irrelevant | Covariant | Invariant), Irrelevant -> true | Irrelevant, Covariant -> false | (Covariant | Invariant), Covariant -> true | (Irrelevant | Covariant), Invariant -> false | Invariant, Invariant -> true let pr = function | Irrelevant -> str "*" | Covariant -> str "+" | Invariant -> str "=" let leq_constraint csts variance u u' = match variance with | Irrelevant -> csts | Covariant -> enforce_leq_level u u' csts | Invariant -> enforce_eq_level u u' csts let eq_constraint csts variance u u' = match variance with | Irrelevant -> csts | Covariant | Invariant -> enforce_eq_level u u' csts let leq_constraints variance u u' csts = let len = Array.length u in assert (len = Array.length u' && len = Array.length variance); Array.fold_left3 leq_constraint csts variance u u' let eq_constraints variance u u' csts = let len = Array.length u in assert (len = Array.length u' && len = Array.length variance); Array.fold_left3 eq_constraint csts variance u u' end module Instance : sig type t = Level.t array val empty : t val is_empty : t -> bool val of_array : Level.t array -> t val to_array : t -> Level.t array val append : t -> t -> t val equal : t -> t -> bool val length : t -> int val hcons : t -> t val hash : t -> int val share : t -> t * int val subst_fn : universe_level_subst_fn -> t -> t val pr : (Level.t -> Pp.t) -> ?variance:Variance.t array -> t -> Pp.t val levels : t -> LSet.t end = struct type t = Level.t array let empty : t = [||] module HInstancestruct = struct type nonrec t = t type u = Level.t -> Level.t let hashcons huniv a = let len = Array.length a in if Int.equal len 0 then empty else begin for i = 0 to len - 1 do let x = Array.unsafe_get a i in let x' = huniv x in if x == x' then () else Array.unsafe_set a i x' done; a end let eq t1 t2 = t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (t1.(i) == t2.(i) && aux (i + 1)) in aux 0) let hash a = let accu = ref 0 in for i = 0 to Array.length a - 1 do let l = Array.unsafe_get a i in let h = Level.hash l in accu := Hashset.Combine.combine !accu h; done; (* [h] must be positive. *) let h = !accu land 0x3FFFFFFF in h end module HInstance = Hashcons.Make(HInstancestruct) let hcons = Hashcons.simple_hcons HInstance.generate HInstance.hcons Level.hcons let hash = HInstancestruct.hash let share a = (hcons a, hash a) let empty = hcons [||] let is_empty x = Int.equal (Array.length x) 0 let append x y = if Array.length x = 0 then y else if Array.length y = 0 then x else Array.append x y let of_array a = assert(Array.for_all (fun x -> not (Level.is_prop x || Level.is_sprop x)) a); a let to_array a = a let length a = Array.length a let subst_fn fn t = let t' = CArray.Smart.map fn t in if t' == t then t else of_array t' let levels x = LSet.of_array x let pr prl ?variance = let ppu i u = let v = Option.map (fun v -> v.(i)) variance in pr_opt_no_spc Variance.pr v ++ prl u in prvecti_with_sep spc ppu let equal t u = t == u || (Array.is_empty t && Array.is_empty u) || (CArray.for_all2 Level.equal t u (* Necessary as universe instances might come from different modules and unmarshalling doesn't preserve sharing *)) end let enforce_eq_instances x y = let ax = Instance.to_array x and ay = Instance.to_array y in if Array.length ax != Array.length ay then anomaly (Pp.(++) (Pp.str "Invalid argument: enforce_eq_instances called with") (Pp.str " instances of different lengths.")); CArray.fold_right2 enforce_eq_level ax ay let enforce_eq_variance_instances = Variance.eq_constraints let enforce_leq_variance_instances = Variance.leq_constraints let subst_instance_level s l = match l.Level.data with | Level.Var n -> s.(n) | _ -> l let subst_instance_instance s i = Array.Smart.map (fun l -> subst_instance_level s l) i let subst_instance_universe s u = let f x = Universe.Expr.map (fun u -> subst_instance_level s u) x in let u' = Universe.smart_map f u in if u == u' then u else Universe.sort u' let subst_instance_constraint s (u,d,v as c) = let u' = subst_instance_level s u in let v' = subst_instance_level s v in if u' == u && v' == v then c else (u',d,v') let subst_instance_constraints s csts = Constraint.fold (fun c csts -> Constraint.add (subst_instance_constraint s c) csts) csts Constraint.empty type 'a puniverses = 'a * Instance.t let out_punivs (x, _y) = x let in_punivs x = (x, Instance.empty) let eq_puniverses f (x, u) (y, u') = f x y && Instance.equal u u' (** A context of universe levels with universe constraints, representing local universe variables and constraints *) module UContext = struct type t = Instance.t constrained let make x = x (** Universe contexts (variables as a list) *) let empty = (Instance.empty, Constraint.empty) let is_empty (univs, cst) = Instance.is_empty univs && Constraint.is_empty cst let pr prl ?variance (univs, cst as ctx) = if is_empty ctx then mt() else h 0 (Instance.pr prl ?variance univs ++ str " |= ") ++ h 0 (v 0 (Constraint.pr prl cst)) let hcons (univs, cst) = (Instance.hcons univs, hcons_constraints cst) let instance (univs, _cst) = univs let constraints (_univs, cst) = cst let union (univs, cst) (univs', cst') = Instance.append univs univs', Constraint.union cst cst' let dest x = x let size (x,_) = Instance.length x end type universe_context = UContext.t let hcons_universe_context = UContext.hcons module AUContext = struct type t = Names.Name.t array constrained let repr (inst, cst) = (Array.init (Array.length inst) (fun i -> Level.var i), cst) let pr f ?variance ctx = UContext.pr f ?variance (repr ctx) let instantiate inst (u, cst) = assert (Array.length u = Array.length inst); subst_instance_constraints inst cst let names (nas, _) = nas let hcons (univs, cst) = (Array.map Names.Name.hcons univs, hcons_constraints cst) let empty = ([||], Constraint.empty) let is_empty (nas, cst) = Array.is_empty nas && Constraint.is_empty cst let union (nas, cst) (nas', cst') = (Array.append nas nas', Constraint.union cst cst') let size (nas, _) = Array.length nas end type 'a univ_abstracted = { univ_abstracted_value : 'a; univ_abstracted_binder : AUContext.t; } let map_univ_abstracted f {univ_abstracted_value;univ_abstracted_binder} = let univ_abstracted_value = f univ_abstracted_value in {univ_abstracted_value;univ_abstracted_binder} let hcons_abstract_universe_context = AUContext.hcons (** A set of universes with universe constraints. We linearize the set to a list after typechecking. Beware, representation could change. *) module ContextSet = struct type t = universe_set constrained let empty = (LSet.empty, Constraint.empty) let is_empty (univs, cst) = LSet.is_empty univs && Constraint.is_empty cst let equal (univs, cst as x) (univs', cst' as y) = x == y || (LSet.equal univs univs' && Constraint.equal cst cst') let of_set s = (s, Constraint.empty) let singleton l = of_set (LSet.singleton l) let of_instance i = of_set (Instance.levels i) let union (univs, cst as x) (univs', cst' as y) = if x == y then x else LSet.union univs univs', Constraint.union cst cst' let append (univs, cst) (univs', cst') = let univs = LSet.fold LSet.add univs univs' in let cst = Constraint.fold Constraint.add cst cst' in (univs, cst) let diff (univs, cst) (univs', cst') = LSet.diff univs univs', Constraint.diff cst cst' let add_universe u (univs, cst) = LSet.add u univs, cst let add_constraints cst' (univs, cst) = univs, Constraint.union cst cst' let add_instance inst (univs, cst) = let v = Instance.to_array inst in let fold accu u = LSet.add u accu in let univs = Array.fold_left fold univs v in (univs, cst) let sort_levels a = Array.sort Level.compare a; a let to_context (ctx, cst) = (Instance.of_array (sort_levels (Array.of_list (LSet.elements ctx))), cst) let of_context (ctx, cst) = (Instance.levels ctx, cst) let pr prl (univs, cst as ctx) = if is_empty ctx then mt() else h 0 (LSet.pr prl univs ++ str " |= ") ++ h 0 (v 0 (Constraint.pr prl cst)) let constraints (_univs, cst) = cst let levels (univs, _cst) = univs let size (univs,_) = LSet.cardinal univs end type universe_context_set = ContextSet.t (** A value in a universe context (resp. context set). *) type 'a in_universe_context = 'a * universe_context type 'a in_universe_context_set = 'a * universe_context_set let extend_in_context_set (a, ctx) ctx' = (a, ContextSet.union ctx ctx') (** Substitutions. *) let empty_subst = LMap.empty let is_empty_subst = LMap.is_empty let empty_level_subst = LMap.empty let is_empty_level_subst = LMap.is_empty (** Substitution functions *) (** With level to level substitutions. *) let subst_univs_level_level subst l = try LMap.find l subst with Not_found -> l let subst_univs_level_universe subst u = let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in let u' = Universe.smart_map f u in if u == u' then u else Universe.sort u' let subst_univs_level_instance subst i = let i' = Instance.subst_fn (subst_univs_level_level subst) i in if i == i' then i else i' let subst_univs_level_constraint subst (u,d,v) = let u' = subst_univs_level_level subst u and v' = subst_univs_level_level subst v in if d != Lt && Level.equal u' v' then None else Some (u',d,v') let subst_univs_level_constraints subst csts = Constraint.fold (fun c -> Option.fold_right Constraint.add (subst_univs_level_constraint subst c)) csts Constraint.empty let subst_univs_level_abstract_universe_context subst (inst, csts) = inst, subst_univs_level_constraints subst csts (** With level to universe substitutions. *) type universe_subst_fn = universe_level -> universe let make_subst subst = fun l -> LMap.find l subst let subst_univs_expr_opt fn (l,n) = Universe.addn n (fn l) let subst_univs_universe fn ul = let subst, nosubst = List.fold_right (fun u (subst,nosubst) -> try let a' = subst_univs_expr_opt fn u in (a' :: subst, nosubst) with Not_found -> (subst, u :: nosubst)) ul ([], []) in if CList.is_empty subst then ul else let substs = List.fold_left Universe.merge_univs Universe.empty subst in List.fold_left (fun acc u -> Universe.merge_univs acc (Universe.tip u)) substs nosubst let make_instance_subst i = let arr = Instance.to_array i in Array.fold_left_i (fun i acc l -> LMap.add l (Level.var i) acc) LMap.empty arr let make_inverse_instance_subst i = let arr = Instance.to_array i in Array.fold_left_i (fun i acc l -> LMap.add (Level.var i) l acc) LMap.empty arr let make_abstract_instance (ctx, _) = Array.init (Array.length ctx) (fun i -> Level.var i) let abstract_universes nas ctx = let instance = UContext.instance ctx in let () = assert (Int.equal (Array.length nas) (Instance.length instance)) in let subst = make_instance_subst instance in let cstrs = subst_univs_level_constraints subst (UContext.constraints ctx) in let ctx = (nas, cstrs) in instance, ctx let rec compact_univ s vars i u = match u with | [] -> (s, List.rev vars) | (lvl, _) :: u -> match Level.var_index lvl with | Some k when not (LMap.mem lvl s) -> let lvl' = Level.var i in compact_univ (LMap.add lvl lvl' s) (k :: vars) (i+1) u | _ -> compact_univ s vars i u let compact_univ u = let (s, s') = compact_univ LMap.empty [] 0 u in (subst_univs_level_universe s u, s') (** Pretty-printing *) let pr_constraints prl = Constraint.pr prl let pr_universe_context = UContext.pr let pr_abstract_universe_context = AUContext.pr let pr_universe_context_set = ContextSet.pr let pr_universe_subst = LMap.pr (fun u -> str" := " ++ Universe.pr u ++ spc ()) let pr_universe_level_subst = LMap.pr (fun u -> str" := " ++ Level.pr u ++ spc ()) module Huniverse_set = Hashcons.Make( struct type t = universe_set type u = universe_level -> universe_level let hashcons huc s = LSet.fold (fun x -> LSet.add (huc x)) s LSet.empty let eq s s' = LSet.equal s s' let hash = Hashtbl.hash end) let hcons_universe_set = Hashcons.simple_hcons Huniverse_set.generate Huniverse_set.hcons Level.hcons let hcons_universe_context_set (v, c) = (hcons_universe_set v, hcons_constraints c) let hcons_univ x = Universe.hcons x let explain_universe_inconsistency prl (o,u,v,p : univ_inconsistency) = let pr_uni = Universe.pr_with prl in let pr_rel = function | Eq -> str"=" | Lt -> str"<" | Le -> str"<=" in let reason = match p with | None -> mt() | Some p -> let p = Lazy.force p in if p = [] then mt () else str " because" ++ spc() ++ pr_uni v ++ prlist (fun (r,v) -> spc() ++ pr_rel r ++ str" " ++ prl v) p ++ (if Universe.equal (Universe.make (snd (List.last p))) u then mt() else (spc() ++ str "= " ++ pr_uni u)) in str "Cannot enforce" ++ spc() ++ pr_uni u ++ spc() ++ pr_rel o ++ spc() ++ pr_uni v ++ reason