1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *)
(* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *)
(* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *)
(* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *)
(* Support for universe polymorphism by MS [2014] *)

(* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey, Matthieu
   Sozeau, Pierre-Marie Pédrot *)

open Pp
open CErrors
open Util

(* Universes are stratified by a partial ordering $\le$.
   Let $\~{}$ be the associated equivalence. We also have a strict ordering
   $<$ between equivalence classes, and we maintain that $<$ is acyclic,
   and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$.

   At every moment, we have a finite number of universes, and we
   maintain the ordering in the presence of assertions $U<V$ and $U\le V$.

   The equivalence $\~{}$ is represented by a tree structure, as in the
   union-find algorithm. The assertions $<$ and $\le$ are represented by
   adjacency lists *)

module RawLevel =
struct
  open Names

  module UGlobal = struct
    type t = DirPath.t * int

    let make dp i = (DirPath.hcons dp,i)

    let equal (d, i) (d', i') = DirPath.equal d d' && Int.equal i i'

    let hash (d,i) = Hashset.Combine.combine i (DirPath.hash d)

    let compare (d, i) (d', i') =
      let c = Int.compare i i' in
      if Int.equal c 0 then DirPath.compare d d'
      else c
  end

  type t =
    | SProp
    | Prop
    | Set
    | Level of UGlobal.t
    | Var of int

  (* Hash-consing *)

  let equal x y =
    x == y ||
      match x, y with
      | SProp, SProp -> true
      | Prop, Prop -> true
      | Set, Set -> true
      | Level l, Level l' -> UGlobal.equal l l'
      | Var n, Var n' -> Int.equal n n'
      | _ -> false

  let compare u v =
    match u, v with
    | SProp, SProp -> 0
    | SProp, _ -> -1
    | _, SProp -> 1
    | Prop,Prop -> 0
    | Prop, _ -> -1
    | _, Prop -> 1
    | Set, Set -> 0
    | Set, _ -> -1
    | _, Set -> 1
    | Level (dp1, i1), Level (dp2, i2) ->
      if i1 < i2 then -1
      else if i1 > i2 then 1
      else DirPath.compare dp1 dp2
    | Level _, _ -> -1
    | _, Level _ -> 1
    | Var n, Var m -> Int.compare n m

  let hequal x y =
    x == y ||
      match x, y with
      | SProp, SProp -> true
      | Prop, Prop -> true
      | Set, Set -> true
      | Level (n,d), Level (n',d') ->
        n == n' && d == d'
      | Var n, Var n' -> n == n'
      | _ -> false

  let hcons = function
    | SProp as x -> x
    | Prop as x -> x
    | Set as x -> x
    | Level (d,n) as x ->
      let d' = Names.DirPath.hcons d in
        if d' == d then x else Level (d',n)
    | Var _n as x -> x

  open Hashset.Combine

  let hash = function
    | SProp -> combinesmall 1 0
    | Prop -> combinesmall 1 1
    | Set -> combinesmall 1 2
    | Var n -> combinesmall 2 n
    | Level (d, n) -> combinesmall 3 (combine n (Names.DirPath.hash d))

end

module Level = struct

  module UGlobal = RawLevel.UGlobal

  type raw_level = RawLevel.t =
  | SProp
  | Prop
  | Set
  | Level of UGlobal.t
  | Var of int

  (** Embed levels with their hash value *)
  type t = { 
    hash : int;
    data : RawLevel.t }

  let equal x y = 
    x == y || Int.equal x.hash y.hash && RawLevel.equal x.data y.data

  let hash x = x.hash

  let data x = x.data

  (** Hashcons on levels + their hash *)

  module Self = struct
    type nonrec t = t
    type u = unit
    let eq x y = x.hash == y.hash && RawLevel.hequal x.data y.data
    let hash x = x.hash
    let hashcons () x =
      let data' = RawLevel.hcons x.data in
      if x.data == data' then x else { x with data = data' }
  end

  let hcons =
    let module H = Hashcons.Make(Self) in
    Hashcons.simple_hcons H.generate H.hcons ()

  let make l = hcons { hash = RawLevel.hash l; data = l }

  let set = make Set
  let prop = make Prop
  let sprop = make SProp

  let is_small x = 
    match data x with
    | Level _ -> false
    | Var _ -> false
    | SProp -> true
    | Prop -> true
    | Set -> true
 
  let is_prop x =
    match data x with
    | Prop -> true
    | _ -> false

  let is_set x =
    match data x with
    | Set -> true
    | _ -> false

  let is_sprop x =
    match data x with
    | SProp -> true
    | _ -> false

  let compare u v =
    if u == v then 0
    else RawLevel.compare (data u) (data v)
            
  let to_string x = 
    match data x with
    | SProp -> "SProp"
    | Prop -> "Prop"
    | Set -> "Set"
    | Level (d,n) -> Names.DirPath.to_string d^"."^string_of_int n
    | Var n -> "Var(" ^ string_of_int n ^ ")"

  let pr u = str (to_string u)

  let apart u v =
    match data u, data v with
    | SProp, _ | _, SProp
    | Prop, Set | Set, Prop -> true
    | _ -> false

  let vars = Array.init 20 (fun i -> make (Var i))

  let var n = 
    if n < 20 then vars.(n) else make (Var n)

  let var_index u =
    match data u with
    | Var n -> Some n | _ -> None

  let make qid = make (Level qid)

  let name u =
    match data u with
    | Level (d, n) -> Some (d, n)
    | _ -> None
end

(** Level maps *)
module LMap = struct 
  module M = HMap.Make (Level)
  include M

  let lunion l r =
    union (fun _k l _r -> Some l) l r

  let subst_union l r =
    union (fun _k l r ->
      match l, r with
      | Some _, _ -> Some l
      | None, None -> Some l
      | _, _ -> Some r) l r

  let diff ext orig =
    fold (fun u v acc -> 
      if mem u orig then acc 
      else add u v acc)
      ext empty

  let pr f m =
    h 0 (prlist_with_sep fnl (fun (u, v) ->
      Level.pr u ++ f v) (bindings m))
end

module LSet = struct
  include LMap.Set

  let pr prl s =
    str"{" ++ prlist_with_sep spc prl (elements s) ++ str"}"

  let of_array l =
    Array.fold_left (fun acc x -> add x acc) empty l

end


type 'a universe_map = 'a LMap.t

type universe_level = Level.t

type universe_level_subst_fn = universe_level -> universe_level

type universe_set = LSet.t

(* An algebraic universe [universe] is either a universe variable
   [Level.t] or a formal universe known to be greater than some
   universe variables and strictly greater than some (other) universe
   variables

   Universes variables denote universes initially present in the term
   to type-check and non variable algebraic universes denote the
   universes inferred while type-checking: it is either the successor
   of a universe present in the initial term to type-check or the
   maximum of two algebraic universes
*)

module Universe =
struct
  (* Invariants: non empty, sorted and without duplicates *)

  module Expr = 
  struct
    type t = Level.t * int

    (* Hashing of expressions *)
    module ExprHash = 
    struct
      type t = Level.t * int
      type u = Level.t -> Level.t
      let hashcons hdir (b,n as x) = 
        let b' = hdir b in 
          if b' == b then x else (b',n)
      let eq l1 l2 =
        l1 == l2 || 
        match l1,l2 with
        | (b,n), (b',n') -> b == b' && n == n'

      let hash (x, n) = n + Level.hash x

    end

    module H = Hashcons.Make(ExprHash)

    let hcons =
      Hashcons.simple_hcons H.generate H.hcons Level.hcons

    let make l = (l, 0)

    let compare u v =
      if u == v then 0
      else 
        let (x, n) = u and (x', n') = v in
          if Int.equal n n' then Level.compare x x'
          else n - n'

    let sprop = hcons (Level.sprop, 0)
    let prop = hcons (Level.prop, 0)
    let set = hcons (Level.set, 0)
    let type1 = hcons (Level.set, 1)

    let is_small = function
      | (l,0) -> Level.is_small l
      | _ -> false

    let equal x y = x == y ||
      (let (u,n) = x and (v,n') = y in
         Int.equal n n' && Level.equal u v)

    let hash = ExprHash.hash

    let leq (u,n) (v,n') =
      let cmp = Level.compare u v in
        if Int.equal cmp 0 then n <= n'
        else if n <= n' then 
          (Level.is_prop u && not (Level.is_sprop v))
        else false

    let successor (u,n) =
      if Level.is_small u then type1
      else (u, n + 1)

    let addn k (u,n as x) = 
      if k = 0 then x 
      else if Level.is_small u then
        (Level.set,n+k)
      else (u,n+k)

    type super_result =
        SuperSame of bool
        (* The level expressions are in cumulativity relation. boolean
           indicates if left is smaller than right?  *)
      | SuperDiff of int
        (* The level expressions are unrelated, the comparison result
           is canonical *)

    (** [super u v] compares two level expressions,
       returning [SuperSame] if they refer to the same level at potentially different
       increments or [SuperDiff] if they are different. The booleans indicate if the
       left expression is "smaller" than the right one in both cases. *)
    let super (u,n) (v,n') =
      let cmp = Level.compare u v in
        if Int.equal cmp 0 then SuperSame (n < n')
        else
          let open RawLevel in
          match Level.data u, n, Level.data v, n' with
          | SProp, _, SProp, _ | Prop, _, Prop, _ -> SuperSame (n < n')
          | SProp, 0, Prop, 0 -> SuperSame true
          | Prop, 0, SProp, 0 -> SuperSame false
          | (SProp | Prop), 0, _, _ -> SuperSame true
          | _, _, (SProp | Prop), 0 -> SuperSame false

          | _, _, _, _ -> SuperDiff cmp

    let to_string (v, n) =
      if Int.equal n 0 then Level.to_string v
      else Level.to_string v ^ "+" ^ string_of_int n

    let pr x = str(to_string x)

    let pr_with f (v, n) = 
      if Int.equal n 0 then f v
      else f v ++ str"+" ++ int n

    let is_level = function
      | (_v, 0) -> true
      | _ -> false

    let level = function
      | (v,0) -> Some v
      | _ -> None
        
    let get_level (v,_n) = v

    let map f (v, n as x) = 
      let v' = f v in 
        if v' == v then x
        else if Level.is_prop v' && n != 0 then
          (Level.set, n)
        else (v', n)

  end

  type t = Expr.t list

  let tip l = [l]
  let cons x l = x :: l

  let rec hash = function
  | [] -> 0
  | e :: l -> Hashset.Combine.combinesmall (Expr.ExprHash.hash e) (hash l)

  let equal x y = x == y || List.equal Expr.equal x y

  let compare x y = if x == y then 0 else List.compare Expr.compare x y

  module Huniv = Hashcons.Hlist(Expr)

  let hcons = Hashcons.recursive_hcons Huniv.generate Huniv.hcons Expr.hcons

  let make l = tip (Expr.make l)
  let tip x = tip x

  let pr l = match l with
    | [u] -> Expr.pr u
    | _ -> 
      str "max(" ++ hov 0
        (prlist_with_sep pr_comma Expr.pr l) ++
        str ")"

  let pr_with f l = match l with
    | [u] -> Expr.pr_with f u
    | _ -> 
      str "max(" ++ hov 0
        (prlist_with_sep pr_comma (Expr.pr_with f) l) ++
        str ")"

  let is_level l = match l with
    | [l] -> Expr.is_level l
    | _ -> false

  let rec is_levels l = match l with
    | l :: r -> Expr.is_level l && is_levels r
    | [] -> true

  let level l = match l with
    | [l] -> Expr.level l
    | _ -> None

  let levels l = 
    List.fold_left (fun acc x -> LSet.add (Expr.get_level x) acc) LSet.empty l

  let is_small u = 
    match u with
    | [l] -> Expr.is_small l
    | _ -> false

  let sprop = tip Expr.sprop

  (* The lower predicative level of the hierarchy that contains (impredicative)
     Prop and singleton inductive types *)
  let type0m = tip Expr.prop

  (* The level of sets *)
  let type0 = tip Expr.set

  (* When typing [Prop] and [Set], there is no constraint on the level,
     hence the definition of [type1_univ], the type of [Prop] *)    
  let type1 = tip Expr.type1

  let is_sprop x = equal sprop x
  let is_type0m x = equal type0m x
  let is_type0 x = equal type0 x

  (* Returns the formal universe that lies just above the universe variable u.
     Used to type the sort u. *)
  let super l = 
    if is_small l then type1
    else
      List.Smart.map (fun x -> Expr.successor x) l

  let addn n l =
    List.Smart.map (fun x -> Expr.addn n x) l

  let rec merge_univs l1 l2 =
    match l1, l2 with
    | [], _ -> l2
    | _, [] -> l1
    | h1 :: t1, h2 :: t2 ->
       let open Expr in
       (match super h1 h2 with
        | SuperSame true (* h1 < h2 *) -> merge_univs t1 l2
        | SuperSame false -> merge_univs l1 t2
        | SuperDiff c ->
           if c <= 0 (* h1 < h2 is name order *)
           then cons h1 (merge_univs t1 l2)
           else cons h2 (merge_univs l1 t2))

  let sort u =
    let rec aux a l = 
      match l with
      | b :: l' ->
        let open Expr in
        (match super a b with
         | SuperSame false -> aux a l'
         | SuperSame true -> l
         | SuperDiff c ->
            if c <= 0 then cons a l
            else cons b (aux a l'))
      | [] -> cons a l
    in 
      List.fold_right (fun a acc -> aux a acc) u []

  (* Returns the formal universe that is greater than the universes u and v.
     Used to type the products. *)
  let sup x y = merge_univs x y

  let empty = []

  let exists = List.exists

  let for_all = List.for_all

  let smart_map = List.Smart.map

  let map = List.map
end

type universe = Universe.t

(* The level of predicative Set *)
let type0m_univ = Universe.type0m
let type0_univ = Universe.type0
let type1_univ = Universe.type1
let is_type0m_univ = Universe.is_type0m
let is_type0_univ = Universe.is_type0
let is_univ_variable l = Universe.level l != None
let is_small_univ = Universe.is_small
let pr_uni = Universe.pr

let sup = Universe.sup
let super = Universe.super

open Universe

let universe_level = Universe.level


type constraint_type = AcyclicGraph.constraint_type = Lt | Le | Eq

type explanation = (constraint_type * Level.t) list

let constraint_type_ord c1 c2 = match c1, c2 with
| Lt, Lt -> 0
| Lt, _ -> -1
| Le, Lt -> 1
| Le, Le -> 0
| Le, Eq -> -1
| Eq, Eq -> 0
| Eq, _ -> 1

(* Universe inconsistency: error raised when trying to enforce a relation
   that would create a cycle in the graph of universes. *)

type univ_inconsistency = constraint_type * universe * universe * explanation Lazy.t option

exception UniverseInconsistency of univ_inconsistency

let error_inconsistency o u v p =
  raise (UniverseInconsistency (o,make u,make v,p))

(* Constraints and sets of constraints. *)    

type univ_constraint = Level.t * constraint_type * Level.t

let pr_constraint_type op = 
  let op_str = match op with
    | Lt -> " < "
    | Le -> " <= "
    | Eq -> " = "
  in str op_str

module UConstraintOrd =
struct
  type t = univ_constraint
  let compare (u,c,v) (u',c',v') =
    let i = constraint_type_ord c c' in
    if not (Int.equal i 0) then i
    else
      let i' = Level.compare u u' in
      if not (Int.equal i' 0) then i'
      else Level.compare v v'
end

module Constraint = 
struct 
  module S = Set.Make(UConstraintOrd)
  include S

  let pr prl c =
    v 0 (prlist_with_sep spc (fun (u1,op,u2) ->
      hov 0 (prl u1 ++ pr_constraint_type op ++ prl u2))
       (elements c))

end

let empty_constraint = Constraint.empty
let union_constraint = Constraint.union
let eq_constraint = Constraint.equal

type constraints = Constraint.t

module Hconstraint =
  Hashcons.Make(
    struct
      type t = univ_constraint
      type u = universe_level -> universe_level
      let hashcons hul (l1,k,l2) = (hul l1, k, hul l2)
      let eq (l1,k,l2) (l1',k',l2') =
        l1 == l1' && k == k' && l2 == l2'
      let hash = Hashtbl.hash
    end)

module Hconstraints =
  Hashcons.Make(
    struct
      type t = constraints
      type u = univ_constraint -> univ_constraint
      let hashcons huc s =
        Constraint.fold (fun x -> Constraint.add (huc x)) s Constraint.empty
      let eq s s' =
        List.for_all2eq (==)
          (Constraint.elements s)
          (Constraint.elements s')
      let hash = Hashtbl.hash
    end)

let hcons_constraint = Hashcons.simple_hcons Hconstraint.generate Hconstraint.hcons Level.hcons
let hcons_constraints = Hashcons.simple_hcons Hconstraints.generate Hconstraints.hcons hcons_constraint


(** A value with universe constraints. *)
type 'a constrained = 'a * constraints

let constraints_of (_, cst) = cst

(** Constraint functions. *)

type 'a constraint_function = 'a -> 'a -> constraints -> constraints

let enforce_eq_level u v c =
  (* We discard trivial constraints like u=u *)
  if Level.equal u v then c 
  else if Level.apart u v then
    error_inconsistency Eq u v None
  else Constraint.add (u,Eq,v) c

let enforce_eq u v c =
  match Universe.level u, Universe.level v with
    | Some u, Some v -> enforce_eq_level u v c
    | _ -> anomaly (Pp.str "A universe comparison can only happen between variables.")

let check_univ_eq u v = Universe.equal u v

let enforce_eq u v c =
  if check_univ_eq u v then c
  else enforce_eq u v c

let constraint_add_leq v u c =
  (* We just discard trivial constraints like u<=u *)
  if Expr.equal v u then c
  else
    match v, u with
    | (x,n), (y,m) -> 
    let j = m - n in
      if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then
        Constraint.add (x,Lt,y) c
      else if j <= -1 (* n = m+k, v+k <= u <-> v+(k-1) < u *) then
        if Level.equal x y then (* u+(k+1) <= u *)
          raise (UniverseInconsistency (Le, Universe.tip v, Universe.tip u, None))
        else anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints.")
      else if j = 0 then
        Constraint.add (x,Le,y) c
      else (* j >= 1 *) (* m = n + k, u <= v+k *)
        if Level.equal x y then c (* u <= u+k, trivial *)
        else if Level.is_small x then c (* Prop,Set <= u+S k, trivial *)
        else Constraint.add (x,Le,y) c (* u <= v implies u <= v+k *)
          
let check_univ_leq_one u v = Universe.exists (Expr.leq u) v

let check_univ_leq u v = 
  Universe.for_all (fun u -> check_univ_leq_one u v) u

let enforce_leq u v c =
  match is_sprop u, is_sprop v with
  | true, true -> c
  | true, false | false, true ->
    raise (UniverseInconsistency (Le, u, v, None))
  | false, false ->
    List.fold_left (fun c v -> (List.fold_left (fun c u -> constraint_add_leq u v c) c u)) c v

let enforce_leq u v c =
  if check_univ_leq u v then c
  else enforce_leq u v c

let enforce_leq_level u v c =
  if Level.equal u v then c else Constraint.add (u,Le,v) c

(* Miscellaneous functions to remove or test local univ assumed to
   occur in a universe *)

let univ_level_mem u v =
  List.exists (fun (l, n) -> Int.equal n 0 && Level.equal u l) v

let univ_level_rem u v min = 
  match Universe.level v with
  | Some u' -> if Level.equal u u' then min else v
  | None -> List.filter (fun (l, n) -> not (Int.equal n 0 && Level.equal u l)) v

(* Is u mentioned in v (or equals to v) ? *)


(**********************************************************************)
(** Universe polymorphism                                             *)
(**********************************************************************)

(** A universe level substitution, note that no algebraic universes are
    involved *)

type universe_level_subst = universe_level universe_map

(** A full substitution might involve algebraic universes *)
type universe_subst = universe universe_map

module Variance =
struct
  (** A universe position in the instance given to a cumulative
     inductive can be the following. Note there is no Contravariant
     case because [forall x : A, B <= forall x : A', B'] requires [A =
     A'] as opposed to [A' <= A]. *)
  type t = Irrelevant | Covariant | Invariant

  let sup x y =
    match x, y with
    | Irrelevant, s | s, Irrelevant -> s
    | Invariant, _ | _, Invariant -> Invariant
    | Covariant, Covariant -> Covariant

  let check_subtype x y = match x, y with
  | (Irrelevant | Covariant | Invariant), Irrelevant -> true
  | Irrelevant, Covariant -> false
  | (Covariant | Invariant), Covariant -> true
  | (Irrelevant | Covariant), Invariant -> false
  | Invariant, Invariant -> true

  let pr = function
    | Irrelevant -> str "*"
    | Covariant -> str "+"
    | Invariant -> str "="

  let leq_constraint csts variance u u' =
    match variance with
    | Irrelevant -> csts
    | Covariant -> enforce_leq_level u u' csts
    | Invariant -> enforce_eq_level u u' csts

  let eq_constraint csts variance u u' =
    match variance with
    | Irrelevant -> csts
    | Covariant | Invariant -> enforce_eq_level u u' csts

  let leq_constraints variance u u' csts =
    let len = Array.length u in
    assert (len = Array.length u' && len = Array.length variance);
    Array.fold_left3 leq_constraint csts variance u u'

  let eq_constraints variance u u' csts =
    let len = Array.length u in
    assert (len = Array.length u' && len = Array.length variance);
    Array.fold_left3 eq_constraint csts variance u u'
end

module Instance : sig
    type t = Level.t array

    val empty : t
    val is_empty : t -> bool
      
    val of_array : Level.t array -> t
    val to_array : t -> Level.t array

    val append : t -> t -> t
    val equal : t -> t -> bool
    val length : t -> int

    val hcons : t -> t
    val hash : t -> int

    val share : t -> t * int

    val subst_fn : universe_level_subst_fn -> t -> t
    
    val pr : (Level.t -> Pp.t) -> ?variance:Variance.t array -> t -> Pp.t
    val levels : t -> LSet.t
end = 
struct
  type t = Level.t array

  let empty : t = [||]

  module HInstancestruct =
  struct
    type nonrec t = t
    type u = Level.t -> Level.t

    let hashcons huniv a = 
      let len = Array.length a in
        if Int.equal len 0 then empty
        else begin
          for i = 0 to len - 1 do
            let x = Array.unsafe_get a i in
            let x' = huniv x in
              if x == x' then ()
              else Array.unsafe_set a i x'
          done;
          a
        end

    let eq t1 t2 =
      t1 == t2 ||
        (Int.equal (Array.length t1) (Array.length t2) &&
           let rec aux i =
             (Int.equal i (Array.length t1)) || (t1.(i) == t2.(i) && aux (i + 1))
           in aux 0)
        
    let hash a = 
      let accu = ref 0 in
        for i = 0 to Array.length a - 1 do
          let l = Array.unsafe_get a i in
          let h = Level.hash l in
            accu := Hashset.Combine.combine !accu h;
        done;
        (* [h] must be positive. *)
        let h = !accu land 0x3FFFFFFF in
          h
  end

  module HInstance = Hashcons.Make(HInstancestruct)

  let hcons = Hashcons.simple_hcons HInstance.generate HInstance.hcons Level.hcons
    
  let hash = HInstancestruct.hash
    
  let share a = (hcons a, hash a)
              
  let empty = hcons [||]

  let is_empty x = Int.equal (Array.length x) 0

  let append x y =
    if Array.length x = 0 then y
    else if Array.length y = 0 then x 
    else Array.append x y

  let of_array a =
    assert(Array.for_all (fun x -> not (Level.is_prop x || Level.is_sprop x)) a);
    a

  let to_array a = a

  let length a = Array.length a

  let subst_fn fn t = 
    let t' = CArray.Smart.map fn t in
      if t' == t then t else of_array t'

  let levels x = LSet.of_array x

  let pr prl ?variance =
    let ppu i u =
      let v = Option.map (fun v -> v.(i)) variance in
      pr_opt_no_spc Variance.pr v ++ prl u
    in
    prvecti_with_sep spc ppu

  let equal t u = 
    t == u ||
      (Array.is_empty t && Array.is_empty u) ||
      (CArray.for_all2 Level.equal t u 
         (* Necessary as universe instances might come from different modules and 
            unmarshalling doesn't preserve sharing *))

end

let enforce_eq_instances x y = 
  let ax = Instance.to_array x and ay = Instance.to_array y in
    if Array.length ax != Array.length ay then
      anomaly (Pp.(++) (Pp.str "Invalid argument: enforce_eq_instances called with")
                 (Pp.str " instances of different lengths."));
    CArray.fold_right2 enforce_eq_level ax ay

let enforce_eq_variance_instances = Variance.eq_constraints
let enforce_leq_variance_instances = Variance.leq_constraints

let subst_instance_level s l =
  match l.Level.data with
  | Level.Var n -> s.(n) 
  | _ -> l

let subst_instance_instance s i = 
  Array.Smart.map (fun l -> subst_instance_level s l) i

let subst_instance_universe s u =
  let f x = Universe.Expr.map (fun u -> subst_instance_level s u) x in
  let u' = Universe.smart_map f u in
    if u == u' then u
    else Universe.sort u'

let subst_instance_constraint s (u,d,v as c) =
  let u' = subst_instance_level s u in
  let v' = subst_instance_level s v in
    if u' == u && v' == v then c
    else (u',d,v')

let subst_instance_constraints s csts =
  Constraint.fold 
    (fun c csts -> Constraint.add (subst_instance_constraint s c) csts)
    csts Constraint.empty 

type 'a puniverses = 'a * Instance.t
let out_punivs (x, _y) = x
let in_punivs x = (x, Instance.empty)
let eq_puniverses f (x, u) (y, u') =
  f x y && Instance.equal u u'

(** A context of universe levels with universe constraints,
    representing local universe variables and constraints *)

module UContext =
struct
  type t = Instance.t constrained

  let make x = x

  (** Universe contexts (variables as a list) *)
  let empty = (Instance.empty, Constraint.empty)
  let is_empty (univs, cst) = Instance.is_empty univs && Constraint.is_empty cst

  let pr prl ?variance (univs, cst as ctx) =
    if is_empty ctx then mt() else
      h 0 (Instance.pr prl ?variance univs ++ str " |= ") ++ h 0 (v 0 (Constraint.pr prl cst))

  let hcons (univs, cst) =
    (Instance.hcons univs, hcons_constraints cst)

  let instance (univs, _cst) = univs
  let constraints (_univs, cst) = cst

  let union (univs, cst) (univs', cst') =
    Instance.append univs univs', Constraint.union cst cst'

  let dest x = x

  let size (x,_) = Instance.length x

end

type universe_context = UContext.t
let hcons_universe_context = UContext.hcons

module AUContext =
struct
  type t = Names.Name.t array constrained

  let repr (inst, cst) =
    (Array.init (Array.length inst) (fun i -> Level.var i), cst)

  let pr f ?variance ctx = UContext.pr f ?variance (repr ctx)

  let instantiate inst (u, cst) =
    assert (Array.length u = Array.length inst);
    subst_instance_constraints inst cst

  let names (nas, _) = nas

  let hcons (univs, cst) =
    (Array.map Names.Name.hcons univs, hcons_constraints cst)

  let empty = ([||], Constraint.empty)

  let is_empty (nas, cst) = Array.is_empty nas && Constraint.is_empty cst

  let union (nas, cst) (nas', cst') = (Array.append nas nas', Constraint.union cst cst')

  let size (nas, _) = Array.length nas

end

type 'a univ_abstracted = {
  univ_abstracted_value : 'a;
  univ_abstracted_binder : AUContext.t;
}

let map_univ_abstracted f {univ_abstracted_value;univ_abstracted_binder} =
  let univ_abstracted_value = f univ_abstracted_value in
  {univ_abstracted_value;univ_abstracted_binder}

let hcons_abstract_universe_context = AUContext.hcons

(** A set of universes with universe constraints.
    We linearize the set to a list after typechecking. 
    Beware, representation could change.
*)

module ContextSet =
struct
  type t = universe_set constrained

  let empty = (LSet.empty, Constraint.empty)
  let is_empty (univs, cst) = LSet.is_empty univs && Constraint.is_empty cst

  let equal (univs, cst as x) (univs', cst' as y) =
    x == y || (LSet.equal univs univs' && Constraint.equal cst cst')
                                                                        
  let of_set s = (s, Constraint.empty)
  let singleton l = of_set (LSet.singleton l)
  let of_instance i = of_set (Instance.levels i)

  let union (univs, cst as x) (univs', cst' as y) =
    if x == y then x
    else LSet.union univs univs', Constraint.union cst cst'

  let append (univs, cst) (univs', cst') =
    let univs = LSet.fold LSet.add univs univs' in
    let cst = Constraint.fold Constraint.add cst cst' in
    (univs, cst)

  let diff (univs, cst) (univs', cst') =
    LSet.diff univs univs', Constraint.diff cst cst'

  let add_universe u (univs, cst) =
    LSet.add u univs, cst

  let add_constraints cst' (univs, cst) =
    univs, Constraint.union cst cst'

  let add_instance inst (univs, cst) =
    let v = Instance.to_array inst in
    let fold accu u = LSet.add u accu in
    let univs = Array.fold_left fold univs v in
    (univs, cst)

  let sort_levels a = 
    Array.sort Level.compare a; a

  let to_context (ctx, cst) =
    (Instance.of_array (sort_levels (Array.of_list (LSet.elements ctx))), cst)

  let of_context (ctx, cst) =
    (Instance.levels ctx, cst)

  let pr prl (univs, cst as ctx) =
    if is_empty ctx then mt() else
      h 0 (LSet.pr prl univs ++ str " |= ") ++ h 0 (v 0 (Constraint.pr prl cst))

  let constraints (_univs, cst) = cst
  let levels (univs, _cst) = univs

  let size (univs,_) = LSet.cardinal univs
end

type universe_context_set = ContextSet.t

(** A value in a universe context (resp. context set). *)
type 'a in_universe_context = 'a * universe_context
type 'a in_universe_context_set = 'a * universe_context_set

let extend_in_context_set (a, ctx) ctx' =
  (a, ContextSet.union ctx ctx')

(** Substitutions. *)

let empty_subst = LMap.empty
let is_empty_subst = LMap.is_empty

let empty_level_subst = LMap.empty
let is_empty_level_subst = LMap.is_empty

(** Substitution functions *)

(** With level to level substitutions. *)
let subst_univs_level_level subst l =
  try LMap.find l subst
  with Not_found -> l

let subst_univs_level_universe subst u =
  let f x = Universe.Expr.map (fun u -> subst_univs_level_level subst u) x in
  let u' = Universe.smart_map f u in
    if u == u' then u
    else Universe.sort u'

let subst_univs_level_instance subst i =
  let i' = Instance.subst_fn (subst_univs_level_level subst) i in
    if i == i' then i
    else i'
        
let subst_univs_level_constraint subst (u,d,v) =
  let u' = subst_univs_level_level subst u 
  and v' = subst_univs_level_level subst v in
    if d != Lt && Level.equal u' v' then None
    else Some (u',d,v')

let subst_univs_level_constraints subst csts =
  Constraint.fold 
    (fun c -> Option.fold_right Constraint.add (subst_univs_level_constraint subst c))
    csts Constraint.empty 

let subst_univs_level_abstract_universe_context subst (inst, csts) =
  inst, subst_univs_level_constraints subst csts

(** With level to universe substitutions. *)
type universe_subst_fn = universe_level -> universe

let make_subst subst = fun l -> LMap.find l subst

let subst_univs_expr_opt fn (l,n) =
  Universe.addn n (fn l)

let subst_univs_universe fn ul =
  let subst, nosubst = 
    List.fold_right (fun u (subst,nosubst) -> 
      try let a' = subst_univs_expr_opt fn u in
            (a' :: subst, nosubst)
      with Not_found -> (subst, u :: nosubst))
      ul ([], [])
  in 
    if CList.is_empty subst then ul
    else 
      let substs = 
        List.fold_left Universe.merge_univs Universe.empty subst
      in
        List.fold_left (fun acc u -> Universe.merge_univs acc (Universe.tip u))
          substs nosubst

let make_instance_subst i = 
  let arr = Instance.to_array i in
    Array.fold_left_i (fun i acc l ->
      LMap.add l (Level.var i) acc)
      LMap.empty arr

let make_inverse_instance_subst i = 
  let arr = Instance.to_array i in
    Array.fold_left_i (fun i acc l ->
      LMap.add (Level.var i) l acc)
      LMap.empty arr

let make_abstract_instance (ctx, _) = 
  Array.init (Array.length ctx) (fun i -> Level.var i)

let abstract_universes nas ctx =
  let instance = UContext.instance ctx in
  let () = assert (Int.equal (Array.length nas) (Instance.length instance)) in
  let subst = make_instance_subst instance in
  let cstrs = subst_univs_level_constraints subst 
      (UContext.constraints ctx)
  in
  let ctx = (nas, cstrs) in
  instance, ctx

let rec compact_univ s vars i u =
  match u with
  | [] -> (s, List.rev vars)
  | (lvl, _) :: u ->
    match Level.var_index lvl with
    | Some k when not (LMap.mem lvl s) ->
      let lvl' = Level.var i in
      compact_univ (LMap.add lvl lvl' s) (k :: vars) (i+1) u
    | _ -> compact_univ s vars i u

let compact_univ u =
  let (s, s') = compact_univ LMap.empty [] 0 u in
  (subst_univs_level_universe s u, s')

(** Pretty-printing *)

let pr_constraints prl = Constraint.pr prl

let pr_universe_context = UContext.pr

let pr_abstract_universe_context = AUContext.pr

let pr_universe_context_set = ContextSet.pr

let pr_universe_subst = 
  LMap.pr (fun u -> str" := " ++ Universe.pr u ++ spc ())

let pr_universe_level_subst = 
  LMap.pr (fun u -> str" := " ++ Level.pr u ++ spc ())

module Huniverse_set = 
  Hashcons.Make(
    struct
      type t = universe_set
      type u = universe_level -> universe_level
      let hashcons huc s =
        LSet.fold (fun x -> LSet.add (huc x)) s LSet.empty
      let eq s s' =
        LSet.equal s s'
      let hash = Hashtbl.hash
    end)

let hcons_universe_set = 
  Hashcons.simple_hcons Huniverse_set.generate Huniverse_set.hcons Level.hcons

let hcons_universe_context_set (v, c) = 
  (hcons_universe_set v, hcons_constraints c)

let hcons_univ x = Universe.hcons x

let explain_universe_inconsistency prl (o,u,v,p : univ_inconsistency) =
  let pr_uni = Universe.pr_with prl in
  let pr_rel = function
    | Eq -> str"=" | Lt -> str"<" | Le -> str"<=" 
  in
  let reason = match p with
    | None -> mt()
    | Some p ->
      let p = Lazy.force p in
      if p = [] then mt ()
      else
        str " because" ++ spc() ++ pr_uni v ++
        prlist (fun (r,v) -> spc() ++ pr_rel r ++ str" " ++ prl v)
          p ++
        (if Universe.equal (Universe.make (snd (List.last p))) u then mt() else
           (spc() ++ str "= " ++ pr_uni u))
  in
    str "Cannot enforce" ++ spc() ++ pr_uni u ++ spc() ++
      pr_rel o ++ spc() ++ pr_uni v ++ reason