1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Names open Constr open Context open Declarations open Util open Nativevalues open Nativelambda open Environ [@@@ocaml.warning "-32-37"] (** This file defines the mllambda code generation phase of the native compiler. mllambda represents a fragment of ML, and can easily be printed to OCaml code. *) (** Local names **) (* The first component is there for debugging purposes only *) type lname = { lname : Name.t; luid : int } let eq_lname ln1 ln2 = Int.equal ln1.luid ln2.luid let dummy_lname = { lname = Anonymous; luid = -1 } module LNord = struct type t = lname let compare l1 l2 = l1.luid - l2.luid end module LNmap = Map.Make(LNord) module LNset = Set.Make(LNord) let lname_ctr = ref (-1) let fresh_lname n = incr lname_ctr; { lname = n; luid = !lname_ctr } (** Global names **) type gname = | Gind of string * inductive (* prefix, inductive name *) | Gconstant of string * Constant.t (* prefix, constant name *) | Gproj of string * inductive * int (* prefix, inductive, index (start from 0) *) | Gcase of Label.t option * int | Gpred of Label.t option * int | Gfixtype of Label.t option * int | Gnorm of Label.t option * int | Gnormtbl of Label.t option * int | Ginternal of string | Grel of int | Gnamed of Id.t let eq_gname gn1 gn2 = match gn1, gn2 with | Gind (s1, ind1), Gind (s2, ind2) -> String.equal s1 s2 && eq_ind ind1 ind2 | Gconstant (s1, c1), Gconstant (s2, c2) -> String.equal s1 s2 && Constant.equal c1 c2 | Gproj (s1, ind1, i1), Gproj (s2, ind2, i2) -> String.equal s1 s2 && eq_ind ind1 ind2 && Int.equal i1 i2 | Gcase (None, i1), Gcase (None, i2) -> Int.equal i1 i2 | Gcase (Some l1, i1), Gcase (Some l2, i2) -> Int.equal i1 i2 && Label.equal l1 l2 | Gpred (None, i1), Gpred (None, i2) -> Int.equal i1 i2 | Gpred (Some l1, i1), Gpred (Some l2, i2) -> Int.equal i1 i2 && Label.equal l1 l2 | Gfixtype (None, i1), Gfixtype (None, i2) -> Int.equal i1 i2 | Gfixtype (Some l1, i1), Gfixtype (Some l2, i2) -> Int.equal i1 i2 && Label.equal l1 l2 | Gnorm (None, i1), Gnorm (None, i2) -> Int.equal i1 i2 | Gnorm (Some l1, i1), Gnorm (Some l2, i2) -> Int.equal i1 i2 && Label.equal l1 l2 | Gnormtbl (None, i1), Gnormtbl (None, i2) -> Int.equal i1 i2 | Gnormtbl (Some l1, i1), Gnormtbl (Some l2, i2) -> Int.equal i1 i2 && Label.equal l1 l2 | Ginternal s1, Ginternal s2 -> String.equal s1 s2 | Grel i1, Grel i2 -> Int.equal i1 i2 | Gnamed id1, Gnamed id2 -> Id.equal id1 id2 | (Gind _| Gconstant _ | Gproj _ | Gcase _ | Gpred _ | Gfixtype _ | Gnorm _ | Gnormtbl _ | Ginternal _ | Grel _ | Gnamed _), _ -> false let dummy_gname = Grel 0 open Hashset.Combine let gname_hash gn = match gn with | Gind (s, ind) -> combinesmall 1 (combine (String.hash s) (ind_hash ind)) | Gconstant (s, c) -> combinesmall 2 (combine (String.hash s) (Constant.hash c)) | Gcase (l, i) -> combinesmall 3 (combine (Option.hash Label.hash l) (Int.hash i)) | Gpred (l, i) -> combinesmall 4 (combine (Option.hash Label.hash l) (Int.hash i)) | Gfixtype (l, i) -> combinesmall 5 (combine (Option.hash Label.hash l) (Int.hash i)) | Gnorm (l, i) -> combinesmall 6 (combine (Option.hash Label.hash l) (Int.hash i)) | Gnormtbl (l, i) -> combinesmall 7 (combine (Option.hash Label.hash l) (Int.hash i)) | Ginternal s -> combinesmall 8 (String.hash s) | Grel i -> combinesmall 9 (Int.hash i) | Gnamed id -> combinesmall 10 (Id.hash id) | Gproj (s, p, i) -> combinesmall 11 (combine (String.hash s) (combine (ind_hash p) i)) let case_ctr = ref (-1) let fresh_gcase l = incr case_ctr; Gcase (l,!case_ctr) let pred_ctr = ref (-1) let fresh_gpred l = incr pred_ctr; Gpred (l,!pred_ctr) let fixtype_ctr = ref (-1) let fresh_gfixtype l = incr fixtype_ctr; Gfixtype (l,!fixtype_ctr) let norm_ctr = ref (-1) let fresh_gnorm l = incr norm_ctr; Gnorm (l,!norm_ctr) let normtbl_ctr = ref (-1) let fresh_gnormtbl l = incr normtbl_ctr; Gnormtbl (l,!normtbl_ctr) (** Symbols (pre-computed values) **) let dummy_symb = SymbValue (dummy_value ()) let eq_symbol sy1 sy2 = match sy1, sy2 with | SymbValue v1, SymbValue v2 -> (=) v1 v2 (** FIXME: how is this even valid? *) | SymbSort s1, SymbSort s2 -> Sorts.equal s1 s2 | SymbName n1, SymbName n2 -> Name.equal n1 n2 | SymbConst kn1, SymbConst kn2 -> Constant.equal kn1 kn2 | SymbMatch sw1, SymbMatch sw2 -> eq_annot_sw sw1 sw2 | SymbInd ind1, SymbInd ind2 -> eq_ind ind1 ind2 | SymbMeta m1, SymbMeta m2 -> Int.equal m1 m2 | SymbEvar evk1, SymbEvar evk2 -> Evar.equal evk1 evk2 | SymbLevel l1, SymbLevel l2 -> Univ.Level.equal l1 l2 | SymbProj (i1, k1), SymbProj (i2, k2) -> eq_ind i1 i2 && Int.equal k1 k2 | _, _ -> false let hash_symbol symb = match symb with | SymbValue v -> combinesmall 1 (Hashtbl.hash v) (** FIXME *) | SymbSort s -> combinesmall 2 (Sorts.hash s) | SymbName name -> combinesmall 3 (Name.hash name) | SymbConst c -> combinesmall 4 (Constant.hash c) | SymbMatch sw -> combinesmall 5 (hash_annot_sw sw) | SymbInd ind -> combinesmall 6 (ind_hash ind) | SymbMeta m -> combinesmall 7 m | SymbEvar evk -> combinesmall 8 (Evar.hash evk) | SymbLevel l -> combinesmall 9 (Univ.Level.hash l) | SymbProj (i, k) -> combinesmall 10 (combine (ind_hash i) k) module HashedTypeSymbol = struct type t = symbol let equal = eq_symbol let hash = hash_symbol end module HashtblSymbol = Hashtbl.Make(HashedTypeSymbol) let symb_tbl = HashtblSymbol.create 211 let clear_symbols () = HashtblSymbol.clear symb_tbl let get_value tbl i = match tbl.(i) with | SymbValue v -> v | _ -> anomaly (Pp.str "get_value failed.") let get_sort tbl i = match tbl.(i) with | SymbSort s -> s | _ -> anomaly (Pp.str "get_sort failed.") let get_name tbl i = match tbl.(i) with | SymbName id -> id | _ -> anomaly (Pp.str "get_name failed.") let get_const tbl i = match tbl.(i) with | SymbConst kn -> kn | _ -> anomaly (Pp.str "get_const failed.") let get_match tbl i = match tbl.(i) with | SymbMatch case_info -> case_info | _ -> anomaly (Pp.str "get_match failed.") let get_ind tbl i = match tbl.(i) with | SymbInd ind -> ind | _ -> anomaly (Pp.str "get_ind failed.") let get_meta tbl i = match tbl.(i) with | SymbMeta m -> m | _ -> anomaly (Pp.str "get_meta failed.") let get_evar tbl i = match tbl.(i) with | SymbEvar ev -> ev | _ -> anomaly (Pp.str "get_evar failed.") let get_level tbl i = match tbl.(i) with | SymbLevel u -> u | _ -> anomaly (Pp.str "get_level failed.") let get_proj tbl i = match tbl.(i) with | SymbProj p -> p | _ -> anomaly (Pp.str "get_proj failed.") let push_symbol x = try HashtblSymbol.find symb_tbl x with Not_found -> let i = HashtblSymbol.length symb_tbl in HashtblSymbol.add symb_tbl x i; i let symbols_tbl_name = Ginternal "symbols_tbl" let get_symbols () = let tbl = Array.make (HashtblSymbol.length symb_tbl) dummy_symb in HashtblSymbol.iter (fun x i -> tbl.(i) <- x) symb_tbl; tbl (** Lambda to Mllambda **) type primitive = | Mk_prod | Mk_sort | Mk_ind | Mk_const | Mk_sw | Mk_fix of rec_pos * int | Mk_cofix of int | Mk_rel of int | Mk_var of Id.t | Mk_proj | Is_int | Cast_accu | Upd_cofix | Force_cofix | Mk_uint | Mk_int | Mk_bool | Val_to_int | Mk_meta | Mk_evar | MLand | MLle | MLlt | MLinteq | MLlsl | MLlsr | MLland | MLlor | MLlxor | MLadd | MLsub | MLmul | MLmagic | MLarrayget | Mk_empty_instance | Coq_primitive of CPrimitives.t * (prefix * pconstant) option let eq_primitive p1 p2 = match p1, p2 with | Mk_prod, Mk_prod -> true | Mk_sort, Mk_sort -> true | Mk_ind, Mk_ind -> true | Mk_const, Mk_const -> true | Mk_sw, Mk_sw -> true | Mk_fix (rp1, i1), Mk_fix (rp2, i2) -> Int.equal i1 i2 && eq_rec_pos rp1 rp2 | Mk_cofix i1, Mk_cofix i2 -> Int.equal i1 i2 | Mk_rel i1, Mk_rel i2 -> Int.equal i1 i2 | Mk_var id1, Mk_var id2 -> Id.equal id1 id2 | Cast_accu, Cast_accu -> true | Upd_cofix, Upd_cofix -> true | Force_cofix, Force_cofix -> true | Mk_meta, Mk_meta -> true | Mk_evar, Mk_evar -> true | Mk_proj, Mk_proj -> true | MLarrayget, MLarrayget -> true | _ -> false let primitive_hash = function | Mk_prod -> 1 | Mk_sort -> 2 | Mk_ind -> 3 | Mk_const -> 4 | Mk_sw -> 5 | Mk_fix (r, i) -> let h = Array.fold_left (fun h i -> combine h (Int.hash i)) 0 r in combinesmall 6 (combine h (Int.hash i)) | Mk_cofix i -> combinesmall 7 (Int.hash i) | Mk_rel i -> combinesmall 8 (Int.hash i) | Mk_var id -> combinesmall 9 (Id.hash id) | Is_int -> 11 | Cast_accu -> 12 | Upd_cofix -> 13 | Force_cofix -> 14 | Mk_uint -> 15 | Mk_int -> 16 | Mk_bool -> 17 | Val_to_int -> 18 | Mk_meta -> 19 | Mk_evar -> 20 | MLand -> 21 | MLle -> 22 | MLlt -> 23 | MLinteq -> 24 | MLlsl -> 25 | MLlsr -> 26 | MLland -> 27 | MLlor -> 28 | MLlxor -> 29 | MLadd -> 30 | MLsub -> 31 | MLmul -> 32 | MLmagic -> 33 | Coq_primitive (prim, None) -> combinesmall 34 (CPrimitives.hash prim) | Coq_primitive (prim, Some (prefix,(kn,_))) -> combinesmall 35 (combine3 (String.hash prefix) (Constant.hash kn) (CPrimitives.hash prim)) | Mk_proj -> 36 | MLarrayget -> 37 | Mk_empty_instance -> 38 type mllambda = | MLlocal of lname | MLglobal of gname | MLprimitive of primitive | MLlam of lname array * mllambda | MLletrec of (lname * lname array * mllambda) array * mllambda | MLlet of lname * mllambda * mllambda | MLapp of mllambda * mllambda array | MLif of mllambda * mllambda * mllambda | MLmatch of annot_sw * mllambda * mllambda * mllam_branches (* argument, prefix, accu branch, branches *) | MLconstruct of string * inductive * int * mllambda array (* prefix, inductive name, tag, arguments *) | MLint of int | MLuint of Uint63.t | MLsetref of string * mllambda | MLsequence of mllambda * mllambda | MLarray of mllambda array | MLisaccu of string * inductive * mllambda and 'a mllam_pattern = | ConstPattern of int | NonConstPattern of tag * 'a array and mllam_branches = (lname option mllam_pattern list * mllambda) array let push_lnames n env lns = snd (Array.fold_left (fun (i,r) x -> (i+1, LNmap.add x i r)) (n,env) lns) let opush_lnames n env lns = let oadd x i r = match x with Some ln -> LNmap.add ln i r | None -> r in snd (Array.fold_left (fun (i,r) x -> (i+1, oadd x i r)) (n,env) lns) (* Alpha-equivalence on mllambda *) (* eq_mllambda gn1 gn2 n env1 env2 t1 t2 tests if t1 = t2 modulo gn1 = gn2 *) let rec eq_mllambda gn1 gn2 n env1 env2 t1 t2 = match t1, t2 with | MLlocal ln1, MLlocal ln2 -> (try Int.equal (LNmap.find ln1 env1) (LNmap.find ln2 env2) with Not_found -> eq_lname ln1 ln2) | MLglobal gn1', MLglobal gn2' -> eq_gname gn1' gn2' || (eq_gname gn1 gn1' && eq_gname gn2 gn2') || (eq_gname gn1 gn2' && eq_gname gn2 gn1') | MLprimitive prim1, MLprimitive prim2 -> eq_primitive prim1 prim2 | MLlam (lns1, ml1), MLlam (lns2, ml2) -> Int.equal (Array.length lns1) (Array.length lns2) && let env1 = push_lnames n env1 lns1 in let env2 = push_lnames n env2 lns2 in eq_mllambda gn1 gn2 (n+Array.length lns1) env1 env2 ml1 ml2 | MLletrec (defs1, body1), MLletrec (defs2, body2) -> Int.equal (Array.length defs1) (Array.length defs2) && let lns1 = Array.map (fun (x,_,_) -> x) defs1 in let lns2 = Array.map (fun (x,_,_) -> x) defs2 in let env1 = push_lnames n env1 lns1 in let env2 = push_lnames n env2 lns2 in let n = n + Array.length defs1 in eq_letrec gn1 gn2 n env1 env2 defs1 defs2 && eq_mllambda gn1 gn2 n env1 env2 body1 body2 | MLlet (ln1, def1, body1), MLlet (ln2, def2, body2) -> eq_mllambda gn1 gn2 n env1 env2 def1 def2 && let env1 = LNmap.add ln1 n env1 in let env2 = LNmap.add ln2 n env2 in eq_mllambda gn1 gn2 (n+1) env1 env2 body1 body2 | MLapp (ml1, args1), MLapp (ml2, args2) -> eq_mllambda gn1 gn2 n env1 env2 ml1 ml2 && Array.equal (eq_mllambda gn1 gn2 n env1 env2) args1 args2 | MLif (cond1,br1,br'1), MLif (cond2,br2,br'2) -> eq_mllambda gn1 gn2 n env1 env2 cond1 cond2 && eq_mllambda gn1 gn2 n env1 env2 br1 br2 && eq_mllambda gn1 gn2 n env1 env2 br'1 br'2 | MLmatch (annot1, c1, accu1, br1), MLmatch (annot2, c2, accu2, br2) -> eq_annot_sw annot1 annot2 && eq_mllambda gn1 gn2 n env1 env2 c1 c2 && eq_mllambda gn1 gn2 n env1 env2 accu1 accu2 && eq_mllam_branches gn1 gn2 n env1 env2 br1 br2 | MLconstruct (pf1, ind1, tag1, args1), MLconstruct (pf2, ind2, tag2, args2) -> String.equal pf1 pf2 && eq_ind ind1 ind2 && Int.equal tag1 tag2 && Array.equal (eq_mllambda gn1 gn2 n env1 env2) args1 args2 | MLint i1, MLint i2 -> Int.equal i1 i2 | MLuint i1, MLuint i2 -> Uint63.equal i1 i2 | MLsetref (id1, ml1), MLsetref (id2, ml2) -> String.equal id1 id2 && eq_mllambda gn1 gn2 n env1 env2 ml1 ml2 | MLsequence (ml1, ml'1), MLsequence (ml2, ml'2) -> eq_mllambda gn1 gn2 n env1 env2 ml1 ml2 && eq_mllambda gn1 gn2 n env1 env2 ml'1 ml'2 | MLarray arr1, MLarray arr2 -> Array.equal (eq_mllambda gn1 gn2 n env1 env2) arr1 arr2 | MLisaccu (s1, ind1, ml1), MLisaccu (s2, ind2, ml2) -> String.equal s1 s2 && eq_ind ind1 ind2 && eq_mllambda gn1 gn2 n env1 env2 ml1 ml2 | (MLlocal _ | MLglobal _ | MLprimitive _ | MLlam _ | MLletrec _ | MLlet _ | MLapp _ | MLif _ | MLmatch _ | MLconstruct _ | MLint _ | MLuint _ | MLsetref _ | MLsequence _ | MLarray _ | MLisaccu _), _ -> false and eq_letrec gn1 gn2 n env1 env2 defs1 defs2 = let eq_def (_,args1,ml1) (_,args2,ml2) = Int.equal (Array.length args1) (Array.length args2) && let env1 = push_lnames n env1 args1 in let env2 = push_lnames n env2 args2 in eq_mllambda gn1 gn2 (n + Array.length args1) env1 env2 ml1 ml2 in Array.equal eq_def defs1 defs2 (* we require here that patterns have the same order, which may be too strong *) and eq_mllam_branches gn1 gn2 n env1 env2 br1 br2 = let eq_cargs args1 args2 body1 body2 = Int.equal (Array.length args1) (Array.length args2) && let env1 = opush_lnames n env1 args1 in let env2 = opush_lnames n env2 args2 in eq_mllambda gn1 gn2 (n + Array.length args1) env1 env2 body1 body2 in let eq_pattern pat1 pat2 body1 body2 = match pat1, pat2 with | ConstPattern tag1, ConstPattern tag2 -> Int.equal tag1 tag2 && eq_mllambda gn1 gn2 n env1 env2 body1 body2 | NonConstPattern (tag1,args1), NonConstPattern (tag2,args2) -> Int.equal tag1 tag2 && eq_cargs args1 args2 body1 body2 | (ConstPattern _ | NonConstPattern _), _ -> false in let eq_branch (patl1,body1) (patl2,body2) = List.equal (fun pt1 pt2 -> eq_pattern pt1 pt2 body1 body2) patl1 patl2 in Array.equal eq_branch br1 br2 (* hash_mllambda gn n env t computes the hash for t ignoring occurrences of gn *) let rec hash_mllambda gn n env t = match t with | MLlocal ln -> combinesmall 1 (LNmap.find ln env) | MLglobal gn' -> combinesmall 2 (if eq_gname gn gn' then 0 else gname_hash gn') | MLprimitive prim -> combinesmall 3 (primitive_hash prim) | MLlam (lns, ml) -> let env = push_lnames n env lns in combinesmall 4 (combine (Array.length lns) (hash_mllambda gn (n+1) env ml)) | MLletrec (defs, body) -> let lns = Array.map (fun (x,_,_) -> x) defs in let env = push_lnames n env lns in let n = n + Array.length defs in let h = combine (hash_mllambda gn n env body) (Array.length defs) in combinesmall 5 (hash_mllambda_letrec gn n env h defs) | MLlet (ln, def, body) -> let hdef = hash_mllambda gn n env def in let env = LNmap.add ln n env in combinesmall 6 (combine hdef (hash_mllambda gn (n+1) env body)) | MLapp (ml, args) -> let h = hash_mllambda gn n env ml in combinesmall 7 (hash_mllambda_array gn n env h args) | MLif (cond,br,br') -> let hcond = hash_mllambda gn n env cond in let hbr = hash_mllambda gn n env br in let hbr' = hash_mllambda gn n env br' in combinesmall 8 (combine3 hcond hbr hbr') | MLmatch (annot, c, accu, br) -> let hannot = hash_annot_sw annot in let hc = hash_mllambda gn n env c in let haccu = hash_mllambda gn n env accu in combinesmall 9 (hash_mllam_branches gn n env (combine3 hannot hc haccu) br) | MLconstruct (pf, ind, tag, args) -> let hpf = String.hash pf in let hcs = ind_hash ind in let htag = Int.hash tag in combinesmall 10 (hash_mllambda_array gn n env (combine3 hpf hcs htag) args) | MLint i -> combinesmall 11 i | MLuint i -> combinesmall 12 (Uint63.hash i) | MLsetref (id, ml) -> let hid = String.hash id in let hml = hash_mllambda gn n env ml in combinesmall 13 (combine hid hml) | MLsequence (ml, ml') -> let hml = hash_mllambda gn n env ml in let hml' = hash_mllambda gn n env ml' in combinesmall 14 (combine hml hml') | MLarray arr -> combinesmall 15 (hash_mllambda_array gn n env 1 arr) | MLisaccu (s, ind, c) -> combinesmall 16 (combine (String.hash s) (combine (ind_hash ind) (hash_mllambda gn n env c))) and hash_mllambda_letrec gn n env init defs = let hash_def (_,args,ml) = let env = push_lnames n env args in let nargs = Array.length args in combine nargs (hash_mllambda gn (n + nargs) env ml) in Array.fold_left (fun acc t -> combine (hash_def t) acc) init defs and hash_mllambda_array gn n env init arr = Array.fold_left (fun acc t -> combine (hash_mllambda gn n env t) acc) init arr and hash_mllam_branches gn n env init br = let hash_cargs args body = let nargs = Array.length args in let env = opush_lnames n env args in let hbody = hash_mllambda gn (n + nargs) env body in combine nargs hbody in let hash_pattern pat body = match pat with | ConstPattern i -> combinesmall 1 (Int.hash i) | NonConstPattern (tag,args) -> combinesmall 2 (combine (Int.hash tag) (hash_cargs args body)) in let hash_branch acc (ptl,body) = List.fold_left (fun acc t -> combine (hash_pattern t body) acc) acc ptl in Array.fold_left hash_branch init br let fv_lam l = let rec aux l bind fv = match l with | MLlocal l -> if LNset.mem l bind then fv else LNset.add l fv | MLglobal _ | MLprimitive _ | MLint _ | MLuint _ -> fv | MLlam (ln,body) -> let bind = Array.fold_right LNset.add ln bind in aux body bind fv | MLletrec(bodies,def) -> let bind = Array.fold_right (fun (id,_,_) b -> LNset.add id b) bodies bind in let fv_body (_,ln,body) fv = let bind = Array.fold_right LNset.add ln bind in aux body bind fv in Array.fold_right fv_body bodies (aux def bind fv) | MLlet(l,def,body) -> aux body (LNset.add l bind) (aux def bind fv) | MLapp(f,args) -> let fv_arg arg fv = aux arg bind fv in Array.fold_right fv_arg args (aux f bind fv) | MLif(t,b1,b2) -> aux t bind (aux b1 bind (aux b2 bind fv)) | MLmatch(_,a,p,bs) -> let fv = aux a bind (aux p bind fv) in let fv_bs (cargs, body) fv = let bind = List.fold_right (fun pat bind -> match pat with | ConstPattern _ -> bind | NonConstPattern(_,args) -> Array.fold_right (fun o bind -> match o with | Some l -> LNset.add l bind | _ -> bind) args bind) cargs bind in aux body bind fv in Array.fold_right fv_bs bs fv (* argument, accu branch, branches *) | MLconstruct (_,_,_,p) -> Array.fold_right (fun a fv -> aux a bind fv) p fv | MLsetref(_,l) -> aux l bind fv | MLsequence(l1,l2) -> aux l1 bind (aux l2 bind fv) | MLarray arr -> Array.fold_right (fun a fv -> aux a bind fv) arr fv | MLisaccu (_, _, body) -> aux body bind fv in aux l LNset.empty LNset.empty let mkMLlam params body = if Array.is_empty params then body else match body with | MLlam (params', body) -> MLlam(Array.append params params', body) | _ -> MLlam(params,body) let mkMLapp f args = if Array.is_empty args then f else match f with | MLapp(f,args') -> MLapp(f,Array.append args' args) | _ -> MLapp(f,args) let mkForceCofix prefix ind arg = let name = fresh_lname Anonymous in MLlet (name, arg, MLif ( MLisaccu (prefix, ind, MLlocal name), MLapp (MLprimitive Force_cofix, [|MLlocal name|]), MLlocal name)) let empty_params = [||] let decompose_MLlam c = match c with | MLlam(ids,c) -> ids,c | _ -> empty_params,c (*s Global declaration *) type global = (* | Gtblname of gname * Id.t array *) | Gtblnorm of gname * lname array * mllambda array | Gtblfixtype of gname * lname array * mllambda array | Glet of gname * mllambda | Gletcase of gname * lname array * annot_sw * mllambda * mllambda * mllam_branches | Gopen of string | Gtype of inductive * (tag * int) array (* ind name, tag and arities of constructors *) | Gcomment of string (* Alpha-equivalence on globals *) let eq_global g1 g2 = match g1, g2 with | Gtblnorm (gn1,lns1,mls1), Gtblnorm (gn2,lns2,mls2) | Gtblfixtype (gn1,lns1,mls1), Gtblfixtype (gn2,lns2,mls2) -> Int.equal (Array.length lns1) (Array.length lns2) && Int.equal (Array.length mls1) (Array.length mls2) && let env1 = push_lnames 0 LNmap.empty lns1 in let env2 = push_lnames 0 LNmap.empty lns2 in Array.for_all2 (eq_mllambda gn1 gn2 (Array.length lns1) env1 env2) mls1 mls2 | Glet (gn1, def1), Glet (gn2, def2) -> eq_mllambda gn1 gn2 0 LNmap.empty LNmap.empty def1 def2 | Gletcase (gn1,lns1,annot1,c1,accu1,br1), Gletcase (gn2,lns2,annot2,c2,accu2,br2) -> Int.equal (Array.length lns1) (Array.length lns2) && let env1 = push_lnames 0 LNmap.empty lns1 in let env2 = push_lnames 0 LNmap.empty lns2 in let t1 = MLmatch (annot1,c1,accu1,br1) in let t2 = MLmatch (annot2,c2,accu2,br2) in eq_mllambda gn1 gn2 (Array.length lns1) env1 env2 t1 t2 | Gopen s1, Gopen s2 -> String.equal s1 s2 | Gtype (ind1, arr1), Gtype (ind2, arr2) -> eq_ind ind1 ind2 && Array.equal (fun (tag1,ar1) (tag2,ar2) -> Int.equal tag1 tag2 && Int.equal ar1 ar2) arr1 arr2 | Gcomment s1, Gcomment s2 -> String.equal s1 s2 | _, _ -> false let hash_global g = match g with | Gtblnorm (gn,lns,mls) -> let nlns = Array.length lns in let nmls = Array.length mls in let env = push_lnames 0 LNmap.empty lns in let hmls = hash_mllambda_array gn nlns env (combine nlns nmls) mls in combinesmall 1 hmls | Gtblfixtype (gn,lns,mls) -> let nlns = Array.length lns in let nmls = Array.length mls in let env = push_lnames 0 LNmap.empty lns in let hmls = hash_mllambda_array gn nlns env (combine nlns nmls) mls in combinesmall 2 hmls | Glet (gn, def) -> combinesmall 3 (hash_mllambda gn 0 LNmap.empty def) | Gletcase (gn,lns,annot,c,accu,br) -> let nlns = Array.length lns in let env = push_lnames 0 LNmap.empty lns in let t = MLmatch (annot,c,accu,br) in combinesmall 4 (combine nlns (hash_mllambda gn nlns env t)) | Gopen s -> combinesmall 5 (String.hash s) | Gtype (ind, arr) -> let hash_aux acc (tag,ar) = combine3 acc (Int.hash tag) (Int.hash ar) in combinesmall 6 (combine (ind_hash ind) (Array.fold_left hash_aux 0 arr)) | Gcomment s -> combinesmall 7 (String.hash s) let global_stack = ref ([] : global list) module HashedTypeGlobal = struct type t = global let equal = eq_global let hash = hash_global end module HashtblGlobal = Hashtbl.Make(HashedTypeGlobal) let global_tbl = HashtblGlobal.create 19991 let clear_global_tbl () = HashtblGlobal.clear global_tbl let push_global gn t = try HashtblGlobal.find global_tbl t with Not_found -> (global_stack := t :: !global_stack; HashtblGlobal.add global_tbl t gn; gn) let push_global_let gn body = push_global gn (Glet (gn,body)) let push_global_fixtype gn params body = push_global gn (Gtblfixtype (gn,params,body)) let push_global_norm gn params body = push_global gn (Gtblnorm (gn, params, body)) let push_global_case gn params annot a accu bs = push_global gn (Gletcase (gn, params, annot, a, accu, bs)) (* Compares [t1] and [t2] up to alpha-equivalence. [t1] and [t2] may contain free variables. *) let eq_mllambda t1 t2 = eq_mllambda dummy_gname dummy_gname 0 LNmap.empty LNmap.empty t1 t2 (*s Compilation environment *) type env = { env_rel : mllambda list; (* (MLlocal lname) list *) env_bound : int; (* length of env_rel *) (* free variables *) env_urel : (int * mllambda) list ref; (* list of unbound rel *) env_named : (Id.t * mllambda) list ref; env_univ : lname option} let empty_env univ () = { env_rel = []; env_bound = 0; env_urel = ref []; env_named = ref []; env_univ = univ } let push_rel env id = let local = fresh_lname id.binder_name in local, { env with env_rel = MLlocal local :: env.env_rel; env_bound = env.env_bound + 1 } let push_rels env ids = let lnames, env_rel = Array.fold_left (fun (names,env_rel) id -> let local = fresh_lname id.binder_name in (local::names, MLlocal local::env_rel)) ([],env.env_rel) ids in Array.of_list (List.rev lnames), { env with env_rel = env_rel; env_bound = env.env_bound + Array.length ids } let get_rel env id i = if i <= env.env_bound then List.nth env.env_rel (i-1) else let i = i - env.env_bound in try Int.List.assoc i !(env.env_urel) with Not_found -> let local = MLlocal (fresh_lname id) in env.env_urel := (i,local) :: !(env.env_urel); local let get_var env id = try Id.List.assoc id !(env.env_named) with Not_found -> let local = MLlocal (fresh_lname (Name id)) in env.env_named := (id, local)::!(env.env_named); local let fresh_univ () = fresh_lname (Name (Id.of_string "univ")) (*s Traduction of lambda to mllambda *) let get_prod_name codom = match codom with | MLlam(ids,_) -> ids.(0).lname | _ -> assert false let get_lname (_,l) = match l with | MLlocal id -> id | _ -> invalid_arg "Nativecode.get_lname" (* Collects free variables from env in an array of local names *) let fv_params env = let fvn, fvr = !(env.env_named), !(env.env_urel) in let size = List.length fvn + List.length fvr in let start,params = match env.env_univ with | None -> 0, Array.make size dummy_lname | Some u -> 1, let t = Array.make (size + 1) dummy_lname in t.(0) <- u; t in if Array.is_empty params then empty_params else begin let fvn = ref fvn in let i = ref start in while not (List.is_empty !fvn) do params.(!i) <- get_lname (List.hd !fvn); fvn := List.tl !fvn; incr i done; let fvr = ref fvr in while not (List.is_empty !fvr) do params.(!i) <- get_lname (List.hd !fvr); fvr := List.tl !fvr; incr i done; params end let generalize_fv env body = mkMLlam (fv_params env) body let empty_args = [||] let fv_args env fvn fvr = let size = List.length fvn + List.length fvr in let start,args = match env.env_univ with | None -> 0, Array.make size (MLint 0) | Some u -> 1, let t = Array.make (size + 1) (MLint 0) in t.(0) <- MLlocal u; t in if Array.is_empty args then empty_args else begin let fvn = ref fvn in let i = ref start in while not (List.is_empty !fvn) do args.(!i) <- get_var env (fst (List.hd !fvn)); fvn := List.tl !fvn; incr i done; let fvr = ref fvr in while not (List.is_empty !fvr) do let (k,_ as kml) = List.hd !fvr in let n = get_lname kml in args.(!i) <- get_rel env n.lname k; fvr := List.tl !fvr; incr i done; args end let get_value_code i = MLapp (MLglobal (Ginternal "get_value"), [|MLglobal symbols_tbl_name; MLint i|]) let get_sort_code i = MLapp (MLglobal (Ginternal "get_sort"), [|MLglobal symbols_tbl_name; MLint i|]) let get_name_code i = MLapp (MLglobal (Ginternal "get_name"), [|MLglobal symbols_tbl_name; MLint i|]) let get_const_code i = MLapp (MLglobal (Ginternal "get_const"), [|MLglobal symbols_tbl_name; MLint i|]) let get_match_code i = MLapp (MLglobal (Ginternal "get_match"), [|MLglobal symbols_tbl_name; MLint i|]) let get_ind_code i = MLapp (MLglobal (Ginternal "get_ind"), [|MLglobal symbols_tbl_name; MLint i|]) let get_meta_code i = MLapp (MLglobal (Ginternal "get_meta"), [|MLglobal symbols_tbl_name; MLint i|]) let get_evar_code i = MLapp (MLglobal (Ginternal "get_evar"), [|MLglobal symbols_tbl_name; MLint i|]) let get_level_code i = MLapp (MLglobal (Ginternal "get_level"), [|MLglobal symbols_tbl_name; MLint i|]) let get_proj_code i = MLapp (MLglobal (Ginternal "get_proj"), [|MLglobal symbols_tbl_name; MLint i|]) type rlist = | Rnil | Rcons of lname option mllam_pattern list ref * LNset.t * mllambda * rlist' and rlist' = rlist ref let rm_params fv params = Array.map (fun l -> if LNset.mem l fv then Some l else None) params let rec insert pat body rl = match !rl with | Rnil -> let fv = fv_lam body in begin match pat with | ConstPattern _ as p -> rl:= Rcons(ref [p], fv, body, ref Rnil) | NonConstPattern (tag,args) -> let args = rm_params fv args in rl:= Rcons(ref [NonConstPattern (tag,args)], fv, body, ref Rnil) end | Rcons(l,fv,body',rl) -> if eq_mllambda body body' then match pat with | ConstPattern _ as p -> l := p::!l | NonConstPattern (tag,args) -> let args = rm_params fv args in l := NonConstPattern (tag,args)::!l else insert pat body rl let rec to_list rl = match !rl with | Rnil -> [] | Rcons(l,_,body,tl) -> (!l,body)::to_list tl let merge_branches t = let newt = ref Rnil in Array.iter (fun (pat,body) -> insert pat body newt) t; Array.of_list (to_list newt) let app_prim p args = MLapp(MLprimitive p, args) type prim_aux = | PAprim of string * pconstant * CPrimitives.t * prim_aux array | PAml of mllambda let add_check cond args = let aux cond a = match a with | PAml(MLint _) -> cond | PAml ml -> (* FIXME: use explicit equality function *) if List.mem ml cond then cond else ml::cond | _ -> cond in Array.fold_left aux cond args let extract_prim ml_of l = let decl = ref [] in let cond = ref [] in let rec aux l = match l with | Lprim(prefix,kn,p,args) -> let args = Array.map aux args in cond := add_check !cond args; PAprim(prefix,kn,p,args) | Lrel _ | Lvar _ | Luint _ | Lval _ | Lconst _ -> PAml (ml_of l) | _ -> let x = fresh_lname Anonymous in decl := (x,ml_of l)::!decl; PAml (MLlocal x) in let res = aux l in (!decl, !cond, res) let cast_to_int v = match v with | MLint _ -> v | _ -> MLapp(MLprimitive Val_to_int, [|v|]) let compile_prim decl cond paux = let rec opt_prim_aux paux = match paux with | PAprim(_prefix, _kn, op, args) -> let args = Array.map opt_prim_aux args in app_prim (Coq_primitive(op,None)) args | PAml ml -> ml and naive_prim_aux paux = match paux with | PAprim(prefix, kn, op, args) -> app_prim (Coq_primitive(op, Some (prefix,kn))) (Array.map naive_prim_aux args) | PAml ml -> ml in let compile_cond cond paux = match cond with | [] -> opt_prim_aux paux | [c1] -> MLif(app_prim Is_int [|c1|], opt_prim_aux paux, naive_prim_aux paux) | c1::cond -> let cond = List.fold_left (fun ml c -> app_prim MLland [| ml; cast_to_int c|]) (app_prim MLland [| cast_to_int c1; MLint 0 |]) cond in let cond = app_prim MLmagic [|cond|] in MLif(cond, naive_prim_aux paux, opt_prim_aux paux) in let add_decl decl body = List.fold_left (fun body (x,d) -> MLlet(x,d,body)) body decl in (* The optimizations done for checking if integer values are closed are valid only on 64-bit architectures. So on 32-bit architectures, we fall back to less optimized checks. *) if max_int = 1073741823 (* 32-bits *) then add_decl decl (naive_prim_aux paux) else add_decl decl (compile_cond cond paux) let ml_of_instance instance u = let ml_of_level l = match Univ.Level.var_index l with | Some i -> let univ = MLapp(MLprimitive MLmagic, [|MLlocal (Option.get instance)|]) in mkMLapp (MLprimitive MLarrayget) [|univ; MLint i|] | None -> let i = push_symbol (SymbLevel l) in get_level_code i in let u = Univ.Instance.to_array u in if Array.is_empty u then [||] else let u = Array.map ml_of_level u in [|MLapp (MLprimitive MLmagic, [|MLarray u|])|] let rec ml_of_lam env l t = match t with | Lrel(id ,i) -> get_rel env id i | Lvar id -> get_var env id | Lmeta(mv,_ty) -> let tyn = fresh_lname Anonymous in let i = push_symbol (SymbMeta mv) in MLapp(MLprimitive Mk_meta, [|get_meta_code i; MLlocal tyn|]) | Levar(evk, args) -> let i = push_symbol (SymbEvar evk) in (** Arguments are *not* reversed in evar instances in native compilation *) let args = MLarray(Array.map (ml_of_lam env l) args) in MLapp(MLprimitive Mk_evar, [|get_evar_code i; args|]) | Lprod(dom,codom) -> let dom = ml_of_lam env l dom in let codom = ml_of_lam env l codom in let n = get_prod_name codom in let i = push_symbol (SymbName n) in MLapp(MLprimitive Mk_prod, [|get_name_code i;dom;codom|]) | Llam(ids,body) -> let lnames,env = push_rels env ids in MLlam(lnames, ml_of_lam env l body) | Lrec(id,body) -> let ids,body = decompose_Llam body in let lname, env = push_rel env id in let lnames, env = push_rels env ids in MLletrec([|lname, lnames, ml_of_lam env l body|], MLlocal lname) | Llet(id,def,body) -> let def = ml_of_lam env l def in let lname, env = push_rel env id in let body = ml_of_lam env l body in MLlet(lname,def,body) | Lapp(f,args) -> MLapp(ml_of_lam env l f, Array.map (ml_of_lam env l) args) | Lconst (prefix, (c, u)) -> let args = ml_of_instance env.env_univ u in mkMLapp (MLglobal(Gconstant (prefix, c))) args | Lproj (prefix, ind, i) -> MLglobal(Gproj (prefix, ind, i)) | Lprim _ -> let decl,cond,paux = extract_prim (ml_of_lam env l) t in compile_prim decl cond paux | Lcase (annot,p,a,bs) -> (* let predicate_uid fv_pred = compilation of p let rec case_uid fv a_uid = match a_uid with | Accu _ => mk_sw (predicate_uid fv_pred) (case_uid fv) a_uid | Ci argsi => compilation of branches compile case = case_uid fv (compilation of a) *) (* Compilation of the predicate *) (* Remark: if we do not want to compile the predicate we should a least compute the fv, then store the lambda representation of the predicate (not the mllambda) *) let env_p = empty_env env.env_univ () in let pn = fresh_gpred l in let mlp = ml_of_lam env_p l p in let mlp = generalize_fv env_p mlp in let (pfvn,pfvr) = !(env_p.env_named), !(env_p.env_urel) in let pn = push_global_let pn mlp in (* Compilation of the case *) let env_c = empty_env env.env_univ () in let a_uid = fresh_lname Anonymous in let la_uid = MLlocal a_uid in (* compilation of branches *) let nbconst = Array.length bs.constant_branches in let nbtotal = nbconst + Array.length bs.nonconstant_branches in let br = Array.init nbtotal (fun i -> if i < Array.length bs.constant_branches then (ConstPattern i, ml_of_lam env_c l bs.constant_branches.(i)) else let (params, body) = bs.nonconstant_branches.(i-nbconst) in let lnames, env_c = push_rels env_c params in (NonConstPattern (i-nbconst+1,lnames), ml_of_lam env_c l body) ) in let cn = fresh_gcase l in (* Compilation of accu branch *) let pred = MLapp(MLglobal pn, fv_args env_c pfvn pfvr) in let (fvn, fvr) = !(env_c.env_named), !(env_c.env_urel) in let cn_fv = mkMLapp (MLglobal cn) (fv_args env_c fvn fvr) in (* remark : the call to fv_args does not add free variables in env_c *) let i = push_symbol (SymbMatch annot) in let accu = MLapp(MLprimitive Mk_sw, [| get_match_code i; MLapp (MLprimitive Cast_accu, [|la_uid|]); pred; cn_fv |]) in (* let body = MLlam([|a_uid|], MLmatch(annot, la_uid, accu, bs)) in let case = generalize_fv env_c body in *) let cn = push_global_case cn (Array.append (fv_params env_c) [|a_uid|]) annot la_uid accu (merge_branches br) in (* Final result *) let arg = ml_of_lam env l a in let force = if annot.asw_finite then arg else mkForceCofix annot.asw_prefix annot.asw_ind arg in mkMLapp (MLapp (MLglobal cn, fv_args env fvn fvr)) [|force|] | Lif(t,bt,bf) -> MLif(ml_of_lam env l t, ml_of_lam env l bt, ml_of_lam env l bf) | Lfix ((rec_pos, inds, start), (ids, tt, tb)) -> (* let type_f fvt = [| type fix |] let norm_f1 fv f1 .. fn params1 = body1 .. let norm_fn fv f1 .. fn paramsn = bodyn let norm fv f1 .. fn = [|norm_f1 fv f1 .. fn; ..; norm_fn fv f1 .. fn|] compile fix = let rec f1 params1 = if is_accu rec_pos.(1) then mk_fix (type_f fvt) (norm fv) params1 else norm_f1 fv f1 .. fn params1 and .. and fn paramsn = if is_accu rec_pos.(n) then mk_fix (type_f fvt) (norm fv) paramsn else norm_fn fv f1 .. fv paramsn in start *) (* Compilation of type *) let env_t = empty_env env.env_univ () in let ml_t = Array.map (ml_of_lam env_t l) tt in let params_t = fv_params env_t in let args_t = fv_args env !(env_t.env_named) !(env_t.env_urel) in let gft = fresh_gfixtype l in let gft = push_global_fixtype gft params_t ml_t in let mk_type = MLapp(MLglobal gft, args_t) in (* Compilation of norm_i *) let ndef = Array.length ids in let lf,env_n = push_rels (empty_env env.env_univ ()) ids in let t_params = Array.make ndef [||] in let t_norm_f = Array.make ndef (Gnorm (l,-1)) in let mk_let _envi (id,def) t = MLlet (id,def,t) in let mk_lam_or_let (params,lets,env) (id,def) = let ln,env' = push_rel env id in match def with | None -> (ln::params,lets,env') | Some lam -> (params, (ln,ml_of_lam env l lam)::lets,env') in let ml_of_fix i body = let varsi, bodyi = decompose_Llam_Llet body in let paramsi,letsi,envi = Array.fold_left mk_lam_or_let ([],[],env_n) varsi in let paramsi,letsi = Array.of_list (List.rev paramsi), Array.of_list (List.rev letsi) in t_norm_f.(i) <- fresh_gnorm l; let bodyi = ml_of_lam envi l bodyi in t_params.(i) <- paramsi; let bodyi = Array.fold_right (mk_let envi) letsi bodyi in mkMLlam paramsi bodyi in let tnorm = Array.mapi ml_of_fix tb in let fvn,fvr = !(env_n.env_named), !(env_n.env_urel) in let fv_params = fv_params env_n in let fv_args' = Array.map (fun id -> MLlocal id) fv_params in let norm_params = Array.append fv_params lf in let t_norm_f = Array.mapi (fun i body -> push_global_let (t_norm_f.(i)) (mkMLlam norm_params body)) tnorm in let norm = fresh_gnormtbl l in let norm = push_global_norm norm fv_params (Array.map (fun g -> mkMLapp (MLglobal g) fv_args') t_norm_f) in (* Compilation of fix *) let fv_args = fv_args env fvn fvr in let lf, _env = push_rels env ids in let lf_args = Array.map (fun id -> MLlocal id) lf in let mk_norm = MLapp(MLglobal norm, fv_args) in let mkrec i lname = let paramsi = t_params.(i) in let reci = MLlocal (paramsi.(rec_pos.(i))) in let pargsi = Array.map (fun id -> MLlocal id) paramsi in let (prefix, ind) = inds.(i) in let body = MLif(MLisaccu (prefix, ind, reci), mkMLapp (MLapp(MLprimitive (Mk_fix(rec_pos,i)), [|mk_type; mk_norm|])) pargsi, MLapp(MLglobal t_norm_f.(i), Array.concat [fv_args;lf_args;pargsi])) in (lname, paramsi, body) in MLletrec(Array.mapi mkrec lf, lf_args.(start)) | Lcofix (start, (ids, tt, tb)) -> (* Compilation of type *) let env_t = empty_env env.env_univ () in let ml_t = Array.map (ml_of_lam env_t l) tt in let params_t = fv_params env_t in let args_t = fv_args env !(env_t.env_named) !(env_t.env_urel) in let gft = fresh_gfixtype l in let gft = push_global_fixtype gft params_t ml_t in let mk_type = MLapp(MLglobal gft, args_t) in (* Compilation of norm_i *) let ndef = Array.length ids in let lf,env_n = push_rels (empty_env env.env_univ ()) ids in let t_params = Array.make ndef [||] in let t_norm_f = Array.make ndef (Gnorm (l,-1)) in let ml_of_fix i body = let idsi,bodyi = decompose_Llam body in let paramsi, envi = push_rels env_n idsi in t_norm_f.(i) <- fresh_gnorm l; let bodyi = ml_of_lam envi l bodyi in t_params.(i) <- paramsi; mkMLlam paramsi bodyi in let tnorm = Array.mapi ml_of_fix tb in let fvn,fvr = !(env_n.env_named), !(env_n.env_urel) in let fv_params = fv_params env_n in let fv_args' = Array.map (fun id -> MLlocal id) fv_params in let norm_params = Array.append fv_params lf in let t_norm_f = Array.mapi (fun i body -> push_global_let (t_norm_f.(i)) (mkMLlam norm_params body)) tnorm in let norm = fresh_gnormtbl l in let norm = push_global_norm norm fv_params (Array.map (fun g -> mkMLapp (MLglobal g) fv_args') t_norm_f) in (* Compilation of fix *) let fv_args = fv_args env fvn fvr in let mk_norm = MLapp(MLglobal norm, fv_args) in let lnorm = fresh_lname Anonymous in let ltype = fresh_lname Anonymous in let lf, _env = push_rels env ids in let lf_args = Array.map (fun id -> MLlocal id) lf in let upd i _lname cont = let paramsi = t_params.(i) in let pargsi = Array.map (fun id -> MLlocal id) paramsi in let uniti = fresh_lname Anonymous in let body = MLlam(Array.append paramsi [|uniti|], MLapp(MLglobal t_norm_f.(i), Array.concat [fv_args;lf_args;pargsi])) in MLsequence(MLapp(MLprimitive Upd_cofix, [|lf_args.(i);body|]), cont) in let upd = Array.fold_right_i upd lf lf_args.(start) in let mk_let i lname cont = MLlet(lname, MLapp(MLprimitive(Mk_cofix i),[| MLlocal ltype; MLlocal lnorm|]), cont) in let init = Array.fold_right_i mk_let lf upd in MLlet(lnorm, mk_norm, MLlet(ltype, mk_type, init)) (* let mkrec i lname = let paramsi = t_params.(i) in let pargsi = Array.map (fun id -> MLlocal id) paramsi in let uniti = fresh_lname Anonymous in let body = MLapp( MLprimitive(Mk_cofix i), [|mk_type;mk_norm; MLlam([|uniti|], MLapp(MLglobal t_norm_f.(i), Array.concat [fv_args;lf_args;pargsi]))|]) in (lname, paramsi, body) in MLletrec(Array.mapi mkrec lf, lf_args.(start)) *) | Lint tag -> MLapp(MLprimitive Mk_int, [|MLint tag|]) | Lmakeblock (prefix,cn,tag,args) -> let args = Array.map (ml_of_lam env l) args in MLconstruct(prefix,cn,tag,args) | Luint i -> MLapp(MLprimitive Mk_uint, [|MLuint i|]) | Lval v -> let i = push_symbol (SymbValue v) in get_value_code i | Lsort s -> let i = push_symbol (SymbSort s) in let uarg = match env.env_univ with | None -> MLarray [||] | Some u -> MLlocal u in let uarg = MLapp(MLprimitive MLmagic, [|uarg|]) in MLapp(MLprimitive Mk_sort, [|get_sort_code i; uarg|]) | Lind (prefix, (ind, u)) -> let uargs = ml_of_instance env.env_univ u in mkMLapp (MLglobal (Gind (prefix, ind))) uargs | Llazy -> MLglobal (Ginternal "lazy") | Lforce -> MLglobal (Ginternal "Lazy.force") let mllambda_of_lambda univ auxdefs l t = let env = empty_env univ () in global_stack := auxdefs; let ml = ml_of_lam env l t in let fv_rel = !(env.env_urel) in let fv_named = !(env.env_named) in (* build the free variables *) let get_lname (_,t) = match t with | MLlocal x -> x | _ -> assert false in let params = List.append (List.map get_lname fv_rel) (List.map get_lname fv_named) in if List.is_empty params then (!global_stack, ([],[]), ml) (* final result : global list, fv, ml *) else (!global_stack, (fv_named, fv_rel), mkMLlam (Array.of_list params) ml) (** Code optimization **) (** Optimization of match and fix *) let can_subst l = match l with | MLlocal _ | MLint _ | MLuint _ | MLglobal _ -> true | _ -> false let subst s l = if LNmap.is_empty s then l else let rec aux l = match l with | MLlocal id -> (try LNmap.find id s with Not_found -> l) | MLglobal _ | MLprimitive _ | MLint _ | MLuint _ -> l | MLlam(params,body) -> MLlam(params, aux body) | MLletrec(defs,body) -> let arec (f,params,body) = (f,params,aux body) in MLletrec(Array.map arec defs, aux body) | MLlet(id,def,body) -> MLlet(id,aux def, aux body) | MLapp(f,args) -> MLapp(aux f, Array.map aux args) | MLif(t,b1,b2) -> MLif(aux t, aux b1, aux b2) | MLmatch(annot,a,accu,bs) -> let auxb (cargs,body) = (cargs,aux body) in MLmatch(annot,a,aux accu, Array.map auxb bs) | MLconstruct(prefix,c,tag,args) -> MLconstruct(prefix,c,tag,Array.map aux args) | MLsetref(s,l1) -> MLsetref(s,aux l1) | MLsequence(l1,l2) -> MLsequence(aux l1, aux l2) | MLarray arr -> MLarray (Array.map aux arr) | MLisaccu (s, ind, l) -> MLisaccu (s, ind, aux l) in aux l let add_subst id v s = match v with | MLlocal id' when Int.equal id.luid id'.luid -> s | _ -> LNmap.add id v s let subst_norm params args s = let len = Array.length params in assert (Int.equal (Array.length args) len && Array.for_all can_subst args); let s = ref s in for i = 0 to len - 1 do s := add_subst params.(i) args.(i) !s done; !s let subst_case params args s = let len = Array.length params in assert (len > 0 && Int.equal (Array.length args) len && let r = ref true and i = ref 0 in (* we test all arguments excepted the last *) while !i < len - 1 && !r do r := can_subst args.(!i); incr i done; !r); let s = ref s in for i = 0 to len - 2 do s := add_subst params.(i) args.(i) !s done; !s, params.(len-1), args.(len-1) let empty_gdef = Int.Map.empty, Int.Map.empty let get_norm (gnorm, _) i = Int.Map.find i gnorm let get_case (_, gcase) i = Int.Map.find i gcase let all_lam n bs = let f (_, l) = match l with | MLlam(params, _) -> Int.equal (Array.length params) n | _ -> false in Array.for_all f bs let commutative_cut annot a accu bs args = let mkb (c,b) = match b with | MLlam(params, body) -> (c, Array.fold_left2 (fun body x v -> MLlet(x,v,body)) body params args) | _ -> assert false in MLmatch(annot, a, mkMLapp accu args, Array.map mkb bs) let optimize gdef l = let rec optimize s l = match l with | MLlocal id -> (try LNmap.find id s with Not_found -> l) | MLglobal _ | MLprimitive _ | MLint _ | MLuint _ -> l | MLlam(params,body) -> MLlam(params, optimize s body) | MLletrec(decls,body) -> let opt_rec (f,params,body) = (f,params,optimize s body ) in MLletrec(Array.map opt_rec decls, optimize s body) | MLlet(id,def,body) -> let def = optimize s def in if can_subst def then optimize (add_subst id def s) body else MLlet(id,def,optimize s body) | MLapp(f, args) -> let args = Array.map (optimize s) args in begin match f with | MLglobal (Gnorm (_,i)) -> (try let params,body = get_norm gdef i in let s = subst_norm params args s in optimize s body with Not_found -> MLapp(optimize s f, args)) | MLglobal (Gcase (_,i)) -> (try let params,body = get_case gdef i in let s, id, arg = subst_case params args s in if can_subst arg then optimize (add_subst id arg s) body else MLlet(id, arg, optimize s body) with Not_found -> MLapp(optimize s f, args)) | _ -> let f = optimize s f in match f with | MLmatch (annot,a,accu,bs) -> if all_lam (Array.length args) bs then commutative_cut annot a accu bs args else MLapp(f, args) | _ -> MLapp(f, args) end | MLif(t,b1,b2) -> (* This optimization is critical: it applies to all fixpoints that start by matching on their recursive argument *) let t = optimize s t in let b1 = optimize s b1 in let b2 = optimize s b2 in begin match t, b2 with | MLisaccu (_, _, l1), MLmatch(annot, l2, _, bs) when eq_mllambda l1 l2 -> MLmatch(annot, l1, b1, bs) | _, _ -> MLif(t, b1, b2) end | MLmatch(annot,a,accu,bs) -> let opt_b (cargs,body) = (cargs,optimize s body) in MLmatch(annot, optimize s a, subst s accu, Array.map opt_b bs) | MLconstruct(prefix,c,tag,args) -> MLconstruct(prefix,c,tag,Array.map (optimize s) args) | MLsetref(r,l) -> MLsetref(r, optimize s l) | MLsequence(l1,l2) -> MLsequence(optimize s l1, optimize s l2) | MLarray arr -> MLarray (Array.map (optimize s) arr) | MLisaccu (pf, ind, l) -> MLisaccu (pf, ind, optimize s l) in optimize LNmap.empty l let optimize_stk stk = let add_global gdef g = match g with | Glet (Gnorm (_,i), body) -> let (gnorm, gcase) = gdef in (Int.Map.add i (decompose_MLlam body) gnorm, gcase) | Gletcase(Gcase (_,i), params, annot,a,accu,bs) -> let (gnorm,gcase) = gdef in (gnorm, Int.Map.add i (params,MLmatch(annot,a,accu,bs)) gcase) | Gletcase _ -> assert false | _ -> gdef in let gdef = List.fold_left add_global empty_gdef stk in let optimize_global g = match g with | Glet(Gconstant (prefix, c), body) -> Glet(Gconstant (prefix, c), optimize gdef body) | _ -> g in List.map optimize_global stk (** Printing to ocaml **) (* Redefine a bunch of functions in module Names to generate names acceptable to OCaml. *) let string_of_id s = Unicode.ascii_of_ident (Id.to_string s) let string_of_label l = string_of_id (Label.to_id l) let string_of_dirpath = function | [] -> "_" | sl -> String.concat "_" (List.rev_map string_of_id sl) (* The first letter of the file name has to be a capital to be accepted by *) (* OCaml as a module identifier. *) let string_of_dirpath s = "N"^string_of_dirpath s let mod_uid_of_dirpath dir = string_of_dirpath (DirPath.repr dir) let link_info_of_dirpath dir = Linked (mod_uid_of_dirpath dir ^ ".") let string_of_name x = match x with | Anonymous -> "anonymous" (* assert false *) | Name id -> string_of_id id let string_of_label_def l = match l with | None -> "" | Some l -> string_of_label l (* Relativization of module paths *) let rec list_of_mp acc = function | MPdot (mp,l) -> list_of_mp (string_of_label l::acc) mp | MPfile dp -> let dp = DirPath.repr dp in string_of_dirpath dp :: acc | MPbound mbid -> ("X"^string_of_id (MBId.to_id mbid))::acc let list_of_mp mp = list_of_mp [] mp let string_of_kn kn = let (mp,l) = KerName.repr kn in let mp = list_of_mp mp in String.concat "_" mp ^ "_" ^ string_of_label l let string_of_con c = string_of_kn (Constant.user c) let string_of_mind mind = string_of_kn (MutInd.user mind) let string_of_ind (mind,i) = string_of_kn (MutInd.user mind) ^ "_" ^ string_of_int i let string_of_gname g = match g with | Gind (prefix, (mind, i)) -> Format.sprintf "%sindaccu_%s_%i" prefix (string_of_mind mind) i | Gconstant (prefix, c) -> Format.sprintf "%sconst_%s" prefix (string_of_con c) | Gproj (prefix, (mind, n), i) -> Format.sprintf "%sproj_%s_%i_%i" prefix (string_of_mind mind) n i | Gcase (l,i) -> Format.sprintf "case_%s_%i" (string_of_label_def l) i | Gpred (l,i) -> Format.sprintf "pred_%s_%i" (string_of_label_def l) i | Gfixtype (l,i) -> Format.sprintf "fixtype_%s_%i" (string_of_label_def l) i | Gnorm (l,i) -> Format.sprintf "norm_%s_%i" (string_of_label_def l) i | Ginternal s -> Format.sprintf "%s" s | Gnormtbl (l,i) -> Format.sprintf "normtbl_%s_%i" (string_of_label_def l) i | Grel i -> Format.sprintf "rel_%i" i | Gnamed id -> Format.sprintf "named_%s" (string_of_id id) let pp_gname fmt g = Format.fprintf fmt "%s" (string_of_gname g) let pp_lname fmt ln = Format.fprintf fmt "x_%s_%i" (string_of_name ln.lname) ln.luid let pp_ldecls fmt ids = let len = Array.length ids in for i = 0 to len - 1 do Format.fprintf fmt " (%a : Nativevalues.t)" pp_lname ids.(i) done let string_of_construct prefix ~constant ind tag = let base = if constant then "Int" else "Construct" in Format.sprintf "%s%s_%s_%i" prefix base (string_of_ind ind) tag let string_of_accu_construct prefix ind = Format.sprintf "%sAccu_%s" prefix (string_of_ind ind) let pp_int fmt i = if i < 0 then Format.fprintf fmt "(%i)" i else Format.fprintf fmt "%i" i let pp_mllam fmt l = let rec pp_mllam fmt l = match l with | MLlocal ln -> Format.fprintf fmt "@[%a@]" pp_lname ln | MLglobal g -> Format.fprintf fmt "@[%a@]" pp_gname g | MLprimitive p -> Format.fprintf fmt "@[%a@]" pp_primitive p | MLlam(ids,body) -> Format.fprintf fmt "@[(fun%a@ ->@\n %a)@]" pp_ldecls ids pp_mllam body | MLletrec(defs, body) -> Format.fprintf fmt "@[%a@ in@\n%a@]" pp_letrec defs pp_mllam body | MLlet(id,def,body) -> Format.fprintf fmt "@[(let@ %a@ =@\n %a@ in@\n%a)@]" pp_lname id pp_mllam def pp_mllam body | MLapp(f, args) -> Format.fprintf fmt "@[%a@ %a@]" pp_mllam f (pp_args true) args | MLif(t,l1,l2) -> Format.fprintf fmt "@[(if %a then@\n %a@\nelse@\n %a)@]" pp_mllam t pp_mllam l1 pp_mllam l2 | MLmatch (annot, c, accu_br, br) -> let ind = annot.asw_ind in let prefix = annot.asw_prefix in let accu = string_of_accu_construct prefix ind in Format.fprintf fmt "@[begin match Obj.magic (%a) with@\n| %s _ ->@\n %a@\n%aend@]" pp_mllam c accu pp_mllam accu_br (pp_branches prefix ind) br | MLconstruct(prefix,ind,tag,args) -> Format.fprintf fmt "@[(Obj.magic (%s%a) : Nativevalues.t)@]" (string_of_construct prefix ~constant:false ind tag) pp_cargs args | MLint i -> pp_int fmt i | MLuint i -> Format.fprintf fmt "(%s)" (Uint63.compile i) | MLsetref (s, body) -> Format.fprintf fmt "@[%s@ :=@\n %a@]" s pp_mllam body | MLsequence(l1,l2) -> Format.fprintf fmt "@[%a;@\n%a@]" pp_mllam l1 pp_mllam l2 | MLarray arr -> let len = Array.length arr in Format.fprintf fmt "@[[|"; if 0 < len then begin for i = 0 to len - 2 do Format.fprintf fmt "%a;" pp_mllam arr.(i) done; pp_mllam fmt arr.(len-1) end; Format.fprintf fmt "|]@]" | MLisaccu (prefix, ind, c) -> let accu = string_of_accu_construct prefix ind in Format.fprintf fmt "@[begin match Obj.magic (%a) with@\n| %s _ ->@\n true@\n| _ ->@\n false@\nend@]" pp_mllam c accu and pp_letrec fmt defs = let len = Array.length defs in let pp_one_rec (fn, argsn, body) = Format.fprintf fmt "%a%a =@\n %a" pp_lname fn pp_ldecls argsn pp_mllam body in Format.fprintf fmt "@[let rec "; pp_one_rec defs.(0); for i = 1 to len - 1 do Format.fprintf fmt "@\nand "; pp_one_rec defs.(i) done; and pp_blam fmt l = match l with | MLprimitive (Mk_prod | Mk_sort) (* FIXME: why this special case? *) | MLlam _ | MLletrec _ | MLlet _ | MLapp _ | MLif _ -> Format.fprintf fmt "(%a)" pp_mllam l | MLconstruct(_,_,_,args) when Array.length args > 0 -> Format.fprintf fmt "(%a)" pp_mllam l | _ -> pp_mllam fmt l and pp_args sep fmt args = let sep = if sep then " " else "," in let len = Array.length args in if len > 0 then begin Format.fprintf fmt "%a" pp_blam args.(0); for i = 1 to len - 1 do Format.fprintf fmt "%s%a" sep pp_blam args.(i) done end and pp_cargs fmt args = let len = Array.length args in match len with | 0 -> () | 1 -> Format.fprintf fmt " %a" pp_blam args.(0) | _ -> Format.fprintf fmt "(%a)" (pp_args false) args and pp_cparam fmt param = match param with | Some l -> pp_mllam fmt (MLlocal l) | None -> Format.fprintf fmt "_" and pp_cparams fmt params = let len = Array.length params in match len with | 0 -> () | 1 -> Format.fprintf fmt " %a" pp_cparam params.(0) | _ -> let aux fmt params = Format.fprintf fmt "%a" pp_cparam params.(0); for i = 1 to len - 1 do Format.fprintf fmt ",%a" pp_cparam params.(i) done in Format.fprintf fmt "(%a)" aux params and pp_branches prefix ind fmt bs = let pp_branch (cargs,body) = let pp_pat fmt = function | ConstPattern i -> Format.fprintf fmt "| %s " (string_of_construct prefix ~constant:true ind i) | NonConstPattern (tag,args) -> Format.fprintf fmt "| %s%a " (string_of_construct prefix ~constant:false ind tag) pp_cparams args in let rec pp_pats fmt pats = match pats with | [] -> () | pat::pats -> Format.fprintf fmt "%a%a" pp_pat pat pp_pats pats in Format.fprintf fmt "%a ->@\n %a@\n" pp_pats cargs pp_mllam body in Array.iter pp_branch bs and pp_primitive fmt = function | Mk_prod -> Format.fprintf fmt "mk_prod_accu" | Mk_sort -> Format.fprintf fmt "mk_sort_accu" | Mk_ind -> Format.fprintf fmt "mk_ind_accu" | Mk_const -> Format.fprintf fmt "mk_constant_accu" | Mk_sw -> Format.fprintf fmt "mk_sw_accu" | Mk_fix(rec_pos,start) -> let pp_rec_pos fmt rec_pos = Format.fprintf fmt "@[[| %i" rec_pos.(0); for i = 1 to Array.length rec_pos - 1 do Format.fprintf fmt "; %i" rec_pos.(i) done; Format.fprintf fmt " |]@]" in Format.fprintf fmt "mk_fix_accu %a %i" pp_rec_pos rec_pos start | Mk_cofix(start) -> Format.fprintf fmt "mk_cofix_accu %i" start | Mk_rel i -> Format.fprintf fmt "mk_rel_accu %i" i | Mk_var id -> Format.fprintf fmt "mk_var_accu (Names.Id.of_string \"%s\")" (string_of_id id) | Mk_proj -> Format.fprintf fmt "mk_proj_accu" | Is_int -> Format.fprintf fmt "is_int" | Cast_accu -> Format.fprintf fmt "cast_accu" | Upd_cofix -> Format.fprintf fmt "upd_cofix" | Force_cofix -> Format.fprintf fmt "force_cofix" | Mk_uint -> Format.fprintf fmt "mk_uint" | Mk_int -> Format.fprintf fmt "mk_int" | Mk_bool -> Format.fprintf fmt "mk_bool" | Val_to_int -> Format.fprintf fmt "val_to_int" | Mk_meta -> Format.fprintf fmt "mk_meta_accu" | Mk_evar -> Format.fprintf fmt "mk_evar_accu" | MLand -> Format.fprintf fmt "(&&)" | MLle -> Format.fprintf fmt "(<=)" | MLlt -> Format.fprintf fmt "(<)" | MLinteq -> Format.fprintf fmt "(==)" | MLlsl -> Format.fprintf fmt "(lsl)" | MLlsr -> Format.fprintf fmt "(lsr)" | MLland -> Format.fprintf fmt "(land)" | MLlor -> Format.fprintf fmt "(lor)" | MLlxor -> Format.fprintf fmt "(lxor)" | MLadd -> Format.fprintf fmt "(+)" | MLsub -> Format.fprintf fmt "(-)" | MLmul -> Format.fprintf fmt "( * )" | MLmagic -> Format.fprintf fmt "Obj.magic" | MLarrayget -> Format.fprintf fmt "Array.get" | Mk_empty_instance -> Format.fprintf fmt "Univ.Instance.empty" | Coq_primitive (op,None) -> Format.fprintf fmt "no_check_%s" (CPrimitives.to_string op) | Coq_primitive (op, Some (prefix,(c,_))) -> Format.fprintf fmt "%s %a" (CPrimitives.to_string op) pp_mllam (MLglobal (Gconstant (prefix,c))) in Format.fprintf fmt "@[%a@]" pp_mllam l let pp_array fmt t = let len = Array.length t in Format.fprintf fmt "@[[|"; for i = 0 to len - 2 do Format.fprintf fmt "%a; " pp_mllam t.(i) done; if len > 0 then Format.fprintf fmt "%a" pp_mllam t.(len - 1); Format.fprintf fmt "|]@]" let pp_global fmt g = match g with | Glet (gn, c) -> let ids, c = decompose_MLlam c in Format.fprintf fmt "@[let %a%a =@\n %a@]@\n@." pp_gname gn pp_ldecls ids pp_mllam c | Gopen s -> Format.fprintf fmt "@[open %s@]@." s | Gtype (ind, lar) -> let rec aux s arity = if Int.equal arity 0 then s else aux (s^" * Nativevalues.t") (arity-1) in let pp_const_sig fmt (tag,arity) = if arity > 0 then let sig_str = aux "of Nativevalues.t" (arity-1) in let cstr = string_of_construct "" ~constant:false ind tag in Format.fprintf fmt " | %s %s@\n" cstr sig_str else let sig_str = if arity > 0 then aux "of Nativevalues.t" (arity-1) else "" in let cstr = string_of_construct "" ~constant:true ind tag in Format.fprintf fmt " | %s %s@\n" cstr sig_str in let pp_const_sigs fmt lar = Format.fprintf fmt " | %s of Nativevalues.t@\n" (string_of_accu_construct "" ind); Array.iter (pp_const_sig fmt) lar in Format.fprintf fmt "@[type ind_%s =@\n%a@]@\n@." (string_of_ind ind) pp_const_sigs lar | Gtblfixtype (g, params, t) -> Format.fprintf fmt "@[let %a %a =@\n %a@]@\n@." pp_gname g pp_ldecls params pp_array t | Gtblnorm (g, params, t) -> Format.fprintf fmt "@[let %a %a =@\n %a@]@\n@." pp_gname g pp_ldecls params pp_array t | Gletcase(gn,params,annot,a,accu,bs) -> Format.fprintf fmt "@[(* Hash = %i *)@\nlet rec %a %a =@\n %a@]@\n@." (hash_global g) pp_gname gn pp_ldecls params pp_mllam (MLmatch(annot,a,accu,bs)) | Gcomment s -> Format.fprintf fmt "@[(* %s *)@]@." s (** Compilation of elements in environment **) let rec compile_with_fv env sigma univ auxdefs l t = let (auxdefs,(fv_named,fv_rel),ml) = mllambda_of_lambda univ auxdefs l t in if List.is_empty fv_named && List.is_empty fv_rel then (auxdefs,ml) else apply_fv env sigma univ (fv_named,fv_rel) auxdefs ml and apply_fv env sigma univ (fv_named,fv_rel) auxdefs ml = let get_rel_val (n,_) auxdefs = (* match !(lookup_rel_native_val n env) with | NVKnone -> *) compile_rel env sigma univ auxdefs n (* | NVKvalue (v,d) -> assert false *) in let get_named_val (id,_) auxdefs = (* match !(lookup_named_native_val id env) with | NVKnone -> *) compile_named env sigma univ auxdefs id (* | NVKvalue (v,d) -> assert false *) in let auxdefs = List.fold_right get_rel_val fv_rel auxdefs in let auxdefs = List.fold_right get_named_val fv_named auxdefs in let lvl = Context.Rel.length (rel_context env) in let fv_rel = List.map (fun (n,_) -> MLglobal (Grel (lvl-n))) fv_rel in let fv_named = List.map (fun (id,_) -> MLglobal (Gnamed id)) fv_named in let aux_name = fresh_lname Anonymous in auxdefs, MLlet(aux_name, ml, mkMLapp (MLlocal aux_name) (Array.of_list (fv_rel@fv_named))) and compile_rel env sigma univ auxdefs n = let open Context.Rel.Declaration in let decl = lookup_rel n env in let n = List.length (rel_context env) - n in match decl with | LocalDef (_,t,_) -> let code = lambda_of_constr env sigma t in let auxdefs,code = compile_with_fv env sigma univ auxdefs None code in Glet(Grel n, code)::auxdefs | LocalAssum _ -> Glet(Grel n, MLprimitive (Mk_rel n))::auxdefs and compile_named env sigma univ auxdefs id = let open Context.Named.Declaration in match lookup_named id env with | LocalDef (_,t,_) -> let code = lambda_of_constr env sigma t in let auxdefs,code = compile_with_fv env sigma univ auxdefs None code in Glet(Gnamed id, code)::auxdefs | LocalAssum _ -> Glet(Gnamed id, MLprimitive (Mk_var id))::auxdefs let compile_constant env sigma prefix ~interactive con cb = let no_univs = 0 = Univ.AUContext.size (Declareops.constant_polymorphic_context cb) in begin match cb.const_body with | Def t -> let t = Mod_subst.force_constr t in let code = lambda_of_constr env sigma t in if !Flags.debug then Feedback.msg_debug (Pp.str "Generated lambda code"); let is_lazy = is_lazy t in let code = if is_lazy then mk_lazy code else code in let name = if interactive then LinkedInteractive prefix else Linked prefix in let l = Constant.label con in let auxdefs,code = if no_univs then compile_with_fv env sigma None [] (Some l) code else let univ = fresh_univ () in let (auxdefs,code) = compile_with_fv env sigma (Some univ) [] (Some l) code in (auxdefs,mkMLlam [|univ|] code) in if !Flags.debug then Feedback.msg_debug (Pp.str "Generated mllambda code"); let code = optimize_stk (Glet(Gconstant ("", con),code)::auxdefs) in if !Flags.debug then Feedback.msg_debug (Pp.str "Optimized mllambda code"); code, name | _ -> let i = push_symbol (SymbConst con) in let args = if no_univs then [|get_const_code i; MLarray [||]|] else [|get_const_code i|] in (* let t = mkMLlam [|univ|] (mkMLapp (MLprimitive Mk_const) *) [Glet(Gconstant ("", con), mkMLapp (MLprimitive Mk_const) args)], if interactive then LinkedInteractive prefix else Linked prefix end module StringOrd = struct type t = string let compare = String.compare end module StringSet = Set.Make(StringOrd) let loaded_native_files = ref StringSet.empty let is_loaded_native_file s = StringSet.mem s !loaded_native_files let register_native_file s = loaded_native_files := StringSet.add s !loaded_native_files let is_code_loaded ~interactive name = match !name with | NotLinked -> false | LinkedInteractive s -> if (interactive && is_loaded_native_file s) then true else (name := NotLinked; false) | Linked s -> if is_loaded_native_file s then true else (name := NotLinked; false) let param_name = Name (Id.of_string "params") let arg_name = Name (Id.of_string "arg") let compile_mind mb mind stack = let u = Declareops.inductive_polymorphic_context mb in (** Generate data for every block *) let f i stack ob = let ind = (mind, i) in let gtype = Gtype(ind, ob.mind_reloc_tbl) in let j = push_symbol (SymbInd ind) in let name = Gind ("", ind) in let accu = let args = if Int.equal (Univ.AUContext.size u) 0 then [|get_ind_code j; MLarray [||]|] else [|get_ind_code j|] in Glet(name, MLapp (MLprimitive Mk_ind, args)) in let nparams = mb.mind_nparams in let add_proj proj_arg acc _pb = let tbl = ob.mind_reloc_tbl in (* Building info *) let ci = { ci_ind = ind; ci_npar = nparams; ci_cstr_nargs = [|0|]; ci_relevance = ob.mind_relevance; ci_cstr_ndecls = [||] (*FIXME*); ci_pp_info = { ind_tags = []; cstr_tags = [||] (*FIXME*); style = RegularStyle } } in let asw = { asw_ind = ind; asw_prefix = ""; asw_ci = ci; asw_reloc = tbl; asw_finite = true } in let c_uid = fresh_lname Anonymous in let cf_uid = fresh_lname Anonymous in let tag, arity = tbl.(0) in assert (arity > 0); let ci_uid = fresh_lname Anonymous in let cargs = Array.init arity (fun i -> if Int.equal i proj_arg then Some ci_uid else None) in let i = push_symbol (SymbProj (ind, proj_arg)) in let accu = MLapp (MLprimitive Cast_accu, [|MLlocal cf_uid|]) in let accu_br = MLapp (MLprimitive Mk_proj, [|get_proj_code i;accu|]) in let code = MLmatch(asw,MLlocal cf_uid,accu_br,[|[NonConstPattern (tag,cargs)],MLlocal ci_uid|]) in let code = MLlet(cf_uid, mkForceCofix "" ind (MLlocal c_uid), code) in let gn = Gproj ("", ind, proj_arg) in Glet (gn, mkMLlam [|c_uid|] code) :: acc in let projs = match mb.mind_record with | NotRecord | FakeRecord -> [] | PrimRecord info -> let _, _, _, pbs = info.(i) in Array.fold_left_i add_proj [] pbs in projs @ gtype :: accu :: stack in Array.fold_left_i f stack mb.mind_packets type code_location_update = link_info ref * link_info type code_location_updates = code_location_update Mindmap_env.t * code_location_update Cmap_env.t type linkable_code = global list * code_location_updates let empty_updates = Mindmap_env.empty, Cmap_env.empty let compile_mind_deps env prefix ~interactive (comp_stack, (mind_updates, const_updates) as init) mind = let mib,nameref = lookup_mind_key mind env in if is_code_loaded ~interactive nameref || Mindmap_env.mem mind mind_updates then init else let comp_stack = compile_mind mib mind comp_stack in let name = if interactive then LinkedInteractive prefix else Linked prefix in let upd = (nameref, name) in let mind_updates = Mindmap_env.add mind upd mind_updates in (comp_stack, (mind_updates, const_updates)) (* This function compiles all necessary dependencies of t, and generates code in reverse order, as well as linking information updates *) let compile_deps env sigma prefix ~interactive init t = let rec aux env lvl init t = match kind t with | Ind ((mind,_),_u) -> compile_mind_deps env prefix ~interactive init mind | Const c -> let c,_u = get_alias env c in let cb,(nameref,_) = lookup_constant_key c env in let (_, (_, const_updates)) = init in if is_code_loaded ~interactive nameref || (Cmap_env.mem c const_updates) then init else let comp_stack, (mind_updates, const_updates) = match cb.const_body with | Def t -> aux env lvl init (Mod_subst.force_constr t) | _ -> init in let code, name = compile_constant env sigma prefix ~interactive c cb in let comp_stack = code@comp_stack in let const_updates = Cmap_env.add c (nameref, name) const_updates in comp_stack, (mind_updates, const_updates) | Construct (((mind,_),_),_u) -> compile_mind_deps env prefix ~interactive init mind | Proj (p,c) -> let init = compile_mind_deps env prefix ~interactive init (Projection.mind p) in aux env lvl init c | Case (ci, _p, _c, _ac) -> let mind = fst ci.ci_ind in let init = compile_mind_deps env prefix ~interactive init mind in fold_constr_with_binders succ (aux env) lvl init t | Var id -> let open Context.Named.Declaration in begin match lookup_named id env with | LocalDef (_,t,_) -> aux env lvl init t | _ -> init end | Rel n when n > lvl -> let open Context.Rel.Declaration in let decl = lookup_rel n env in let env = env_of_rel n env in begin match decl with | LocalDef (_,t,_) -> aux env lvl init t | LocalAssum _ -> init end | _ -> fold_constr_with_binders succ (aux env) lvl init t in aux env 0 init t let compile_constant_field env prefix con acc cb = let (gl, _) = compile_constant ~interactive:false env empty_evars prefix con cb in gl@acc let compile_mind_field mp l acc mb = let mind = MutInd.make2 mp l in compile_mind mb mind acc let mk_open s = Gopen s let mk_internal_let s code = Glet(Ginternal s, code) (* ML Code for conversion function *) let mk_conv_code env sigma prefix t1 t2 = clear_symbols (); clear_global_tbl (); let gl, (mind_updates, const_updates) = let init = ([], empty_updates) in compile_deps env sigma prefix ~interactive:true init t1 in let gl, (mind_updates, const_updates) = let init = (gl, (mind_updates, const_updates)) in compile_deps env sigma prefix ~interactive:true init t2 in let code1 = lambda_of_constr env sigma t1 in let code2 = lambda_of_constr env sigma t2 in let (gl,code1) = compile_with_fv env sigma None gl None code1 in let (gl,code2) = compile_with_fv env sigma None gl None code2 in let t1 = mk_internal_let "t1" code1 in let t2 = mk_internal_let "t2" code2 in let g1 = MLglobal (Ginternal "t1") in let g2 = MLglobal (Ginternal "t2") in let setref1 = Glet(Ginternal "_", MLsetref("rt1",g1)) in let setref2 = Glet(Ginternal "_", MLsetref("rt2",g2)) in let gl = List.rev (setref2 :: setref1 :: t2 :: t1 :: gl) in let header = Glet(Ginternal "symbols_tbl", MLapp (MLglobal (Ginternal "get_symbols"), [|MLglobal (Ginternal "()")|])) in header::gl, (mind_updates, const_updates) let mk_norm_code env sigma prefix t = clear_symbols (); clear_global_tbl (); let gl, (mind_updates, const_updates) = let init = ([], empty_updates) in compile_deps env sigma prefix ~interactive:true init t in let code = lambda_of_constr env sigma t in let (gl,code) = compile_with_fv env sigma None gl None code in let t1 = mk_internal_let "t1" code in let g1 = MLglobal (Ginternal "t1") in let setref = Glet(Ginternal "_", MLsetref("rt1",g1)) in let gl = List.rev (setref :: t1 :: gl) in let header = Glet(Ginternal "symbols_tbl", MLapp (MLglobal (Ginternal "get_symbols"), [|MLglobal (Ginternal "()")|])) in header::gl, (mind_updates, const_updates) let mk_library_header dir = let libname = Format.sprintf "(str_decode \"%s\")" (str_encode dir) in [Glet(Ginternal "symbols_tbl", MLapp (MLglobal (Ginternal "get_library_native_symbols"), [|MLglobal (Ginternal libname)|]))] let update_location (r,v) = r := v let update_locations (ind_updates,const_updates) = Mindmap_env.iter (fun _ -> update_location) ind_updates; Cmap_env.iter (fun _ -> update_location) const_updates let add_header_comment mlcode s = Gcomment s :: mlcode (* vim: set filetype=ocaml foldmethod=marker: *)