1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Util open Names open Univ open Sorts open Term open Constr open Context open Vars open Declarations open Environ open Reduction open Inductive open Type_errors module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration exception NotConvertibleVect of int let conv_leq l2r env x y = default_conv CUMUL ~l2r env x y let conv_leq_vecti env v1 v2 = Array.fold_left2_i (fun i _ t1 t2 -> try conv_leq false env t1 t2 with NotConvertible -> raise (NotConvertibleVect i)) () v1 v2 let check_constraints cst env = if Environ.check_constraints cst env then () else error_unsatisfied_constraints env cst (* This should be a type (a priori without intention to be an assumption) *) let check_type env c t = match kind(whd_all env t) with | Sort s -> s | _ -> error_not_type env (make_judge c t) (* This should be a type intended to be assumed. The error message is not as useful as for [type_judgment]. *) let infer_assumption env t ty = try let s = check_type env t ty in (match s with Sorts.SProp -> Irrelevant | _ -> Relevant) with TypeError _ -> error_assumption env (make_judge t ty) let warn_bad_relevance_name = "bad-relevance" let warn_bad_relevance = CWarnings.create ~name:warn_bad_relevance_name ~category:"debug" ~default:CWarnings.Disabled Pp.(function | None -> str "Bad relevance in case annotation." | Some x -> str "Bad relevance for binder " ++ Name.print x.binder_name ++ str ".") let warn_bad_relevance_ci ?loc () = warn_bad_relevance ?loc None let warn_bad_relevance ?loc x = warn_bad_relevance ?loc (Some x) let check_assumption env x t ty = let r = x.binder_relevance in let r' = infer_assumption env t ty in let x = if Sorts.relevance_equal r r' then x else (warn_bad_relevance x; {x with binder_relevance = r'}) in x (************************************************) (* Incremental typing rules: builds a typing judgment given the *) (* judgments for the subterms. *) (*s Type of sorts *) (* Prop and Set *) let type1 = mkSort Sorts.type1 (* Type of Type(i). *) let type_of_type u = let uu = Universe.super u in mkType uu let type_of_sort = function | SProp | Prop | Set -> type1 | Type u -> type_of_type u (*s Type of a de Bruijn index. *) let type_of_relative env n = try env |> lookup_rel n |> RelDecl.get_type |> lift n with Not_found -> error_unbound_rel env n (* Type of variables *) let type_of_variable env id = try named_type id env with Not_found -> error_unbound_var env id (* Management of context of variables. *) (* Checks if a context of variables can be instantiated by the variables of the current env. Order does not have to be checked assuming that all names are distinct *) let check_hyps_inclusion env ?evars f c sign = let conv env a b = conv env ?evars a b in Context.Named.fold_outside (fun d1 () -> let open Context.Named.Declaration in let id = NamedDecl.get_id d1 in try let d2 = lookup_named id env in conv env (get_type d2) (get_type d1); (match d2,d1 with | LocalAssum _, LocalAssum _ -> () | LocalAssum _, LocalDef _ -> (* This is wrong, because we don't know if the body is needed or not for typechecking: *) () | LocalDef _, LocalAssum _ -> raise NotConvertible | LocalDef (_,b2,_), LocalDef (_,b1,_) -> conv env b2 b1); with Not_found | NotConvertible | Option.Heterogeneous -> error_reference_variables env id (f c)) sign ~init:() (* Instantiation of terms on real arguments. *) (* Make a type polymorphic if an arity *) (* Type of constants *) let type_of_constant env (kn,_u as cst) = let cb = lookup_constant kn env in let () = check_hyps_inclusion env mkConstU cst cb.const_hyps in let ty, cu = constant_type env cst in let () = check_constraints cu env in ty let type_of_constant_in env (kn,_u as cst) = let cb = lookup_constant kn env in let () = check_hyps_inclusion env mkConstU cst cb.const_hyps in constant_type_in env cst (* Type of a lambda-abstraction. *) (* [judge_of_abstraction env name var j] implements the rule env, name:typ |- j.uj_val:j.uj_type env, |- (name:typ)j.uj_type : s ----------------------------------------------------------------------- env |- [name:typ]j.uj_val : (name:typ)j.uj_type Since all products are defined in the Calculus of Inductive Constructions and no upper constraint exists on the sort $s$, we don't need to compute $s$ *) let type_of_abstraction _env name var ty = mkProd (name, var, ty) (* Type of an application. *) let make_judgev c t = Array.map2 make_judge c t let rec check_empty_stack = function | [] -> true | CClosure.Zupdate _ :: s -> check_empty_stack s | _ -> false let type_of_apply env func funt argsv argstv = let open CClosure in let len = Array.length argsv in let infos = create_clos_infos all env in let tab = create_tab () in let rec apply_rec i typ = if Int.equal i len then term_of_fconstr typ else let typ, stk = whd_stack infos tab typ [] in (** The return stack is known to be empty *) let () = assert (check_empty_stack stk) in match fterm_of typ with | FProd (_, c1, c2, e) -> let arg = argsv.(i) in let argt = argstv.(i) in let c1 = term_of_fconstr c1 in begin match conv_leq false env argt c1 with | () -> apply_rec (i+1) (mk_clos (Esubst.subs_cons ([| inject arg |], e)) c2) | exception NotConvertible -> error_cant_apply_bad_type env (i+1,c1,argt) (make_judge func funt) (make_judgev argsv argstv) end | _ -> error_cant_apply_not_functional env (make_judge func funt) (make_judgev argsv argstv) in apply_rec 0 (inject funt) (* Type of primitive constructs *) let type_of_prim_type _env = function | CPrimitives.PT_int63 -> Constr.mkSet let type_of_int env = match env.retroknowledge.Retroknowledge.retro_int63 with | Some c -> mkConst c | None -> CErrors.user_err Pp.(str"The type int must be registered before this construction can be typechecked.") let type_of_prim env t = let int_ty = type_of_int env in let bool_ty () = match env.retroknowledge.Retroknowledge.retro_bool with | Some ((ind,_),_) -> Constr.mkInd ind | None -> CErrors.user_err Pp.(str"The type bool must be registered before this primitive.") in let compare_ty () = match env.retroknowledge.Retroknowledge.retro_cmp with | Some ((ind,_),_,_) -> Constr.mkInd ind | None -> CErrors.user_err Pp.(str"The type compare must be registered before this primitive.") in let pair_ty fst_ty snd_ty = match env.retroknowledge.Retroknowledge.retro_pair with | Some (ind,_) -> Constr.mkApp(Constr.mkInd ind, [|fst_ty;snd_ty|]) | None -> CErrors.user_err Pp.(str"The type pair must be registered before this primitive.") in let carry_ty int_ty = match env.retroknowledge.Retroknowledge.retro_carry with | Some ((ind,_),_) -> Constr.mkApp(Constr.mkInd ind, [|int_ty|]) | None -> CErrors.user_err Pp.(str"The type carry must be registered before this primitive.") in let rec nary_int63_op arity ty = if Int.equal arity 0 then ty else Constr.mkProd(Context.nameR (Id.of_string "x"), int_ty, nary_int63_op (arity-1) ty) in let return_ty = let open CPrimitives in match t with | Int63head0 | Int63tail0 | Int63add | Int63sub | Int63mul | Int63div | Int63mod | Int63lsr | Int63lsl | Int63land | Int63lor | Int63lxor | Int63addMulDiv -> int_ty | Int63eq | Int63lt | Int63le -> bool_ty () | Int63mulc | Int63div21 | Int63diveucl -> pair_ty int_ty int_ty | Int63addc | Int63subc | Int63addCarryC | Int63subCarryC -> carry_ty int_ty | Int63compare -> compare_ty () in nary_int63_op (CPrimitives.arity t) return_ty let type_of_prim_or_type env = let open CPrimitives in function | OT_type t -> type_of_prim_type env t | OT_op op -> type_of_prim env op let judge_of_int env i = make_judge (Constr.mkInt i) (type_of_int env) (* Type of product *) let sort_of_product env domsort rangsort = match (domsort, rangsort) with | (_, SProp) | (SProp, _) -> rangsort (* Product rule (s,Prop,Prop) *) | (_, Prop) -> rangsort (* Product rule (Prop/Set,Set,Set) *) | ((Prop | Set), Set) -> rangsort (* Product rule (Type,Set,?) *) | (Type u1, Set) -> if is_impredicative_set env then (* Rule is (Type,Set,Set) in the Set-impredicative calculus *) rangsort else (* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *) Sorts.sort_of_univ (Universe.sup Universe.type0 u1) (* Product rule (Prop,Type_i,Type_i) *) | (Set, Type u2) -> Sorts.sort_of_univ (Universe.sup Universe.type0 u2) (* Product rule (Prop,Type_i,Type_i) *) | (Prop, Type _) -> rangsort (* Product rule (Type_i,Type_i,Type_i) *) | (Type u1, Type u2) -> Sorts.sort_of_univ (Universe.sup u1 u2) (* [judge_of_product env name (typ1,s1) (typ2,s2)] implements the rule env |- typ1:s1 env, name:typ1 |- typ2 : s2 ------------------------------------------------------------------------- s' >= (s1,s2), env |- (name:typ)j.uj_val : s' where j.uj_type is convertible to a sort s2 *) let type_of_product env _name s1 s2 = let s = sort_of_product env s1 s2 in mkSort s (* Type of a type cast *) (* [judge_of_cast env (c,typ1) (typ2,s)] implements the rule env |- c:typ1 env |- typ2:s env |- typ1 <= typ2 --------------------------------------------------------------------- env |- c:typ2 *) let check_cast env c ct k expected_type = try match k with | VMcast -> Vconv.vm_conv CUMUL env ct expected_type | DEFAULTcast -> default_conv ~l2r:false CUMUL env ct expected_type | REVERTcast -> default_conv ~l2r:true CUMUL env ct expected_type | NATIVEcast -> let sigma = Nativelambda.empty_evars in Nativeconv.native_conv CUMUL sigma env ct expected_type with NotConvertible -> error_actual_type env (make_judge c ct) expected_type (* Inductive types. *) (* The type is parametric over the uniform parameters whose conclusion is in Type; to enforce the internal constraints between the parameters and the instances of Type occurring in the type of the constructors, we use the level variables _statically_ assigned to the conclusions of the parameters as mediators: e.g. if a parameter has conclusion Type(alpha), static constraints of the form alpha<=v exist between alpha and the Type's occurring in the constructor types; when the parameters is finally instantiated by a term of conclusion Type(u), then the constraints u<=alpha is computed in the App case of execute; from this constraints, the expected dynamic constraints of the form u<=v are enforced *) let type_of_inductive_knowing_parameters env (ind,u as indu) args = let (mib,_mip) as spec = lookup_mind_specif env ind in check_hyps_inclusion env mkIndU indu mib.mind_hyps; let t,cst = Inductive.constrained_type_of_inductive_knowing_parameters env (spec,u) args in check_constraints cst env; t let type_of_inductive env (ind,u as indu) = let (mib,mip) = lookup_mind_specif env ind in check_hyps_inclusion env mkIndU indu mib.mind_hyps; let t,cst = Inductive.constrained_type_of_inductive env ((mib,mip),u) in check_constraints cst env; t (* Constructors. *) let type_of_constructor env (c,_u as cu) = let () = let ((kn,_),_) = c in let mib = lookup_mind kn env in check_hyps_inclusion env mkConstructU cu mib.mind_hyps in let specif = lookup_mind_specif env (inductive_of_constructor c) in let t,cst = constrained_type_of_constructor cu specif in let () = check_constraints cst env in t (* Case. *) let check_branch_types env (ind,u) c ct lft explft = try conv_leq_vecti env lft explft with NotConvertibleVect i -> error_ill_formed_branch env c ((ind,i+1),u) lft.(i) explft.(i) | Invalid_argument _ -> error_number_branches env (make_judge c ct) (Array.length explft) let type_of_case env ci p pt c ct _lf lft = let (pind, _ as indspec) = try find_rectype env ct with Not_found -> error_case_not_inductive env (make_judge c ct) in let _, sp = try dest_arity env pt with NotArity -> error_elim_arity env pind c (make_judge p pt) None in let rp = Sorts.relevance_of_sort sp in let ci = if ci.ci_relevance == rp then ci else (warn_bad_relevance_ci (); {ci with ci_relevance=rp}) in let () = check_case_info env pind rp ci in let (bty,rslty) = type_case_branches env indspec (make_judge p pt) c in let () = check_branch_types env pind c ct lft bty in ci, rslty let type_of_projection env p c ct = let pty = lookup_projection p env in let (ind,u), args = try find_rectype env ct with Not_found -> error_case_not_inductive env (make_judge c ct) in assert(eq_ind (Projection.inductive p) ind); let ty = Vars.subst_instance_constr u pty in substl (c :: CList.rev args) ty (* Fixpoints. *) (* Checks the type of a general (co)fixpoint, i.e. without checking *) (* the specific guard condition. *) let check_fixpoint env lna lar vdef vdeft = let lt = Array.length vdeft in assert (Int.equal (Array.length lar) lt); try conv_leq_vecti env vdeft (Array.map (fun ty -> lift lt ty) lar) with NotConvertibleVect i -> error_ill_typed_rec_body env i lna (make_judgev vdef vdeft) lar (* Global references *) let type_of_global_in_context env r = let open Names.GlobRef in match r with | VarRef id -> Environ.named_type id env, Univ.AUContext.empty | ConstRef c -> let cb = Environ.lookup_constant c env in let univs = Declareops.constant_polymorphic_context cb in cb.Declarations.const_type, univs | IndRef ind -> let (mib,_ as specif) = Inductive.lookup_mind_specif env ind in let univs = Declareops.inductive_polymorphic_context mib in let inst = Univ.make_abstract_instance univs in let env = Environ.push_context ~strict:false (Univ.AUContext.repr univs) env in Inductive.type_of_inductive env (specif, inst), univs | ConstructRef cstr -> let (mib,_ as specif) = Inductive.lookup_mind_specif env (inductive_of_constructor cstr) in let univs = Declareops.inductive_polymorphic_context mib in let inst = Univ.make_abstract_instance univs in Inductive.type_of_constructor (cstr,inst) specif, univs (************************************************************************) (************************************************************************) let check_binder_annot s x = let r = x.binder_relevance in let r' = Sorts.relevance_of_sort s in if r' == r then x else (warn_bad_relevance x; {x with binder_relevance = r'}) (* The typing machine. *) (* ATTENTION : faudra faire le typage du contexte des Const, Ind et Constructsi un jour cela devient des constructions arbitraires et non plus des variables *) let rec execute env cstr = let open Context.Rel.Declaration in match kind cstr with (* Atomic terms *) | Sort s -> (match s with | SProp -> if not (Environ.sprop_allowed env) then error_disallowed_sprop env | _ -> ()); cstr, type_of_sort s | Rel n -> cstr, type_of_relative env n | Var id -> cstr, type_of_variable env id | Const c -> cstr, type_of_constant env c | Proj (p, c) -> let c', ct = execute env c in let cstr = if c == c' then cstr else mkProj (p,c') in cstr, type_of_projection env p c' ct (* Lambda calculus operators *) | App (f,args) -> let args', argst = execute_array env args in let f', ft = match kind f with | Ind ind when Environ.template_polymorphic_pind ind env -> let args = Array.map (fun t -> lazy t) argst in f, type_of_inductive_knowing_parameters env ind args | _ -> (* No template polymorphism *) execute env f in let cstr = if f == f' && args == args' then cstr else mkApp (f',args') in cstr, type_of_apply env f' ft args' argst | Lambda (name,c1,c2) -> let c1', s = execute_is_type env c1 in let name' = check_binder_annot s name in let env1 = push_rel (LocalAssum (name',c1')) env in let c2', c2t = execute env1 c2 in let cstr = if name == name' && c1 == c1' && c2 == c2' then cstr else mkLambda(name',c1',c2') in cstr, type_of_abstraction env name' c1 c2t | Prod (name,c1,c2) -> let c1', vars = execute_is_type env c1 in let name' = check_binder_annot vars name in let env1 = push_rel (LocalAssum (name',c1')) env in let c2', vars' = execute_is_type env1 c2 in let cstr = if name == name' && c1 == c1' && c2 == c2' then cstr else mkProd(name',c1',c2') in cstr, type_of_product env name' vars vars' | LetIn (name,c1,c2,c3) -> let c1', c1t = execute env c1 in let c2', c2s = execute_is_type env c2 in let name' = check_binder_annot c2s name in let () = check_cast env c1' c1t DEFAULTcast c2' in let env1 = push_rel (LocalDef (name',c1',c2')) env in let c3', c3t = execute env1 c3 in let cstr = if name == name' && c1 == c1' && c2 == c2' && c3 == c3' then cstr else mkLetIn(name',c1',c2',c3') in cstr, subst1 c1 c3t | Cast (c,k,t) -> let c', ct = execute env c in let t', _ts = execute_is_type env t in let () = check_cast env c' ct k t' in let cstr = if c == c' && t == t' then cstr else mkCast(c',k,t') in cstr, t' (* Inductive types *) | Ind ind -> cstr, type_of_inductive env ind | Construct c -> cstr, type_of_constructor env c | Case (ci,p,c,lf) -> let c', ct = execute env c in let p', pt = execute env p in let lf', lft = execute_array env lf in let ci', t = type_of_case env ci p' pt c' ct lf' lft in let cstr = if ci == ci' && c == c' && p == p' && lf == lf' then cstr else mkCase(ci',p',c',lf') in cstr, t | Fix ((_vn,i as vni),recdef as fix) -> let (fix_ty,recdef') = execute_recdef env recdef i in let cstr, fix = if recdef == recdef' then cstr, fix else let fix = (vni,recdef') in mkFix fix, fix in check_fix env fix; cstr, fix_ty | CoFix (i,recdef as cofix) -> let (fix_ty,recdef') = execute_recdef env recdef i in let cstr, cofix = if recdef == recdef' then cstr, cofix else let cofix = (i,recdef') in mkCoFix cofix, cofix in check_cofix env cofix; cstr, fix_ty (* Primitive types *) | Int _ -> cstr, type_of_int env (* Partial proofs: unsupported by the kernel *) | Meta _ -> anomaly (Pp.str "the kernel does not support metavariables.") | Evar _ -> anomaly (Pp.str "the kernel does not support existential variables.") and execute_is_type env constr = let c, t = execute env constr in c, check_type env constr t and execute_recdef env (names,lar,vdef as recdef) i = let lar', lart = execute_array env lar in let names' = Array.Smart.map_i (fun i na -> check_assumption env na lar'.(i) lart.(i)) names in let env1 = push_rec_types (names',lar',vdef) env in (* vdef is ignored *) let vdef', vdeft = execute_array env1 vdef in let () = check_fixpoint env1 names' lar' vdef' vdeft in let recdef = if names == names' && lar == lar' && vdef == vdef' then recdef else (names',lar',vdef') in (lar'.(i),recdef) and execute_array env cs = let tys = Array.make (Array.length cs) mkProp in let cs = Array.Smart.map_i (fun i c -> let c, ty = execute env c in tys.(i) <- ty; c) cs in cs, tys (* Derived functions *) let check_wellformed_universes env c = let univs = universes_of_constr c in try UGraph.check_declared_universes (universes env) univs with UGraph.UndeclaredLevel u -> error_undeclared_universe env u let infer env constr = let () = check_wellformed_universes env constr in let constr, t = execute env constr in make_judge constr t let infer = if Flags.profile then let infer_key = CProfile.declare_profile "Fast_infer" in CProfile.profile2 infer_key (fun b c -> infer b c) else (fun b c -> infer b c) let assumption_of_judgment env {uj_val=c; uj_type=t} = infer_assumption env c t let type_judgment env {uj_val=c; uj_type=t} = let s = check_type env c t in {utj_val = c; utj_type = s } let infer_type env constr = let () = check_wellformed_universes env constr in let constr, t = execute env constr in let s = check_type env constr t in {utj_val = constr; utj_type = s} (* Typing of several terms. *) let check_context env rels = let open Context.Rel.Declaration in Context.Rel.fold_outside (fun d (env,rels) -> match d with | LocalAssum (x,ty) -> let jty = infer_type env ty in let x = check_binder_annot jty.utj_type x in push_rel d env, LocalAssum (x,jty.utj_val) :: rels | LocalDef (x,bd,ty) -> let j1 = infer env bd in let jty = infer_type env ty in conv_leq false env j1.uj_type ty; let x = check_binder_annot jty.utj_type x in push_rel d env, LocalDef (x,j1.uj_val,jty.utj_val) :: rels) rels ~init:(env,[]) let judge_of_prop = make_judge mkProp type1 let judge_of_set = make_judge mkSet type1 let judge_of_type u = make_judge (mkType u) (type_of_type u) let judge_of_relative env k = make_judge (mkRel k) (type_of_relative env k) let judge_of_variable env x = make_judge (mkVar x) (type_of_variable env x) let judge_of_constant env cst = make_judge (mkConstU cst) (type_of_constant env cst) let judge_of_projection env p cj = make_judge (mkProj (p,cj.uj_val)) (type_of_projection env p cj.uj_val cj.uj_type) let dest_judgev v = Array.map j_val v, Array.map j_type v let judge_of_apply env funj argjv = let args, argtys = dest_judgev argjv in make_judge (mkApp (funj.uj_val, args)) (type_of_apply env funj.uj_val funj.uj_type args argtys) (* let judge_of_abstraction env x varj bodyj = *) (* make_judge (mkLambda (x, varj.utj_val, bodyj.uj_val)) *) (* (type_of_abstraction env x varj.utj_val bodyj.uj_type) *) (* let judge_of_product env x varj outj = *) (* make_judge (mkProd (x, varj.utj_val, outj.utj_val)) *) (* (mkSort (sort_of_product env varj.utj_type outj.utj_type)) *) (* let judge_of_letin env name defj typj j = *) (* make_judge (mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val)) *) (* (subst1 defj.uj_val j.uj_type) *) let judge_of_cast env cj k tj = let () = check_cast env cj.uj_val cj.uj_type k tj.utj_val in let c = match k with | REVERTcast -> cj.uj_val | _ -> mkCast (cj.uj_val, k, tj.utj_val) in make_judge c tj.utj_val let judge_of_inductive env indu = make_judge (mkIndU indu) (type_of_inductive env indu) let judge_of_constructor env cu = make_judge (mkConstructU cu) (type_of_constructor env cu) let judge_of_case env ci pj cj lfj = let lf, lft = dest_judgev lfj in let ci, t = type_of_case env ci pj.uj_val pj.uj_type cj.uj_val cj.uj_type lf lft in make_judge (mkCase (ci, (*nf_betaiota*) pj.uj_val, cj.uj_val, lft)) t (* Building type of primitive operators and type *) let check_primitive_type env op_t t = let inft = type_of_prim_or_type env op_t in try default_conv ~l2r:false CUMUL env inft t with NotConvertible -> error_incorrect_primitive env (make_judge op_t inft) t