1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created under Benjamin Werner account by Bruno Barras to implement a call-by-value conversion algorithm and a lazy reduction machine with sharing, Nov 1996 *) (* Addition of zeta-reduction (let-in contraction) by Hugo Herbelin, Oct 2000 *) (* Irreversibility of opacity by Bruno Barras *) (* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *) (* Equal inductive types by Jacek Chrzaszcz as part of the module system, Aug 2002 *) open CErrors open Util open Names open Constr open Declarations open Vars open Environ open CClosure open Esubst open Context.Rel.Declaration let rec is_empty_stack = function [] -> true | Zupdate _::s -> is_empty_stack s | Zshift _::s -> is_empty_stack s | _ -> false (* Compute the lift to be performed on a term placed in a given stack *) let el_stack el stk = let n = List.fold_left (fun i z -> match z with Zshift n -> i+n | _ -> i) 0 stk in el_shft n el let compare_stack_shape stk1 stk2 = let rec compare_rec bal stk1 stk2 = match (stk1,stk2) with ([],[]) -> Int.equal bal 0 | ((Zupdate _|Zshift _)::s1, _) -> compare_rec bal s1 stk2 | (_, (Zupdate _|Zshift _)::s2) -> compare_rec bal stk1 s2 | (Zapp l1::s1, _) -> compare_rec (bal+Array.length l1) s1 stk2 | (_, Zapp l2::s2) -> compare_rec (bal-Array.length l2) stk1 s2 | (Zproj _p1::s1, Zproj _p2::s2) -> Int.equal bal 0 && compare_rec 0 s1 s2 | (ZcaseT(_c1,_,_,_)::s1, ZcaseT(_c2,_,_,_)::s2) -> Int.equal bal 0 (* && c1.ci_ind = c2.ci_ind *) && compare_rec 0 s1 s2 | (Zfix(_,a1)::s1, Zfix(_,a2)::s2) -> Int.equal bal 0 && compare_rec 0 a1 a2 && compare_rec 0 s1 s2 | Zprimitive(op1,_,rargs1, _kargs1)::s1, Zprimitive(op2,_,rargs2, _kargs2)::s2 -> bal=0 && op1=op2 && List.length rargs1=List.length rargs2 && compare_rec 0 s1 s2 | [], _ :: _ | (Zproj _ | ZcaseT _ | Zfix _ | Zprimitive _) :: _, _ -> false in compare_rec 0 stk1 stk2 type lft_fconstr = lift * fconstr type lft_constr_stack_elt = Zlapp of (lift * fconstr) array | Zlproj of Projection.Repr.t * lift | Zlfix of (lift * fconstr) * lft_constr_stack | Zlcase of case_info * lift * constr * constr array * fconstr subs | Zlprimitive of CPrimitives.t * pconstant * lft_fconstr list * lft_fconstr next_native_args and lft_constr_stack = lft_constr_stack_elt list let rec zlapp v = function Zlapp v2 :: s -> zlapp (Array.append v v2) s | s -> Zlapp v :: s (** Hand-unrolling of the map function to bypass the call to the generic array allocation. Type annotation is required to tell OCaml that the array does not contain floats. *) let map_lift (l : lift) (v : fconstr array) = match v with | [||] -> assert false | [|c0|] -> [|(l, c0)|] | [|c0; c1|] -> [|(l, c0); (l, c1)|] | [|c0; c1; c2|] -> [|(l, c0); (l, c1); (l, c2)|] | [|c0; c1; c2; c3|] -> [|(l, c0); (l, c1); (l, c2); (l, c3)|] | v -> Array.Fun1.map (fun l t -> (l, t)) l v let pure_stack lfts stk = let rec pure_rec lfts stk = match stk with [] -> (lfts,[]) | zi::s -> (match (zi,pure_rec lfts s) with (Zupdate _,lpstk) -> lpstk | (Zshift n,(l,pstk)) -> (el_shft n l, pstk) | (Zapp a, (l,pstk)) -> (l,zlapp (map_lift l a) pstk) | (Zproj p, (l,pstk)) -> (l, Zlproj (p,l)::pstk) | (Zfix(fx,a),(l,pstk)) -> let (lfx,pa) = pure_rec l a in (l, Zlfix((lfx,fx),pa)::pstk) | (ZcaseT(ci,p,br,e),(l,pstk)) -> (l,Zlcase(ci,l,p,br,e)::pstk) | (Zprimitive(op,c,rargs,kargs),(l,pstk)) -> (l,Zlprimitive(op,c,List.map (fun t -> (l,t)) rargs, List.map (fun (k,t) -> (k,(l,t))) kargs)::pstk)) in snd (pure_rec lfts stk) (****************************************************************************) (* Reduction Functions *) (****************************************************************************) let whd_betaiota env t = match kind t with | (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _) -> t | App (c, _) -> begin match kind c with | Ind _ | Construct _ | Evar _ | Meta _ | Const _ | LetIn _ -> t | _ -> whd_val (create_clos_infos betaiota env) (create_tab ()) (inject t) end | _ -> whd_val (create_clos_infos betaiota env) (create_tab ()) (inject t) let nf_betaiota env t = norm_val (create_clos_infos betaiota env) (create_tab ()) (inject t) let whd_betaiotazeta env x = match kind x with | (Sort _|Var _|Meta _|Evar _|Const _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _|Int _) -> x | App (c, _) -> begin match kind c with | Ind _ | Construct _ | Evar _ | Meta _ | Const _ | Int _ -> x | Sort _ | Rel _ | Var _ | Cast _ | Prod _ | Lambda _ | LetIn _ | App _ | Case _ | Fix _ | CoFix _ | Proj _ -> whd_val (create_clos_infos betaiotazeta env) (create_tab ()) (inject x) end | Rel _ | Cast _ | LetIn _ | Case _ | Proj _ -> whd_val (create_clos_infos betaiotazeta env) (create_tab ()) (inject x) let whd_all env t = match kind t with | (Sort _|Meta _|Evar _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _|Int _) -> t | App (c, _) -> begin match kind c with | Ind _ | Construct _ | Evar _ | Meta _ | Int _ -> t | Sort _ | Rel _ | Var _ | Cast _ | Prod _ | Lambda _ | LetIn _ | App _ | Const _ |Case _ | Fix _ | CoFix _ | Proj _ -> whd_val (create_clos_infos all env) (create_tab ()) (inject t) end | Rel _ | Cast _ | LetIn _ | Case _ | Proj _ | Const _ | Var _ -> whd_val (create_clos_infos all env) (create_tab ()) (inject t) let whd_allnolet env t = match kind t with | (Sort _|Meta _|Evar _|Ind _|Construct _| Prod _|Lambda _|Fix _|CoFix _|LetIn _|Int _) -> t | App (c, _) -> begin match kind c with | Ind _ | Construct _ | Evar _ | Meta _ | LetIn _ | Int _ -> t | Sort _ | Rel _ | Var _ | Cast _ | Prod _ | Lambda _ | App _ | Const _ | Case _ | Fix _ | CoFix _ | Proj _ -> whd_val (create_clos_infos allnolet env) (create_tab ()) (inject t) end | Rel _ | Cast _ | Case _ | Proj _ | Const _ | Var _ -> whd_val (create_clos_infos allnolet env) (create_tab ()) (inject t) (********************************************************************) (* Conversion *) (********************************************************************) (* Conversion utility functions *) (* functions of this type are called from the kernel *) type 'a kernel_conversion_function = env -> 'a -> 'a -> unit (* functions of this type can be called from outside the kernel *) type 'a extended_conversion_function = ?l2r:bool -> ?reds:TransparentState.t -> env -> ?evars:((existential->constr option) * UGraph.t) -> 'a -> 'a -> unit exception NotConvertible (* Convertibility of sorts *) (* The sort cumulativity is Prop <= Set <= Type 1 <= ... <= Type i <= ... and this holds whatever Set is predicative or impredicative *) type conv_pb = | CONV | CUMUL let is_cumul = function CUMUL -> true | CONV -> false type 'a universe_compare = { (* Might raise NotConvertible *) compare_sorts : env -> conv_pb -> Sorts.t -> Sorts.t -> 'a -> 'a; compare_instances: flex:bool -> Univ.Instance.t -> Univ.Instance.t -> 'a -> 'a; compare_cumul_instances : conv_pb -> Univ.Variance.t array -> Univ.Instance.t -> Univ.Instance.t -> 'a -> 'a } type 'a universe_state = 'a * 'a universe_compare type ('a,'b) generic_conversion_function = env -> 'b universe_state -> 'a -> 'a -> 'b type 'a infer_conversion_function = env -> UGraph.t -> 'a -> 'a -> Univ.Constraint.t let sort_cmp_universes env pb s0 s1 (u, check) = (check.compare_sorts env pb s0 s1 u, check) (* [flex] should be true for constants, false for inductive types and constructors. *) let convert_instances ~flex u u' (s, check) = (check.compare_instances ~flex u u' s, check) let get_cumulativity_constraints cv_pb variance u u' = match cv_pb with | CONV -> Univ.enforce_eq_variance_instances variance u u' Univ.Constraint.empty | CUMUL -> Univ.enforce_leq_variance_instances variance u u' Univ.Constraint.empty let inductive_cumulativity_arguments (mind,ind) = mind.Declarations.mind_nparams + mind.Declarations.mind_packets.(ind).Declarations.mind_nrealargs let convert_inductives_gen cmp_instances cmp_cumul cv_pb (mind,ind) nargs u1 u2 s = match mind.Declarations.mind_variance with | None -> cmp_instances u1 u2 s | Some variances -> let num_param_arity = inductive_cumulativity_arguments (mind,ind) in if not (Int.equal num_param_arity nargs) then cmp_instances u1 u2 s else cmp_cumul cv_pb variances u1 u2 s let convert_inductives cv_pb ind nargs u1 u2 (s, check) = convert_inductives_gen (check.compare_instances ~flex:false) check.compare_cumul_instances cv_pb ind nargs u1 u2 s, check let constructor_cumulativity_arguments (mind, ind, ctor) = mind.Declarations.mind_nparams + mind.Declarations.mind_packets.(ind).Declarations.mind_consnrealargs.(ctor - 1) let convert_constructors_gen cmp_instances cmp_cumul (mind, ind, cns) nargs u1 u2 s = match mind.Declarations.mind_variance with | None -> cmp_instances u1 u2 s | Some _ -> let num_cnstr_args = constructor_cumulativity_arguments (mind,ind,cns) in if not (Int.equal num_cnstr_args nargs) then cmp_instances u1 u2 s else (** By invariant, both constructors have a common supertype, so they are convertible _at that type_. *) let variance = Array.make (Univ.Instance.length u1) Univ.Variance.Irrelevant in cmp_cumul CONV variance u1 u2 s let convert_constructors ctor nargs u1 u2 (s, check) = convert_constructors_gen (check.compare_instances ~flex:false) check.compare_cumul_instances ctor nargs u1 u2 s, check let conv_table_key infos k1 k2 cuniv = if k1 == k2 then cuniv else match k1, k2 with | ConstKey (cst, u), ConstKey (cst', u') when Constant.equal cst cst' -> if Univ.Instance.equal u u' then cuniv else let flex = evaluable_constant cst (info_env infos) && RedFlags.red_set (info_flags infos) (RedFlags.fCONST cst) in convert_instances ~flex u u' cuniv | VarKey id, VarKey id' when Id.equal id id' -> cuniv | RelKey n, RelKey n' when Int.equal n n' -> cuniv | _ -> raise NotConvertible exception IrregularPatternShape let unfold_ref_with_args infos tab fl v = match unfold_reference infos tab fl with | Def def -> Some (def, v) | Primitive op when check_native_args op v -> let c = match fl with ConstKey c -> c | _ -> assert false in let rargs, a, nargs, v = get_native_args1 op c v in Some (whd_stack infos tab a (Zupdate a::(Zprimitive(op,c,rargs,nargs)::v))) | Undef _ | OpaqueDef _ | Primitive _ -> None type conv_tab = { cnv_inf : clos_infos; relevances : Sorts.relevance list; lft_tab : clos_tab; rgt_tab : clos_tab; } (** Invariant: for any tl ∈ lft_tab and tr ∈ rgt_tab, there is no mutable memory location contained both in tl and in tr. *) (** The same heap separation invariant must hold for the fconstr arguments passed to each respective side of the conversion function below. *) let push_relevance infos r = { infos with relevances = r.Context.binder_relevance :: infos.relevances } let push_relevances infos nas = { infos with relevances = Array.fold_left (fun l x -> x.Context.binder_relevance :: l) infos.relevances nas } let rec skip_pattern infos relevances n c1 c2 = if Int.equal n 0 then {infos with relevances}, c1, c2 else match kind c1, kind c2 with | Lambda (x, _, c1), Lambda (_, _, c2) -> skip_pattern infos (x.Context.binder_relevance :: relevances) (pred n) c1 c2 | _ -> raise IrregularPatternShape let skip_pattern infos n c1 c2 = if Int.equal n 0 then infos, c1, c2 else skip_pattern infos infos.relevances n c1 c2 let is_irrelevant infos lft c = let env = info_env infos.cnv_inf in try Retypeops.relevance_of_fterm env infos.relevances lft c == Sorts.Irrelevant with _ -> false (* Conversion between [lft1]term1 and [lft2]term2 *) let rec ccnv cv_pb l2r infos lft1 lft2 term1 term2 cuniv = try eqappr cv_pb l2r infos (lft1, (term1,[])) (lft2, (term2,[])) cuniv with NotConvertible when is_irrelevant infos lft1 term1 && is_irrelevant infos lft2 term2 -> cuniv (* Conversion between [lft1](hd1 v1) and [lft2](hd2 v2) *) and eqappr cv_pb l2r infos (lft1,st1) (lft2,st2) cuniv = Control.check_for_interrupt (); (* First head reduce both terms *) let ninfos = infos_with_reds infos.cnv_inf betaiotazeta in let (hd1, v1 as appr1) = whd_stack ninfos infos.lft_tab (fst st1) (snd st1) in let (hd2, v2 as appr2) = whd_stack ninfos infos.rgt_tab (fst st2) (snd st2) in let appr1 = (lft1, appr1) and appr2 = (lft2, appr2) in (** We delay the computation of the lifts that apply to the head of the term with [el_stack] inside the branches where they are actually used. *) match (fterm_of hd1, fterm_of hd2) with (* case of leaves *) | (FAtom a1, FAtom a2) -> (match kind a1, kind a2 with | (Sort s1, Sort s2) -> if not (is_empty_stack v1 && is_empty_stack v2) then anomaly (Pp.str "conversion was given ill-typed terms (Sort)."); sort_cmp_universes (info_env infos.cnv_inf) cv_pb s1 s2 cuniv | (Meta n, Meta m) -> if Int.equal n m then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | _ -> raise NotConvertible) | (FEvar ((ev1,args1),env1), FEvar ((ev2,args2),env2)) -> if Evar.equal ev1 ev2 then let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in let cuniv = convert_stacks l2r infos lft1 lft2 v1 v2 cuniv in convert_vect l2r infos el1 el2 (Array.map (mk_clos env1) args1) (Array.map (mk_clos env2) args2) cuniv else raise NotConvertible (* 2 index known to be bound to no constant *) | (FRel n, FRel m) -> let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in if Int.equal (reloc_rel n el1) (reloc_rel m el2) then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible (* 2 constants, 2 local defined vars or 2 defined rels *) | (FFlex fl1, FFlex fl2) -> (try let cuniv = conv_table_key infos.cnv_inf fl1 fl2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with NotConvertible | Univ.UniverseInconsistency _ -> (* else the oracle tells which constant is to be expanded *) let oracle = CClosure.oracle_of_infos infos.cnv_inf in let (app1,app2) = let aux appr1 lft1 fl1 tab1 v1 appr2 lft2 fl2 tab2 v2 = match unfold_ref_with_args infos.cnv_inf tab1 fl1 v1 with | Some t1 -> ((lft1, t1), appr2) | None -> match unfold_ref_with_args infos.cnv_inf tab2 fl2 v2 with | Some t2 -> (appr1, (lft2, t2)) | None -> raise NotConvertible in if Conv_oracle.oracle_order Univ.out_punivs oracle l2r fl1 fl2 then aux appr1 lft1 fl1 infos.lft_tab v1 appr2 lft2 fl2 infos.rgt_tab v2 else let (app2,app1) = aux appr2 lft2 fl2 infos.rgt_tab v2 appr1 lft1 fl1 infos.lft_tab v1 in (app1,app2) in eqappr cv_pb l2r infos app1 app2 cuniv) | (FProj (p1,c1), FProj (p2, c2)) -> (* Projections: prefer unfolding to first-order unification, which will happen naturally if the terms c1, c2 are not in constructor form *) (match unfold_projection infos.cnv_inf p1 with | Some s1 -> eqappr cv_pb l2r infos (lft1, (c1, (s1 :: v1))) appr2 cuniv | None -> match unfold_projection infos.cnv_inf p2 with | Some s2 -> eqappr cv_pb l2r infos appr1 (lft2, (c2, (s2 :: v2))) cuniv | None -> if Projection.Repr.equal (Projection.repr p1) (Projection.repr p2) && compare_stack_shape v1 v2 then let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in let u1 = ccnv CONV l2r infos el1 el2 c1 c2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 u1 else (* Two projections in WHNF: unfold *) raise NotConvertible) | (FProj (p1,c1), t2) -> begin match unfold_projection infos.cnv_inf p1 with | Some s1 -> eqappr cv_pb l2r infos (lft1, (c1, (s1 :: v1))) appr2 cuniv | None -> begin match t2 with | FFlex fl2 -> begin match unfold_ref_with_args infos.cnv_inf infos.rgt_tab fl2 v2 with | Some t2 -> eqappr cv_pb l2r infos appr1 (lft2, t2) cuniv | None -> raise NotConvertible end | _ -> raise NotConvertible end end | (t1, FProj (p2,c2)) -> begin match unfold_projection infos.cnv_inf p2 with | Some s2 -> eqappr cv_pb l2r infos appr1 (lft2, (c2, (s2 :: v2))) cuniv | None -> begin match t1 with | FFlex fl1 -> begin match unfold_ref_with_args infos.cnv_inf infos.lft_tab fl1 v1 with | Some t1 -> eqappr cv_pb l2r infos (lft1, t1) appr2 cuniv | None -> raise NotConvertible end | _ -> raise NotConvertible end end (* other constructors *) | (FLambda _, FLambda _) -> (* Inconsistency: we tolerate that v1, v2 contain shift and update but we throw them away *) if not (is_empty_stack v1 && is_empty_stack v2) then anomaly (Pp.str "conversion was given ill-typed terms (FLambda)."); let (x1,ty1,bd1) = destFLambda mk_clos hd1 in let (_,ty2,bd2) = destFLambda mk_clos hd2 in let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in let cuniv = ccnv CONV l2r infos el1 el2 ty1 ty2 cuniv in ccnv CONV l2r (push_relevance infos x1) (el_lift el1) (el_lift el2) bd1 bd2 cuniv | (FProd (x1, c1, c2, e), FProd (_, c'1, c'2, e')) -> if not (is_empty_stack v1 && is_empty_stack v2) then anomaly (Pp.str "conversion was given ill-typed terms (FProd)."); (* Luo's system *) let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in let cuniv = ccnv CONV l2r infos el1 el2 c1 c'1 cuniv in ccnv cv_pb l2r (push_relevance infos x1) (el_lift el1) (el_lift el2) (mk_clos (subs_lift e) c2) (mk_clos (subs_lift e') c'2) cuniv (* Eta-expansion on the fly *) | (FLambda _, _) -> let () = match v1 with | [] -> () | _ -> anomaly (Pp.str "conversion was given unreduced term (FLambda).") in let (x1,_ty1,bd1) = destFLambda mk_clos hd1 in let infos = push_relevance infos x1 in eqappr CONV l2r infos (el_lift lft1, (bd1, [])) (el_lift lft2, (hd2, eta_expand_stack v2)) cuniv | (_, FLambda _) -> let () = match v2 with | [] -> () | _ -> anomaly (Pp.str "conversion was given unreduced term (FLambda).") in let (x2,_ty2,bd2) = destFLambda mk_clos hd2 in let infos = push_relevance infos x2 in eqappr CONV l2r infos (el_lift lft1, (hd1, eta_expand_stack v1)) (el_lift lft2, (bd2, [])) cuniv (* only one constant, defined var or defined rel *) | (FFlex fl1, c2) -> begin match unfold_ref_with_args infos.cnv_inf infos.lft_tab fl1 v1 with | Some (def1,v1) -> (** By virtue of the previous case analyses, we know [c2] is rigid. Conversion check to rigid terms eventually implies full weak-head reduction, so instead of repeatedly performing small-step unfoldings, we perform reduction with all flags on. *) let all = RedFlags.red_add_transparent all (RedFlags.red_transparent (info_flags infos.cnv_inf)) in let r1 = whd_stack (infos_with_reds infos.cnv_inf all) infos.lft_tab def1 v1 in eqappr cv_pb l2r infos (lft1, r1) appr2 cuniv | None -> (match c2 with | FConstruct ((ind2,_j2),_u2) -> (try let v2, v1 = eta_expand_ind_stack (info_env infos.cnv_inf) ind2 hd2 v2 (snd appr1) in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with Not_found -> raise NotConvertible) | _ -> raise NotConvertible) end | (c1, FFlex fl2) -> begin match unfold_ref_with_args infos.cnv_inf infos.rgt_tab fl2 v2 with | Some (def2, v2) -> (** Symmetrical case of above. *) let all = RedFlags.red_add_transparent all (RedFlags.red_transparent (info_flags infos.cnv_inf)) in let r2 = whd_stack (infos_with_reds infos.cnv_inf all) infos.rgt_tab def2 v2 in eqappr cv_pb l2r infos appr1 (lft2, r2) cuniv | None -> match c1 with | FConstruct ((ind1,_j1),_u1) -> (try let v1, v2 = eta_expand_ind_stack (info_env infos.cnv_inf) ind1 hd1 v1 (snd appr2) in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with Not_found -> raise NotConvertible) | _ -> raise NotConvertible end (* Inductive types: MutInd MutConstruct Fix Cofix *) | (FInd (ind1,u1), FInd (ind2,u2)) -> if eq_ind ind1 ind2 then if Univ.Instance.length u1 = 0 || Univ.Instance.length u2 = 0 then let cuniv = convert_instances ~flex:false u1 u2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else let mind = Environ.lookup_mind (fst ind1) (info_env infos.cnv_inf) in let nargs = CClosure.stack_args_size v1 in if not (Int.equal nargs (CClosure.stack_args_size v2)) then raise NotConvertible else let cuniv = convert_inductives cv_pb (mind, snd ind1) nargs u1 u2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | (FConstruct ((ind1,j1),u1), FConstruct ((ind2,j2),u2)) -> if Int.equal j1 j2 && eq_ind ind1 ind2 then if Univ.Instance.length u1 = 0 || Univ.Instance.length u2 = 0 then let cuniv = convert_instances ~flex:false u1 u2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else let mind = Environ.lookup_mind (fst ind1) (info_env infos.cnv_inf) in let nargs = CClosure.stack_args_size v1 in if not (Int.equal nargs (CClosure.stack_args_size v2)) then raise NotConvertible else let cuniv = convert_constructors (mind, snd ind1, j1) nargs u1 u2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible (* Eta expansion of records *) | (FConstruct ((ind1,_j1),_u1), _) -> (try let v1, v2 = eta_expand_ind_stack (info_env infos.cnv_inf) ind1 hd1 v1 (snd appr2) in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with Not_found -> raise NotConvertible) | (_, FConstruct ((ind2,_j2),_u2)) -> (try let v2, v1 = eta_expand_ind_stack (info_env infos.cnv_inf) ind2 hd2 v2 (snd appr1) in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv with Not_found -> raise NotConvertible) | (FFix (((op1, i1),(na1,tys1,cl1)),e1), FFix(((op2, i2),(_,tys2,cl2)),e2)) -> if Int.equal i1 i2 && Array.equal Int.equal op1 op2 then let n = Array.length cl1 in let fty1 = Array.map (mk_clos e1) tys1 in let fty2 = Array.map (mk_clos e2) tys2 in let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in let cuniv = convert_vect l2r infos el1 el2 fty1 fty2 cuniv in let cuniv = let infos = push_relevances infos na1 in convert_vect l2r infos (el_liftn n el1) (el_liftn n el2) fcl1 fcl2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | (FCoFix ((op1,(na1,tys1,cl1)),e1), FCoFix((op2,(_,tys2,cl2)),e2)) -> if Int.equal op1 op2 then let n = Array.length cl1 in let fty1 = Array.map (mk_clos e1) tys1 in let fty2 = Array.map (mk_clos e2) tys2 in let fcl1 = Array.map (mk_clos (subs_liftn n e1)) cl1 in let fcl2 = Array.map (mk_clos (subs_liftn n e2)) cl2 in let el1 = el_stack lft1 v1 in let el2 = el_stack lft2 v2 in let cuniv = convert_vect l2r infos el1 el2 fty1 fty2 cuniv in let cuniv = let infos = push_relevances infos na1 in convert_vect l2r infos (el_liftn n el1) (el_liftn n el2) fcl1 fcl2 cuniv in convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible | FInt i1, FInt i2 -> if Uint63.equal i1 i2 then convert_stacks l2r infos lft1 lft2 v1 v2 cuniv else raise NotConvertible (* Should not happen because both (hd1,v1) and (hd2,v2) are in whnf *) | ( (FLetIn _, _) | (FCaseT _,_) | (FApp _,_) | (FCLOS _,_) | (FLIFT _,_) | (_, FLetIn _) | (_,FCaseT _) | (_,FApp _) | (_,FCLOS _) | (_,FLIFT _) | (FLOCKED,_) | (_,FLOCKED) ) -> assert false | (FRel _ | FAtom _ | FInd _ | FFix _ | FCoFix _ | FProd _ | FEvar _ | FInt _), _ -> raise NotConvertible and convert_stacks l2r infos lft1 lft2 stk1 stk2 cuniv = let f (l1, t1) (l2, t2) cuniv = ccnv CONV l2r infos l1 l2 t1 t2 cuniv in let rec cmp_rec pstk1 pstk2 cuniv = match (pstk1,pstk2) with | (z1::s1, z2::s2) -> let cu1 = cmp_rec s1 s2 cuniv in (match (z1,z2) with | (Zlapp a1,Zlapp a2) -> Array.fold_right2 f a1 a2 cu1 | (Zlproj (c1,_l1),Zlproj (c2,_l2)) -> if not (Projection.Repr.equal c1 c2) then raise NotConvertible else cu1 | (Zlfix(fx1,a1),Zlfix(fx2,a2)) -> let cu2 = f fx1 fx2 cu1 in cmp_rec a1 a2 cu2 | (Zlcase(ci1,l1,p1,br1,e1),Zlcase(ci2,l2,p2,br2,e2)) -> if not (eq_ind ci1.ci_ind ci2.ci_ind) then raise NotConvertible; let cu2 = f (l1, mk_clos e1 p1) (l2, mk_clos e2 p2) cu1 in convert_branches l2r infos ci1 e1 e2 l1 l2 br1 br2 cu2 | (Zlprimitive(op1,_,rargs1,kargs1),Zlprimitive(op2,_,rargs2,kargs2)) -> if not (CPrimitives.equal op1 op2) then raise NotConvertible else let cu2 = List.fold_right2 f rargs1 rargs2 cu1 in let fk (_,a1) (_,a2) cu = f a1 a2 cu in List.fold_right2 fk kargs1 kargs2 cu2 | ((Zlapp _ | Zlproj _ | Zlfix _| Zlcase _| Zlprimitive _), _) -> assert false) | _ -> cuniv in if compare_stack_shape stk1 stk2 then cmp_rec (pure_stack lft1 stk1) (pure_stack lft2 stk2) cuniv else raise NotConvertible and convert_vect l2r infos lft1 lft2 v1 v2 cuniv = let lv1 = Array.length v1 in let lv2 = Array.length v2 in if Int.equal lv1 lv2 then let rec fold n cuniv = if n >= lv1 then cuniv else let cuniv = ccnv CONV l2r infos lft1 lft2 v1.(n) v2.(n) cuniv in fold (n+1) cuniv in fold 0 cuniv else raise NotConvertible and convert_branches l2r infos ci e1 e2 lft1 lft2 br1 br2 cuniv = (** Skip comparison of the pattern types. We know that the two terms are living in a common type, thus this check is useless. *) let fold n c1 c2 cuniv = match skip_pattern infos n c1 c2 with | (infos, c1, c2) -> let lft1 = el_liftn n lft1 in let lft2 = el_liftn n lft2 in let e1 = subs_liftn n e1 in let e2 = subs_liftn n e2 in ccnv CONV l2r infos lft1 lft2 (mk_clos e1 c1) (mk_clos e2 c2) cuniv | exception IrregularPatternShape -> (** Might happen due to a shape invariant that is not enforced *) ccnv CONV l2r infos lft1 lft2 (mk_clos e1 c1) (mk_clos e2 c2) cuniv in Array.fold_right3 fold ci.ci_cstr_nargs br1 br2 cuniv let clos_gen_conv trans cv_pb l2r evars env univs t1 t2 = let reds = CClosure.RedFlags.red_add_transparent betaiotazeta trans in let infos = create_clos_infos ~evars reds env in let infos = { cnv_inf = infos; relevances = List.map Context.Rel.Declaration.get_relevance (rel_context env); lft_tab = create_tab (); rgt_tab = create_tab (); } in ccnv cv_pb l2r infos el_id el_id (inject t1) (inject t2) univs let check_eq univs u u' = if not (UGraph.check_eq univs u u') then raise NotConvertible let check_leq univs u u' = if not (UGraph.check_leq univs u u') then raise NotConvertible let check_sort_cmp_universes env pb s0 s1 univs = let open Sorts in if not (type_in_type env) then let check_pb u0 u1 = match pb with | CUMUL -> check_leq univs u0 u1 | CONV -> check_eq univs u0 u1 in match (s0,s1) with | SProp, SProp | Prop, Prop | Set, Set -> () | SProp, _ | _, SProp -> raise NotConvertible | Prop, (Set | Type _) -> if not (is_cumul pb) then raise NotConvertible | Set, Prop -> raise NotConvertible | Set, Type u -> check_pb Univ.type0_univ u | Type _u, Prop -> raise NotConvertible | Type u, Set -> check_pb u Univ.type0_univ | Type u0, Type u1 -> check_pb u0 u1 let checked_sort_cmp_universes env pb s0 s1 univs = check_sort_cmp_universes env pb s0 s1 univs; univs let check_convert_instances ~flex:_ u u' univs = if UGraph.check_eq_instances univs u u' then univs else raise NotConvertible (* general conversion and inference functions *) let check_inductive_instances cv_pb variance u1 u2 univs = let csts = get_cumulativity_constraints cv_pb variance u1 u2 in if (UGraph.check_constraints csts univs) then univs else raise NotConvertible let checked_universes = { compare_sorts = checked_sort_cmp_universes; compare_instances = check_convert_instances; compare_cumul_instances = check_inductive_instances; } let infer_eq (univs, cstrs as cuniv) u u' = if UGraph.check_eq univs u u' then cuniv else univs, (Univ.enforce_eq u u' cstrs) let infer_leq (univs, cstrs as cuniv) u u' = if UGraph.check_leq univs u u' then cuniv else let cstrs', _ = UGraph.enforce_leq_alg u u' univs in univs, Univ.Constraint.union cstrs cstrs' let infer_cmp_universes env pb s0 s1 univs = if type_in_type env then univs else let open Sorts in let infer_pb u0 u1 = match pb with | CUMUL -> infer_leq univs u0 u1 | CONV -> infer_eq univs u0 u1 in match (s0,s1) with | SProp, SProp | Prop, Prop | Set, Set -> univs | SProp, _ | _, SProp -> raise NotConvertible | Prop, (Set | Type _) -> if not (is_cumul pb) then raise NotConvertible else univs | Set, Prop -> raise NotConvertible | Set, Type u -> infer_pb Univ.type0_univ u | Type u, Prop -> infer_pb u Univ.type0m_univ | Type u, Set -> infer_pb u Univ.type0_univ | Type u0, Type u1 -> infer_pb u0 u1 let infer_convert_instances ~flex u u' (univs,cstrs) = let cstrs' = if flex then if UGraph.check_eq_instances univs u u' then cstrs else raise NotConvertible else Univ.enforce_eq_instances u u' cstrs in (univs, cstrs') let infer_inductive_instances cv_pb variance u1 u2 (univs,csts') = let csts = get_cumulativity_constraints cv_pb variance u1 u2 in (univs, Univ.Constraint.union csts csts') let inferred_universes : (UGraph.t * Univ.Constraint.t) universe_compare = { compare_sorts = infer_cmp_universes; compare_instances = infer_convert_instances; compare_cumul_instances = infer_inductive_instances; } let gen_conv cv_pb l2r reds env evars univs t1 t2 = let b = if cv_pb = CUMUL then leq_constr_univs univs t1 t2 else eq_constr_univs univs t1 t2 in if b then () else let _ = clos_gen_conv reds cv_pb l2r evars env (univs, checked_universes) t1 t2 in () (* Profiling *) let gen_conv cv_pb ?(l2r=false) ?(reds=TransparentState.full) env ?(evars=(fun _->None), universes env) = let evars, univs = evars in if Flags.profile then let fconv_universes_key = CProfile.declare_profile "trans_fconv_universes" in CProfile.profile8 fconv_universes_key gen_conv cv_pb l2r reds env evars univs else gen_conv cv_pb l2r reds env evars univs let conv = gen_conv CONV let conv_leq = gen_conv CUMUL let generic_conv cv_pb ~l2r evars reds env univs t1 t2 = let (s, _) = clos_gen_conv reds cv_pb l2r evars env univs t1 t2 in s let infer_conv_universes cv_pb l2r evars reds env univs t1 t2 = let b, cstrs = if cv_pb == CUMUL then Constr.leq_constr_univs_infer univs t1 t2 else Constr.eq_constr_univs_infer univs t1 t2 in if b then cstrs else let univs = ((univs, Univ.Constraint.empty), inferred_universes) in let ((_,cstrs), _) = clos_gen_conv reds cv_pb l2r evars env univs t1 t2 in cstrs (* Profiling *) let infer_conv_universes = if Flags.profile then let infer_conv_universes_key = CProfile.declare_profile "infer_conv_universes" in CProfile.profile8 infer_conv_universes_key infer_conv_universes else infer_conv_universes let infer_conv ?(l2r=false) ?(evars=fun _ -> None) ?(ts=TransparentState.full) env univs t1 t2 = infer_conv_universes CONV l2r evars ts env univs t1 t2 let infer_conv_leq ?(l2r=false) ?(evars=fun _ -> None) ?(ts=TransparentState.full) env univs t1 t2 = infer_conv_universes CUMUL l2r evars ts env univs t1 t2 let default_conv cv_pb ?l2r:_ env t1 t2 = gen_conv cv_pb env t1 t2 let default_conv_leq = default_conv CUMUL (* let convleqkey = CProfile.declare_profile "Kernel_reduction.conv_leq";; let conv_leq env t1 t2 = CProfile.profile4 convleqkey conv_leq env t1 t2;; let convkey = CProfile.declare_profile "Kernel_reduction.conv";; let conv env t1 t2 = CProfile.profile4 convleqkey conv env t1 t2;; *) (* Application with on-the-fly reduction *) let beta_applist c l = let rec app subst c l = match kind c, l with | Lambda(_,_,c), arg::l -> app (arg::subst) c l | _ -> Term.applist (substl subst c, l) in app [] c l let beta_appvect c v = beta_applist c (Array.to_list v) let beta_app c a = beta_applist c [a] (* Compatibility *) let betazeta_appvect = Term.lambda_appvect_assum (********************************************************************) (* Special-Purpose Reduction *) (********************************************************************) (* pseudo-reduction rule: * [hnf_prod_app env (Prod(_,B)) N --> B[N] * with an HNF on the first argument to produce a product. * if this does not work, then we use the string S as part of our * error message. *) let hnf_prod_app env t n = match kind (whd_all env t) with | Prod (_,_,b) -> subst1 n b | _ -> anomaly ~label:"hnf_prod_app" (Pp.str "Need a product.") let hnf_prod_applist env t nl = List.fold_left (hnf_prod_app env) t nl let hnf_prod_applist_assum env n c l = let rec app n subst t l = if Int.equal n 0 then if l == [] then substl subst t else anomaly (Pp.str "Too many arguments.") else match kind (whd_allnolet env t), l with | Prod(_,_,c), arg::l -> app (n-1) (arg::subst) c l | LetIn(_,b,_,c), _ -> app (n-1) (substl subst b::subst) c l | _, [] -> anomaly (Pp.str "Not enough arguments.") | _ -> anomaly (Pp.str "Not enough prod/let's.") in app n [] c l (* Dealing with arities *) let dest_prod env = let rec decrec env m c = let t = whd_all env c in match kind t with | Prod (n,a,c0) -> let d = LocalAssum (n,a) in decrec (push_rel d env) (Context.Rel.add d m) c0 | _ -> m,t in decrec env Context.Rel.empty let dest_lam env = let rec decrec env m c = let t = whd_all env c in match kind t with | Lambda (n,a,c0) -> let d = LocalAssum (n,a) in decrec (push_rel d env) (Context.Rel.add d m) c0 | _ -> m,t in decrec env Context.Rel.empty (* The same but preserving lets in the context, not internal ones. *) let dest_prod_assum env = let rec prodec_rec env l ty = let rty = whd_allnolet env ty in match kind rty with | Prod (x,t,c) -> let d = LocalAssum (x,t) in prodec_rec (push_rel d env) (Context.Rel.add d l) c | LetIn (x,b,t,c) -> let d = LocalDef (x,b,t) in prodec_rec (push_rel d env) (Context.Rel.add d l) c | _ -> let rty' = whd_all env rty in if Constr.equal rty' rty then l, rty else prodec_rec env l rty' in prodec_rec env Context.Rel.empty let dest_lam_assum env = let rec lamec_rec env l ty = let rty = whd_allnolet env ty in match kind rty with | Lambda (x,t,c) -> let d = LocalAssum (x,t) in lamec_rec (push_rel d env) (Context.Rel.add d l) c | LetIn (x,b,t,c) -> let d = LocalDef (x,b,t) in lamec_rec (push_rel d env) (Context.Rel.add d l) c | _ -> l,rty in lamec_rec env Context.Rel.empty exception NotArity let dest_arity env c = let l, c = dest_prod_assum env c in match kind c with | Sort s -> l,s | _ -> raise NotArity let is_arity env c = try let _ = dest_arity env c in true with NotArity -> false let eta_expand env t ty = let ctxt, _codom = dest_prod env ty in let ctxt',t = dest_lam env t in let d = Context.Rel.nhyps ctxt - Context.Rel.nhyps ctxt' in let eta_args = List.rev_map mkRel (List.interval 1 d) in let t = Term.applistc (Vars.lift d t) eta_args in let t = Term.it_mkLambda_or_LetIn t (List.firstn d ctxt) in Term.it_mkLambda_or_LetIn t ctxt'