1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
# 1 "kernel/uint63_63.ml" (************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) type t = int let _ = assert (Sys.word_size = 64) let uint_size = 63 let maxuint63 = Int64.of_string "0x7FFFFFFFFFFFFFFF" let maxuint31 = 0x7FFFFFFF (* conversion from an int *) let to_uint64 i = Int64.logand (Int64.of_int i) maxuint63 let of_int i = i [@@ocaml.inline always] let to_int2 i = (0,i) let of_int64 _i = assert false let hash i = i [@@ocaml.inline always] (* conversion of an uint63 to a string *) let to_string i = Int64.to_string (to_uint64 i) let of_string s = let i64 = Int64.of_string s in if Int64.compare Int64.zero i64 <= 0 && Int64.compare i64 maxuint63 <= 0 then Int64.to_int i64 else raise (Failure "Int64.of_string") (* Compiles an unsigned int to OCaml code *) let compile i = Printf.sprintf "Uint63.of_int (%i)" i let zero = 0 let one = 1 (* logical shift *) let l_sl x y = if 0 <= y && y < 63 then x lsl y else 0 let l_sr x y = if 0 <= y && y < 63 then x lsr y else 0 let l_and x y = x land y [@@ocaml.inline always] let l_or x y = x lor y [@@ocaml.inline always] let l_xor x y = x lxor y [@@ocaml.inline always] (* addition of int63 *) let add x y = x + y [@@ocaml.inline always] (* subtraction *) let sub x y = x - y [@@ocaml.inline always] (* multiplication *) let mul x y = x * y [@@ocaml.inline always] (* division *) let div (x : int) (y : int) = if y = 0 then 0 else Int64.to_int (Int64.div (to_uint64 x) (to_uint64 y)) (* modulo *) let rem (x : int) (y : int) = if y = 0 then 0 else Int64.to_int (Int64.rem (to_uint64 x) (to_uint64 y)) let diveucl x y = (div x y, rem x y) let addmuldiv p x y = l_or (l_sl x p) (l_sr y (uint_size - p)) (* comparison *) let lt (x : int) (y : int) = (x lxor 0x4000000000000000) < (y lxor 0x4000000000000000) [@@ocaml.inline always] let le (x : int) (y : int) = (x lxor 0x4000000000000000) <= (y lxor 0x4000000000000000) [@@ocaml.inline always] (* division of two numbers by one *) (* precondition: xh < y *) (* outputs: q, r s.t. x = q * y + r, r < y *) let div21 xh xl y = (* nh might temporarily grow as large as 2*y - 1 in the loop body, so we store it as a 64-bit unsigned integer *) let nh = ref xh in let nl = ref xl in let q = ref 0 in for _i = 0 to 62 do (* invariants: 0 <= nh < y, nl = (xl*2^i) % 2^63, (q*y + nh) * 2^(63-i) + (xl % 2^(63-i)) = (xh%y) * 2^63 + xl *) nh := Int64.logor (Int64.shift_left !nh 1) (Int64.of_int (!nl lsr 62)); nl := !nl lsl 1; q := !q lsl 1; (* TODO: use "Int64.unsigned_compare !nh y >= 0", once OCaml 4.08 becomes the minimal required version *) if Int64.compare !nh 0L < 0 || Int64.compare !nh y >= 0 then begin q := !q lor 1; nh := Int64.sub !nh y; end done; !q, Int64.to_int !nh let div21 xh xl y = let xh = to_uint64 xh in let y = to_uint64 y in if Int64.compare y xh <= 0 then 0, 0 else div21 xh xl y (* exact multiplication *) (* TODO: check that none of these additions could be a logical or *) (* size = 32 + 31 (hx << 31 + lx) * (hy << 31 + ly) = hxhy << 62 + (hxly + lxhy) << 31 + lxly *) (* precondition : (x lsr 62 = 0 || y lsr 62 = 0) *) let mulc_aux x y = let lx = x land maxuint31 in let ly = y land maxuint31 in let hx = x lsr 31 in let hy = y lsr 31 in (* hx and hy are 32 bits value but at most one is 32 *) let hxy = hx * hy in (* 63 bits *) let hxly = hx * ly in (* 63 bits *) let lxhy = lx * hy in (* 63 bits *) let lxy = lx * ly in (* 62 bits *) let l = lxy lor (hxy lsl 62) (* 63 bits *) in let h = hxy lsr 1 in (* 62 bits *) let hl = hxly + lxhy in (* We can have a carry *) let h = if lt hl hxly then h + (1 lsl 31) else h in let hl'= hl lsl 31 in let l = l + hl' in let h = if lt l hl' then h + 1 else h in let h = h + (hl lsr 32) in (h,l) let mulc x y = if (x lsr 62 = 0 || y lsr 62 = 0) then mulc_aux x y else let yl = y lxor (1 lsl 62) in let (h,l) = mulc_aux x yl in (* h << 63 + l = x * yl x * y = x * (1 << 62 + yl) = x << 62 + x*yl = x << 62 + h << 63 + l *) let l' = l + (x lsl 62) in let h = if lt l' l then h + 1 else h in (h + (x lsr 1), l') let equal (x : int) (y : int) = x = y [@@ocaml.inline always] let compare (x:int) (y:int) = let x = x lxor 0x4000000000000000 in let y = y lxor 0x4000000000000000 in if x > y then 1 else if y > x then -1 else 0 (* head tail *) let head0 x = let r = ref 0 in let x = ref x in if !x land 0x7FFFFFFF00000000 = 0 then r := !r + 31 else x := !x lsr 31; if !x land 0xFFFF0000 = 0 then (x := !x lsl 16; r := !r + 16); if !x land 0xFF000000 = 0 then (x := !x lsl 8; r := !r + 8); if !x land 0xF0000000 = 0 then (x := !x lsl 4; r := !r + 4); if !x land 0xC0000000 = 0 then (x := !x lsl 2; r := !r + 2); if !x land 0x80000000 = 0 then (x := !x lsl 1; r := !r + 1); if !x land 0x80000000 = 0 then ( r := !r + 1); !r;; let tail0 x = let r = ref 0 in let x = ref x in if !x land 0xFFFFFFFF = 0 then (x := !x lsr 32; r := !r + 32); if !x land 0xFFFF = 0 then (x := !x lsr 16; r := !r + 16); if !x land 0xFF = 0 then (x := !x lsr 8; r := !r + 8); if !x land 0xF = 0 then (x := !x lsr 4; r := !r + 4); if !x land 0x3 = 0 then (x := !x lsr 2; r := !r + 2); if !x land 0x1 = 0 then ( r := !r + 1); !r let is_uint63 t = Obj.is_int t [@@ocaml.inline always] (* Arithmetic with explicit carries *) (* Analog of Numbers.Abstract.Cyclic.carry *) type 'a carry = C0 of 'a | C1 of 'a let addc x y = let r = x + y in if lt r x then C1 r else C0 r let addcarryc x y = let r = x + y + 1 in if le r x then C1 r else C0 r let subc x y = let r = x - y in if le y x then C0 r else C1 r let subcarryc x y = let r = x - y - 1 in if lt y x then C0 r else C1 r