1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Jacek Chrzaszcz, Aug 2002 as part of the implementation of the Coq module system *) (* This module checks subtyping of module types *) (*i*) open Names open Univ open Util open Constr open Declarations open Declareops open Reduction open Inductive open Modops open Context open Mod_subst (*i*) (* This local type is used to subtype a constant with a constructor or an inductive type. It can also be useful to allow reorderings in inductive types *) type namedobject = | Constant of Opaqueproof.opaque constant_body | IndType of inductive * mutual_inductive_body | IndConstr of constructor * mutual_inductive_body type namedmodule = | Module of module_body | Modtype of module_type_body (* adds above information about one mutual inductive: all types and constructors *) let add_mib_nameobjects mp l mib map = let ind = MutInd.make2 mp l in let add_mip_nameobjects j oib map = let ip = (ind,j) in let map = Array.fold_right_i (fun i id map -> Label.Map.add (Label.of_id id) (IndConstr((ip,i+1), mib)) map) oib.mind_consnames map in Label.Map.add (Label.of_id oib.mind_typename) (IndType (ip, mib)) map in Array.fold_right_i add_mip_nameobjects mib.mind_packets map (* creates (namedobject/namedmodule) map for the whole signature *) type labmap = { objs : namedobject Label.Map.t; mods : namedmodule Label.Map.t } let empty_labmap = { objs = Label.Map.empty; mods = Label.Map.empty } let get_obj mp map l = try Label.Map.find l map.objs with Not_found -> error_no_such_label_sub l (ModPath.to_string mp) let get_mod mp map l = try Label.Map.find l map.mods with Not_found -> error_no_such_label_sub l (ModPath.to_string mp) let make_labmap mp list = let add_one (l,e) map = match e with | SFBconst cb -> { map with objs = Label.Map.add l (Constant cb) map.objs } | SFBmind mib -> { map with objs = add_mib_nameobjects mp l mib map.objs } | SFBmodule mb -> { map with mods = Label.Map.add l (Module mb) map.mods } | SFBmodtype mtb -> { map with mods = Label.Map.add l (Modtype mtb) map.mods } in CList.fold_right add_one list empty_labmap let check_conv_error error why cst poly f env a1 a2 = try let cst' = f env (Environ.universes env) a1 a2 in if poly then if Constraint.is_empty cst' then cst else error (IncompatiblePolymorphism (env, a1, a2)) else Constraint.union cst cst' with NotConvertible -> error why | Univ.UniverseInconsistency e -> error (IncompatibleUniverses e) let check_universes error env u1 u2 = match u1, u2 with | Monomorphic _, Monomorphic _ -> env | Polymorphic auctx1, Polymorphic auctx2 -> let lbound = Environ.universes_lbound env in if not (UGraph.check_subtype ~lbound (Environ.universes env) auctx2 auctx1) then error (IncompatibleConstraints { got = auctx1; expect = auctx2; } ) else Environ.push_context ~strict:false (Univ.AUContext.repr auctx2) env | Monomorphic _, Polymorphic _ -> error (PolymorphicStatusExpected true) | Polymorphic _, Monomorphic _ -> error (PolymorphicStatusExpected false) let check_variance error v1 v2 = match v1, v2 with | None, None -> () | Some v1, Some v2 -> if not (Array.for_all2 Variance.check_subtype v2 v1) then error IncompatibleVariance | None, Some _ -> error (CumulativeStatusExpected true) | Some _, None -> error (CumulativeStatusExpected false) (* for now we do not allow reorderings *) let check_inductive cst env mp1 l info1 mp2 mib2 spec2 subst1 subst2 reso1 reso2= let kn1 = KerName.make mp1 l in let kn2 = KerName.make mp2 l in let error why = error_signature_mismatch l spec2 why in let check_conv why cst poly f = check_conv_error error why cst poly f in let mib1 = match info1 with | IndType ((_,0), mib) -> Declareops.subst_mind_body subst1 mib | _ -> error (InductiveFieldExpected mib2) in let env = check_universes error env mib1.mind_universes mib2.mind_universes in let () = check_variance error mib1.mind_variance mib2.mind_variance in let inst = make_abstract_instance (Declareops.inductive_polymorphic_context mib1) in let mib2 = Declareops.subst_mind_body subst2 mib2 in let check_inductive_type cst name t1 t2 = check_conv (NotConvertibleInductiveField name) cst (inductive_is_polymorphic mib1) (infer_conv_leq ?l2r:None ?evars:None ?ts:None) env t1 t2 in let check_packet cst p1 p2 = let check f test why = if not (test (f p1) (f p2)) then error why in check (fun p -> p.mind_consnames) (Array.equal Id.equal) NotSameConstructorNamesField; check (fun p -> p.mind_typename) Id.equal NotSameInductiveNameInBlockField; (* nf_lc later *) (* nf_arity later *) (* user_lc ignored *) (* user_arity ignored *) check (fun p -> p.mind_nrealargs) Int.equal (NotConvertibleInductiveField p2.mind_typename); (* How can it fail since the type of inductive are checked below? [HH] *) (* kelim ignored *) (* listrec ignored *) (* finite done *) (* nparams done *) (* params_ctxt done because part of the inductive types *) (* Don't check the sort of the type if polymorphic *) let ty1 = type_of_inductive env ((mib1, p1), inst) in let ty2 = type_of_inductive env ((mib2, p2), inst) in let cst = check_inductive_type cst p2.mind_typename ty1 ty2 in cst in let mind = MutInd.make1 kn1 in let check_cons_types _i cst p1 p2 = Array.fold_left3 (fun cst id t1 t2 -> check_conv (NotConvertibleConstructorField id) cst (inductive_is_polymorphic mib1) (infer_conv ?l2r:None ?evars:None ?ts:None) env t1 t2) cst p2.mind_consnames (arities_of_specif (mind, inst) (mib1, p1)) (arities_of_specif (mind, inst) (mib2, p2)) in let check f test why = if not (test (f mib1) (f mib2)) then error (why (f mib2)) in check (fun mib -> mib.mind_finite<>CoFinite) (==) (fun x -> FiniteInductiveFieldExpected x); check (fun mib -> mib.mind_ntypes) Int.equal (fun x -> InductiveNumbersFieldExpected x); assert (List.is_empty mib1.mind_hyps && List.is_empty mib2.mind_hyps); assert (Array.length mib1.mind_packets >= 1 && Array.length mib2.mind_packets >= 1); (* Check that the expected numbers of uniform parameters are the same *) (* No need to check the contexts of parameters: it is checked *) (* at the time of checking the inductive arities in check_packet. *) (* Notice that we don't expect the local definitions to match: only *) (* the inductive types and constructors types have to be convertible *) check (fun mib -> mib.mind_nparams) Int.equal (fun x -> InductiveParamsNumberField x); begin let kn2' = kn_of_delta reso2 kn2 in if KerName.equal kn2 kn2' || MutInd.equal (mind_of_delta_kn reso1 kn1) (subst_mind subst2 (MutInd.make kn2 kn2')) then () else error NotEqualInductiveAliases end; (* we check that records and their field names are preserved. *) (** FIXME: this check looks nonsense *) check (fun mib -> mib.mind_record <> NotRecord) (==) (fun x -> RecordFieldExpected x); if mib1.mind_record <> NotRecord then begin let rec names_prod_letin t = match kind t with | Prod(n,_,t) -> n.binder_name::(names_prod_letin t) | LetIn(n,_,_,t) -> n.binder_name::(names_prod_letin t) | Cast(t,_,_) -> names_prod_letin t | _ -> [] in assert (Int.equal (Array.length mib1.mind_packets) 1); assert (Int.equal (Array.length mib2.mind_packets) 1); assert (Int.equal (Array.length mib1.mind_packets.(0).mind_user_lc) 1); assert (Int.equal (Array.length mib2.mind_packets.(0).mind_user_lc) 1); check (fun mib -> let nparamdecls = List.length mib.mind_params_ctxt in let names = names_prod_letin (mib.mind_packets.(0).mind_user_lc.(0)) in snd (List.chop nparamdecls names)) (List.equal Name.equal) (fun x -> RecordProjectionsExpected x); end; (* we first check simple things *) let cst = Array.fold_left2 check_packet cst mib1.mind_packets mib2.mind_packets in (* and constructor types in the end *) let cst = Array.fold_left2_i check_cons_types cst mib1.mind_packets mib2.mind_packets in cst let check_constant cst env l info1 cb2 spec2 subst1 subst2 = let error why = error_signature_mismatch l spec2 why in let check_conv cst poly f = check_conv_error error cst poly f in let check_type poly cst env t1 t2 = let err = NotConvertibleTypeField (env, t1, t2) in check_conv err cst poly (infer_conv_leq ?l2r:None ?evars:None ?ts:None) env t1 t2 in match info1 with | Constant cb1 -> let () = assert (List.is_empty cb1.const_hyps && List.is_empty cb2.const_hyps) in let cb1 = Declareops.subst_const_body subst1 cb1 in let cb2 = Declareops.subst_const_body subst2 cb2 in (* Start by checking universes *) let env = check_universes error env cb1.const_universes cb2.const_universes in let poly = Declareops.constant_is_polymorphic cb1 in (* Now check types *) let typ1 = cb1.const_type in let typ2 = cb2.const_type in let cst = check_type poly cst env typ1 typ2 in (* Now we check the bodies: - A transparent constant can only be implemented by a compatible transparent constant. - In the signature, an opaque is handled just as a parameter: anything of the right type can implement it, even if bodies differ. *) (match cb2.const_body with | Primitive _ | Undef _ | OpaqueDef _ -> cst | Def lc2 -> (match cb1.const_body with | Primitive _ | Undef _ | OpaqueDef _ -> error NotConvertibleBodyField | Def lc1 -> (* NB: cb1 might have been strengthened and appear as transparent. Anyway [check_conv] will handle that afterwards. *) let c1 = Mod_subst.force_constr lc1 in let c2 = Mod_subst.force_constr lc2 in check_conv NotConvertibleBodyField cst poly (infer_conv ?l2r:None ?evars:None ?ts:None) env c1 c2)) | IndType ((_kn,_i),_mind1) -> CErrors.user_err Pp.(str @@ "The kernel does not recognize yet that a parameter can be " ^ "instantiated by an inductive type. Hint: you can rename the " ^ "inductive type and give a definition to map the old name to the new " ^ "name.") | IndConstr (((_kn,_i),_j),_mind1) -> CErrors.user_err Pp.(str @@ "The kernel does not recognize yet that a parameter can be " ^ "instantiated by a constructor. Hint: you can rename the " ^ "constructor and give a definition to map the old name to the new " ^ "name.") let rec check_modules cst env msb1 msb2 subst1 subst2 = let mty1 = module_type_of_module msb1 in let mty2 = module_type_of_module msb2 in check_modtypes cst env mty1 mty2 subst1 subst2 false and check_signatures cst env mp1 sig1 mp2 sig2 subst1 subst2 reso1 reso2= let map1 = make_labmap mp1 sig1 in let check_one_body cst (l,spec2) = match spec2 with | SFBconst cb2 -> check_constant cst env l (get_obj mp1 map1 l) cb2 spec2 subst1 subst2 | SFBmind mib2 -> check_inductive cst env mp1 l (get_obj mp1 map1 l) mp2 mib2 spec2 subst1 subst2 reso1 reso2 | SFBmodule msb2 -> begin match get_mod mp1 map1 l with | Module msb -> check_modules cst env msb msb2 subst1 subst2 | _ -> error_signature_mismatch l spec2 ModuleFieldExpected end | SFBmodtype mtb2 -> let mtb1 = match get_mod mp1 map1 l with | Modtype mtb -> mtb | _ -> error_signature_mismatch l spec2 ModuleTypeFieldExpected in let env = add_module_type mtb2.mod_mp mtb2 (add_module_type mtb1.mod_mp mtb1 env) in check_modtypes cst env mtb1 mtb2 subst1 subst2 true in List.fold_left check_one_body cst sig2 and check_modtypes cst env mtb1 mtb2 subst1 subst2 equiv = if mtb1==mtb2 || mtb1.mod_type == mtb2.mod_type then cst else let rec check_structure cst env str1 str2 equiv subst1 subst2 = match str1,str2 with |NoFunctor list1, NoFunctor list2 -> if equiv then let subst2 = add_mp mtb2.mod_mp mtb1.mod_mp mtb1.mod_delta subst2 in let cst1 = check_signatures cst env mtb1.mod_mp list1 mtb2.mod_mp list2 subst1 subst2 mtb1.mod_delta mtb2.mod_delta in let cst2 = check_signatures cst env mtb2.mod_mp list2 mtb1.mod_mp list1 subst2 subst1 mtb2.mod_delta mtb1.mod_delta in Univ.Constraint.union cst1 cst2 else check_signatures cst env mtb1.mod_mp list1 mtb2.mod_mp list2 subst1 subst2 mtb1.mod_delta mtb2.mod_delta |MoreFunctor (arg_id1,arg_t1,body_t1), MoreFunctor (arg_id2,arg_t2,body_t2) -> let mp2 = MPbound arg_id2 in let subst1 = join (map_mbid arg_id1 mp2 arg_t2.mod_delta) subst1 in let cst = check_modtypes cst env arg_t2 arg_t1 subst2 subst1 equiv in (* contravariant *) let env = add_module_type mp2 arg_t2 env in let env = if Modops.is_functor body_t1 then env else add_module {mod_mp = mtb1.mod_mp; mod_expr = Abstract; mod_type = subst_signature subst1 body_t1; mod_type_alg = None; mod_constraints = mtb1.mod_constraints; mod_retroknowledge = ModBodyRK []; mod_delta = mtb1.mod_delta} env in check_structure cst env body_t1 body_t2 equiv subst1 subst2 | _ , _ -> error_incompatible_modtypes mtb1 mtb2 in check_structure cst env mtb1.mod_type mtb2.mod_type equiv subst1 subst2 let check_subtypes env sup super = let env = add_module_type sup.mod_mp sup env in let env = Environ.push_context_set ~strict:true super.mod_constraints env in check_modtypes Univ.Constraint.empty env (strengthen sup sup.mod_mp) super empty_subst (map_mp super.mod_mp sup.mod_mp sup.mod_delta) false