1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Univ type family = InSProp | InProp | InSet | InType type t = | SProp | Prop | Set | Type of Universe.t let sprop = SProp let prop = Prop let set = Set let type1 = Type type1_univ let univ_of_sort = function | Type u -> u | Set -> Universe.type0 | Prop -> Universe.type0m | SProp -> Universe.sprop let sort_of_univ u = if Universe.is_sprop u then sprop else if is_type0m_univ u then prop else if is_type0_univ u then set else Type u let compare s1 s2 = if s1 == s2 then 0 else match s1, s2 with | SProp, SProp -> 0 | SProp, _ -> -1 | _, SProp -> 1 | Prop, Prop -> 0 | Prop, _ -> -1 | Set, Prop -> 1 | Set, Set -> 0 | Set, _ -> -1 | Type u1, Type u2 -> Universe.compare u1 u2 | Type _, _ -> -1 let equal s1 s2 = Int.equal (compare s1 s2) 0 let super = function | SProp | Prop | Set -> Type (Universe.type1) | Type u -> Type (Universe.super u) let is_sprop = function | SProp -> true | Prop | Set | Type _ -> false let is_prop = function | Prop -> true | SProp | Set | Type _ -> false let is_set = function | Set -> true | SProp | Prop | Type _ -> false let is_small = function | SProp | Prop | Set -> true | Type _ -> false let family = function | SProp -> InSProp | Prop -> InProp | Set -> InSet | Type _ -> InType let family_compare a b = match a,b with | InSProp, InSProp -> 0 | InSProp, _ -> -1 | _, InSProp -> 1 | InProp, InProp -> 0 | InProp, _ -> -1 | _, InProp -> 1 | InSet, InSet -> 0 | InSet, _ -> -1 | _, InSet -> 1 | InType, InType -> 0 let family_equal = (==) let family_leq a b = family_compare a b <= 0 open Hashset.Combine let hash = function | SProp -> combinesmall 1 0 | Prop -> combinesmall 1 1 | Set -> combinesmall 1 2 | Type u -> let h = Univ.Universe.hash u in combinesmall 2 h module Hsorts = Hashcons.Make( struct type _t = t type t = _t type u = Universe.t -> Universe.t let hashcons huniv = function | Type u as c -> let u' = huniv u in if u' == u then c else Type u' | s -> s let eq s1 s2 = match (s1,s2) with | Prop, Prop | Set, Set -> true | (Type u1, Type u2) -> u1 == u2 |_ -> false let hash = hash end) let hcons = Hashcons.simple_hcons Hsorts.generate Hsorts.hcons hcons_univ (** On binders: is this variable proof relevant *) type relevance = Relevant | Irrelevant let relevance_equal r1 r2 = match r1,r2 with | Relevant, Relevant | Irrelevant, Irrelevant -> true | (Relevant | Irrelevant), _ -> false let relevance_of_sort_family = function | InSProp -> Irrelevant | _ -> Relevant let relevance_hash = function | Relevant -> 0 | Irrelevant -> 1 let relevance_of_sort = function | SProp -> Irrelevant | _ -> Relevant let debug_print = function | SProp -> Pp.(str "SProp") | Prop -> Pp.(str "Prop") | Set -> Pp.(str "Set") | Type u -> Pp.(str "Type(" ++ Univ.Universe.pr u ++ str ")") let pr_sort_family = function | InSProp -> Pp.(str "SProp") | InProp -> Pp.(str "Prop") | InSet -> Pp.(str "Set") | InType -> Pp.(str "Type")