1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Pp open CErrors open Names open Vars open Constr open Context (* Deprecated *) type sorts_family = Sorts.family = InSProp | InProp | InSet | InType [@@ocaml.deprecated "Alias for Sorts.family"] type sorts = Sorts.t = private | SProp | Prop | Set | Type of Univ.Universe.t (** Type *) [@@ocaml.deprecated "Alias for Sorts.t"] (****************************************************************************) (* Functions for dealing with constr terms *) (****************************************************************************) (***************************) (* Other term constructors *) (***************************) let name_annot = map_annot Name.mk_name let mkNamedProd id typ c = mkProd (name_annot id, typ, subst_var id.binder_name c) let mkNamedLambda id typ c = mkLambda (name_annot id, typ, subst_var id.binder_name c) let mkNamedLetIn id c1 t c2 = mkLetIn (name_annot id, c1, t, subst_var id.binder_name c2) (* Constructs either [(x:t)c] or [[x=b:t]c] *) let mkProd_or_LetIn decl c = let open Context.Rel.Declaration in match decl with | LocalAssum (na,t) -> mkProd (na, t, c) | LocalDef (na,b,t) -> mkLetIn (na, b, t, c) let mkNamedProd_or_LetIn decl c = let open Context.Named.Declaration in match decl with | LocalAssum (id,t) -> mkNamedProd id t c | LocalDef (id,b,t) -> mkNamedLetIn id b t c (* Constructs either [(x:t)c] or [c] where [x] is replaced by [b] *) let mkProd_wo_LetIn decl c = let open Context.Rel.Declaration in match decl with | LocalAssum (na,t) -> mkProd (na, t, c) | LocalDef (_na,b,_t) -> subst1 b c let mkNamedProd_wo_LetIn decl c = let open Context.Named.Declaration in match decl with | LocalAssum (id,t) -> mkNamedProd id t c | LocalDef (id,b,_) -> subst1 b (subst_var id.binder_name c) (* non-dependent product t1 -> t2 *) let mkArrow t1 r t2 = mkProd (make_annot Anonymous r, t1, t2) let mkArrowR t1 t2 = mkArrow t1 Sorts.Relevant t2 (* Constructs either [[x:t]c] or [[x=b:t]c] *) let mkLambda_or_LetIn decl c = let open Context.Rel.Declaration in match decl with | LocalAssum (na,t) -> mkLambda (na, t, c) | LocalDef (na,b,t) -> mkLetIn (na, b, t, c) let mkNamedLambda_or_LetIn decl c = let open Context.Named.Declaration in match decl with | LocalAssum (id,t) -> mkNamedLambda id t c | LocalDef (id,b,t) -> mkNamedLetIn id b t c (* prodn n [xn:Tn;..;x1:T1;Gamma] b = (x1:T1)..(xn:Tn)b *) let prodn n env b = let rec prodrec = function | (0, _env, b) -> b | (n, ((v,t)::l), b) -> prodrec (n-1, l, mkProd (v,t,b)) | _ -> assert false in prodrec (n,env,b) (* compose_prod [xn:Tn;..;x1:T1] b = (x1:T1)..(xn:Tn)b *) let compose_prod l b = prodn (List.length l) l b (* lamn n [xn:Tn;..;x1:T1;Gamma] b = [x1:T1]..[xn:Tn]b *) let lamn n env b = let rec lamrec = function | (0, _env, b) -> b | (n, ((v,t)::l), b) -> lamrec (n-1, l, mkLambda (v,t,b)) | _ -> assert false in lamrec (n,env,b) (* compose_lam [xn:Tn;..;x1:T1] b = [x1:T1]..[xn:Tn]b *) let compose_lam l b = lamn (List.length l) l b let applist (f,l) = mkApp (f, Array.of_list l) let applistc f l = mkApp (f, Array.of_list l) let appvect = mkApp let appvectc f l = mkApp (f,l) (* to_lambda n (x1:T1)...(xn:Tn)T = * [x1:T1]...[xn:Tn]T *) let rec to_lambda n prod = if Int.equal n 0 then prod else match kind prod with | Prod (na,ty,bd) -> mkLambda (na,ty,to_lambda (n-1) bd) | Cast (c,_,_) -> to_lambda n c | _ -> user_err ~hdr:"to_lambda" (mt ()) let rec to_prod n lam = if Int.equal n 0 then lam else match kind lam with | Lambda (na,ty,bd) -> mkProd (na,ty,to_prod (n-1) bd) | Cast (c,_,_) -> to_prod n c | _ -> user_err ~hdr:"to_prod" (mt ()) let it_mkProd_or_LetIn = List.fold_left (fun c d -> mkProd_or_LetIn d c) let it_mkLambda_or_LetIn = List.fold_left (fun c d -> mkLambda_or_LetIn d c) (* Application with expected on-the-fly reduction *) let lambda_applist c l = let rec app subst c l = match kind c, l with | Lambda(_,_,c), arg::l -> app (arg::subst) c l | _, [] -> substl subst c | _ -> anomaly (Pp.str "Not enough lambda's.") in app [] c l let lambda_appvect c v = lambda_applist c (Array.to_list v) let lambda_applist_assum n c l = let rec app n subst t l = if Int.equal n 0 then if l == [] then substl subst t else anomaly (Pp.str "Too many arguments.") else match kind t, l with | Lambda(_,_,c), arg::l -> app (n-1) (arg::subst) c l | LetIn(_,b,_,c), _ -> app (n-1) (substl subst b::subst) c l | _, [] -> anomaly (Pp.str "Not enough arguments.") | _ -> anomaly (Pp.str "Not enough lambda/let's.") in app n [] c l let lambda_appvect_assum n c v = lambda_applist_assum n c (Array.to_list v) (* prod_applist T [ a1 ; ... ; an ] -> (T a1 ... an) *) let prod_applist c l = let rec app subst c l = match kind c, l with | Prod(_,_,c), arg::l -> app (arg::subst) c l | _, [] -> substl subst c | _ -> anomaly (Pp.str "Not enough prod's.") in app [] c l (* prod_appvect T [| a1 ; ... ; an |] -> (T a1 ... an) *) let prod_appvect c v = prod_applist c (Array.to_list v) let prod_applist_assum n c l = let rec app n subst t l = if Int.equal n 0 then if l == [] then substl subst t else anomaly (Pp.str "Too many arguments.") else match kind t, l with | Prod(_,_,c), arg::l -> app (n-1) (arg::subst) c l | LetIn(_,b,_,c), _ -> app (n-1) (substl subst b::subst) c l | _, [] -> anomaly (Pp.str "Not enough arguments.") | _ -> anomaly (Pp.str "Not enough prod/let's.") in app n [] c l let prod_appvect_assum n c v = prod_applist_assum n c (Array.to_list v) (*********************************) (* Other term destructors *) (*********************************) (* Transforms a product term (x1:T1)..(xn:Tn)T into the pair ([(xn,Tn);...;(x1,T1)],T), where T is not a product *) let decompose_prod = let rec prodec_rec l c = match kind c with | Prod (x,t,c) -> prodec_rec ((x,t)::l) c | Cast (c,_,_) -> prodec_rec l c | _ -> l,c in prodec_rec [] (* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair ([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *) let decompose_lam = let rec lamdec_rec l c = match kind c with | Lambda (x,t,c) -> lamdec_rec ((x,t)::l) c | Cast (c,_,_) -> lamdec_rec l c | _ -> l,c in lamdec_rec [] (* Given a positive integer n, transforms a product term (x1:T1)..(xn:Tn)T into the pair ([(xn,Tn);...;(x1,T1)],T) *) let decompose_prod_n n = if n < 0 then user_err (str "decompose_prod_n: integer parameter must be positive"); let rec prodec_rec l n c = if Int.equal n 0 then l,c else match kind c with | Prod (x,t,c) -> prodec_rec ((x,t)::l) (n-1) c | Cast (c,_,_) -> prodec_rec l n c | _ -> user_err (str "decompose_prod_n: not enough products") in prodec_rec [] n (* Given a positive integer n, transforms a lambda term [x1:T1]..[xn:Tn]T into the pair ([(xn,Tn);...;(x1,T1)],T) *) let decompose_lam_n n = if n < 0 then user_err (str "decompose_lam_n: integer parameter must be positive"); let rec lamdec_rec l n c = if Int.equal n 0 then l,c else match kind c with | Lambda (x,t,c) -> lamdec_rec ((x,t)::l) (n-1) c | Cast (c,_,_) -> lamdec_rec l n c | _ -> user_err (str "decompose_lam_n: not enough abstractions") in lamdec_rec [] n (* Transforms a product term (x1:T1)..(xn:Tn)T into the pair ([(xn,Tn);...;(x1,T1)],T), where T is not a product *) let decompose_prod_assum = let open Context.Rel.Declaration in let rec prodec_rec l c = match kind c with | Prod (x,t,c) -> prodec_rec (Context.Rel.add (LocalAssum (x,t)) l) c | LetIn (x,b,t,c) -> prodec_rec (Context.Rel.add (LocalDef (x,b,t)) l) c | Cast (c,_,_) -> prodec_rec l c | _ -> l,c in prodec_rec Context.Rel.empty (* Transforms a lambda term [x1:T1]..[xn:Tn]T into the pair ([(xn,Tn);...;(x1,T1)],T), where T is not a lambda *) let decompose_lam_assum = let rec lamdec_rec l c = let open Context.Rel.Declaration in match kind c with | Lambda (x,t,c) -> lamdec_rec (Context.Rel.add (LocalAssum (x,t)) l) c | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (LocalDef (x,b,t)) l) c | Cast (c,_,_) -> lamdec_rec l c | _ -> l,c in lamdec_rec Context.Rel.empty (* Given a positive integer n, decompose a product or let-in term of the form [forall (x1:T1)..(xi:=ci:Ti)..(xn:Tn), T] into the pair of the quantifying context [(xn,None,Tn);..;(xi,Some ci,Ti);..;(x1,None,T1)] and of the inner type [T]) *) let decompose_prod_n_assum n = if n < 0 then user_err (str "decompose_prod_n_assum: integer parameter must be positive"); let rec prodec_rec l n c = if Int.equal n 0 then l,c else let open Context.Rel.Declaration in match kind c with | Prod (x,t,c) -> prodec_rec (Context.Rel.add (LocalAssum (x,t)) l) (n-1) c | LetIn (x,b,t,c) -> prodec_rec (Context.Rel.add (LocalDef (x,b,t)) l) (n-1) c | Cast (c,_,_) -> prodec_rec l n c | _ -> user_err (str "decompose_prod_n_assum: not enough assumptions") in prodec_rec Context.Rel.empty n (* Given a positive integer n, decompose a lambda or let-in term [fun (x1:T1)..(xi:=ci:Ti)..(xn:Tn) => T] into the pair of the abstracted context [(xn,None,Tn);...;(xi,Some ci,Ti);...;(x1,None,T1)] and of the inner body [T]. Lets in between are not expanded but turn into local definitions, but n is the actual number of destructurated lambdas. *) let decompose_lam_n_assum n = if n < 0 then user_err (str "decompose_lam_n_assum: integer parameter must be positive"); let rec lamdec_rec l n c = if Int.equal n 0 then l,c else let open Context.Rel.Declaration in match kind c with | Lambda (x,t,c) -> lamdec_rec (Context.Rel.add (LocalAssum (x,t)) l) (n-1) c | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (LocalDef (x,b,t)) l) n c | Cast (c,_,_) -> lamdec_rec l n c | _c -> user_err (str "decompose_lam_n_assum: not enough abstractions") in lamdec_rec Context.Rel.empty n (* Same, counting let-in *) let decompose_lam_n_decls n = if n < 0 then user_err (str "decompose_lam_n_decls: integer parameter must be positive"); let rec lamdec_rec l n c = if Int.equal n 0 then l,c else let open Context.Rel.Declaration in match kind c with | Lambda (x,t,c) -> lamdec_rec (Context.Rel.add (LocalAssum (x,t)) l) (n-1) c | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (LocalDef (x,b,t)) l) (n-1) c | Cast (c,_,_) -> lamdec_rec l n c | _ -> user_err (str "decompose_lam_n_decls: not enough abstractions") in lamdec_rec Context.Rel.empty n let prod_assum t = fst (decompose_prod_assum t) let prod_n_assum n t = fst (decompose_prod_n_assum n t) let strip_prod_assum t = snd (decompose_prod_assum t) let strip_prod t = snd (decompose_prod t) let strip_prod_n n t = snd (decompose_prod_n n t) let lam_assum t = fst (decompose_lam_assum t) let lam_n_assum n t = fst (decompose_lam_n_assum n t) let strip_lam_assum t = snd (decompose_lam_assum t) let strip_lam t = snd (decompose_lam t) let strip_lam_n n t = snd (decompose_lam_n n t) (***************************) (* Arities *) (***************************) (* An "arity" is a term of the form [[x1:T1]...[xn:Tn]s] with [s] a sort. Such a term can canonically be seen as the pair of a context of types and of a sort *) type arity = Constr.rel_context * Sorts.t let destArity = let open Context.Rel.Declaration in let rec prodec_rec l c = match kind c with | Prod (x,t,c) -> prodec_rec (LocalAssum (x,t) :: l) c | LetIn (x,b,t,c) -> prodec_rec (LocalDef (x,b,t) :: l) c | Cast (c,_,_) -> prodec_rec l c | Sort s -> l,s | _ -> anomaly ~label:"destArity" (Pp.str "not an arity.") in prodec_rec [] let mkArity (sign,s) = it_mkProd_or_LetIn (mkSort s) sign let rec isArity c = match kind c with | Prod (_,_,c) -> isArity c | LetIn (_,b,_,c) -> isArity (subst1 b c) | Cast (c,_,_) -> isArity c | Sort _ -> true | _ -> false (** Kind of type *) (* Experimental, used in Presburger contrib *) type ('constr, 'types) kind_of_type = | SortType of Sorts.t | CastType of 'types * 'types | ProdType of Name.t Context.binder_annot * 'types * 'types | LetInType of Name.t Context.binder_annot * 'constr * 'types * 'types | AtomicType of 'constr * 'constr array let kind_of_type t = match kind t with | Sort s -> SortType s | Cast (c,_,t) -> CastType (c, t) | Prod (na,t,c) -> ProdType (na, t, c) | LetIn (na,b,t,c) -> LetInType (na, b, t, c) | App (c,l) -> AtomicType (c, l) | (Rel _ | Meta _ | Var _ | Evar _ | Const _ | Proj _ | Case _ | Fix _ | CoFix _ | Ind _) -> AtomicType (t,[||]) | (Lambda _ | Construct _ | Int _) -> failwith "Not a type"