1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* File created around Apr 1994 for CiC V5.10.5 by Chet Murthy collecting
   parts of file initial.ml from CoC V4.8, Dec 1988, by Gérard Huet,
   Thierry Coquand and Christine Paulin *)
(* Hash-consing by Bruno Barras in Feb 1998 *)
(* Extra functions for splitting/generation of identifiers by Hugo Herbelin *)
(* Restructuration by Jacek Chrzaszcz as part of the implementation of
   the module system, Aug 2002 *)
(* Abstraction over the type of constant for module inlining by Claudio
   Sacerdoti, Nov 2004 *)
(* Miscellaneous features or improvements by Hugo Herbelin,
   Élie Soubiran, ... *)

open Pp
open Util

(** {6 Identifiers } *)

(** Representation and operations on identifiers. *)
module Id =
struct
  type t = string

  let equal = String.equal

  let compare = String.compare

  let hash = String.hash

  let check_valid ?(strict=true) x =
    let iter (fatal, x) = if fatal || strict then CErrors.user_err Pp.(str x) in
    Option.iter iter (Unicode.ident_refutation x)

  let is_valid s = match Unicode.ident_refutation s with
  | None -> true
  | Some _ -> false

  let of_bytes s =
    let s = Bytes.to_string s in
    check_valid s;
    String.hcons s

  let of_string s =
    let () = check_valid s in
    String.hcons s

  let of_string_soft s =
    let () = check_valid ~strict:false s in
    String.hcons s

  let to_string id = id

  let print id = str id

  module Self =
  struct
    type t = string
    let compare = compare
  end

  module Set = Set.Make(Self)
  module Map = CMap.Make(Self)

  module Pred = Predicate.Make(Self)

  module List = String.List

  let hcons = String.hcons

end

(** Representation and operations on identifiers that are allowed to be anonymous
    (i.e. "_" in concrete syntax). *)
module Name =
struct
  type t = Anonymous     (** anonymous identifier *)
         | Name of Id.t  (** non-anonymous identifier *)

  let mk_name id =
    Name id

  let is_anonymous = function
    | Anonymous -> true
    | Name _ -> false

  let is_name = is_anonymous %> not

  let compare n1 n2 = match n1, n2 with
    | Anonymous, Anonymous -> 0
    | Name id1, Name id2 -> Id.compare id1 id2
    | Anonymous, Name _ -> -1
    | Name _, Anonymous -> 1

  let equal n1 n2 = match n1, n2 with
    | Anonymous, Anonymous -> true
    | Name id1, Name id2 -> String.equal id1 id2
    | _ -> false

  let hash = function
    | Anonymous -> 0
    | Name id -> Id.hash id

  let print = function
    | Anonymous -> str "_"
    | Name id -> Id.print id

  module Self_Hashcons =
    struct
      type nonrec t = t
      type u = Id.t -> Id.t
      let hashcons hident = function
        | Name id -> Name (hident id)
        | n -> n
      let eq n1 n2 =
        n1 == n2 ||
        match (n1,n2) with
          | (Name id1, Name id2) -> id1 == id2
          | (Anonymous,Anonymous) -> true
          | _ -> false
      let hash = hash
    end

  module Hname = Hashcons.Make(Self_Hashcons)

  let hcons = Hashcons.simple_hcons Hname.generate Hname.hcons Id.hcons

end

(** Alias, to import constructors. *)
type name = Name.t = Anonymous | Name of Id.t

(** {6 Various types based on identifiers } *)

type variable = Id.t

type module_ident = Id.t

module ModIdset = Id.Set
module ModIdmap = Id.Map

(** {6 Directory paths = section names paths } *)

(** Dirpaths are lists of module identifiers.
    The actual representation is reversed to optimise sharing:
    Coq.A.B is ["B";"A";"Coq"] *)

let default_module_name = "If you see this, it's a bug"

module DirPath =
struct
  type t = module_ident list

  let compare = List.compare Id.compare
  let equal = List.equal Id.equal

  let rec hash accu = function
  | [] -> accu
  | id :: dp ->
    let accu = Hashset.Combine.combine (Id.hash id) accu in
    hash accu dp

  let hash dp = hash 0 dp

  let make x = x
  let repr x = x

  let empty = []

  let is_empty = List.is_empty

  let to_string = function
    | [] -> "<>"
    | sl -> String.concat "." (List.rev_map Id.to_string sl)

  let print dp = str (to_string dp)

  let initial = [default_module_name]

  module Hdir = Hashcons.Hlist(Id)

  let hcons = Hashcons.recursive_hcons Hdir.generate Hdir.hcons Id.hcons

end

(** {6 Unique names for bound modules } *)

module MBId =
struct
  type t = int * Id.t * DirPath.t

  let gen =
    let seed = ref 0 in fun () ->
      let ans = !seed in
      let () = incr seed in
      ans

  let make dir s = (gen(), s, dir)

  let repr mbid = mbid

  let to_string (_i, s, p) =
    DirPath.to_string p ^ "." ^ s

  let debug_to_string (i, s, p) =
    "<"^DirPath.to_string p ^"#" ^ s ^"#"^ string_of_int i^">"

  let compare (x : t) (y : t) =
    if x == y then 0
    else match (x, y) with
    | (nl, idl, dpl), (nr, idr, dpr) ->
      let ans = Int.compare nl nr in
      if not (Int.equal ans 0) then ans
      else
        let ans = Id.compare idl idr in
        if not (Int.equal ans 0) then ans
        else
          DirPath.compare dpl dpr

  let equal x y = x == y ||
    let (i1, id1, p1) = x in
    let (i2, id2, p2) = y in
    Int.equal i1 i2 && Id.equal id1 id2 && DirPath.equal p1 p2

  let to_id (_, s, _) = s

  open Hashset.Combine

  let hash (i, id, dp) =
    combine3 (Int.hash i) (Id.hash id) (DirPath.hash dp)

  module Self_Hashcons =
    struct
      type nonrec t = t
      type u = (Id.t -> Id.t) * (DirPath.t -> DirPath.t)
      let hashcons (hid,hdir) (n,s,dir) = (n,hid s,hdir dir)
      let eq ((n1,s1,dir1) as x) ((n2,s2,dir2) as y) =
        (x == y) ||
        (Int.equal n1 n2 && s1 == s2 && dir1 == dir2)
      let hash = hash
    end

  module HashMBId = Hashcons.Make(Self_Hashcons)

  let hcons = Hashcons.simple_hcons HashMBId.generate HashMBId.hcons (Id.hcons, DirPath.hcons)

end

module MBImap = CMap.Make(MBId)
module MBIset = Set.Make(MBId)

(** {6 Names of structure elements } *)

module Label =
struct
  include Id
  let make = Id.of_string
  let of_id id = id
  let to_id id = id
end

(** {6 The module part of the kernel name } *)

module ModPath = struct

  type t =
    | MPfile of DirPath.t
    | MPbound of MBId.t
    | MPdot of t * Label.t

  type module_path = t

  let rec is_bound = function
    | MPbound _ -> true
    | MPdot(mp,_) -> is_bound mp
    | _ -> false

  let rec to_string = function
    | MPfile sl -> DirPath.to_string sl
    | MPbound uid -> MBId.to_string uid
    | MPdot (mp,l) -> to_string mp ^ "." ^ Label.to_string l

  let rec debug_to_string = function
    | MPfile sl -> DirPath.to_string sl
    | MPbound uid -> MBId.debug_to_string uid
    | MPdot (mp,l) -> debug_to_string mp ^ "." ^ Label.to_string l

  (** we compare labels first if both are MPdots *)
  let rec compare mp1 mp2 =
    if mp1 == mp2 then 0
    else match mp1, mp2 with
      | MPfile p1, MPfile p2 -> DirPath.compare p1 p2
      | MPbound id1, MPbound id2 -> MBId.compare id1 id2
      | MPdot (mp1, l1), MPdot (mp2, l2) ->
        let c = String.compare l1 l2 in
        if not (Int.equal c 0) then c
        else compare mp1 mp2
      | MPfile _, _ -> -1
      | MPbound _, MPfile _ -> 1
      | MPbound _, MPdot _ -> -1
      | MPdot _, _ -> 1

  let rec equal mp1 mp2 = mp1 == mp2 ||
    match mp1, mp2 with
    | MPfile p1, MPfile p2 -> DirPath.equal p1 p2
    | MPbound id1, MPbound id2 -> MBId.equal id1 id2
    | MPdot (mp1, l1), MPdot (mp2, l2) -> String.equal l1 l2 && equal mp1 mp2
    | (MPfile _ | MPbound _ | MPdot _), _ -> false

  open Hashset.Combine

  let rec hash = function
  | MPfile dp -> combinesmall 1 (DirPath.hash dp)
  | MPbound id -> combinesmall 2 (MBId.hash id)
  | MPdot (mp, lbl) ->
    combinesmall 3 (combine (hash mp) (Label.hash lbl))

  let initial = MPfile DirPath.initial

  let rec dp = function
  | MPfile sl -> sl
  | MPbound (_,_,dp) -> dp
  | MPdot (mp,_l) -> dp mp

  module Self_Hashcons = struct
    type t = module_path
    type u = (DirPath.t -> DirPath.t) * (MBId.t -> MBId.t) *
        (string -> string)
    let rec hashcons (hdir,huniqid,hstr as hfuns) = function
      | MPfile dir -> MPfile (hdir dir)
      | MPbound m -> MPbound (huniqid m)
      | MPdot (md,l) -> MPdot (hashcons hfuns md, hstr l)
    let eq d1 d2 =
      d1 == d2 ||
      match d1,d2 with
      | MPfile dir1, MPfile dir2 -> dir1 == dir2
      | MPbound m1, MPbound m2 -> m1 == m2
      | MPdot (mod1,l1), MPdot (mod2,l2) -> l1 == l2 && equal mod1 mod2
      | _ -> false
    let hash = hash
  end

  module HashMP = Hashcons.Make(Self_Hashcons)

  let hcons =
    Hashcons.simple_hcons HashMP.generate HashMP.hcons
      (DirPath.hcons,MBId.hcons,String.hcons)

end

module DPset = Set.Make(DirPath)
module DPmap = Map.Make(DirPath)

module MPset = Set.Make(ModPath)
module MPmap = CMap.Make(ModPath)

(** {6 Kernel names } *)

module KerName = struct

  type t = {
    modpath : ModPath.t;
    knlabel : Label.t;
    mutable refhash : int;
    (** Lazily computed hash. If unset, it is set to negative values. *)
  }

  type kernel_name = t

  let make modpath knlabel =
    { modpath; knlabel; refhash = -1; }
  let repr kn = (kn.modpath, kn.knlabel)

  let modpath kn = kn.modpath
  let label kn = kn.knlabel

  let to_string_gen mp_to_string kn =
    mp_to_string kn.modpath ^ "." ^ Label.to_string kn.knlabel

  let to_string kn = to_string_gen ModPath.to_string kn

  let debug_to_string kn = to_string_gen ModPath.debug_to_string kn

  let print kn = str (to_string kn)

  let debug_print kn = str (debug_to_string kn)

  let compare (kn1 : kernel_name) (kn2 : kernel_name) =
    if kn1 == kn2 then 0
    else
      let c = String.compare kn1.knlabel kn2.knlabel in
      if not (Int.equal c 0) then c
      else
        ModPath.compare kn1.modpath kn2.modpath

  let equal kn1 kn2 =
    let h1 = kn1.refhash in
    let h2 = kn2.refhash in
    if 0 <= h1 && 0 <= h2 && not (Int.equal h1 h2) then false
    else
      Label.equal kn1.knlabel kn2.knlabel &&
      ModPath.equal kn1.modpath kn2.modpath

  open Hashset.Combine

  let hash kn =
    let h = kn.refhash in
    if h < 0 then
      let { modpath = mp; knlabel = lbl; _ } = kn in
      let h = combine (ModPath.hash mp) (Label.hash lbl) in
      (* Ensure positivity on all platforms. *)
      let h = h land 0x3FFFFFFF in
      let () = kn.refhash <- h in
      h
    else h

  module Self_Hashcons = struct
    type t = kernel_name
    type u = (ModPath.t -> ModPath.t) * (DirPath.t -> DirPath.t)
        * (string -> string)
    let hashcons (hmod,_hdir,hstr) kn =
      let { modpath = mp; knlabel = l; refhash; } = kn in
      { modpath = hmod mp; knlabel = hstr l; refhash; }
    let eq kn1 kn2 =
      kn1.modpath == kn2.modpath && kn1.knlabel == kn2.knlabel
    let hash = hash
  end

  module HashKN = Hashcons.Make(Self_Hashcons)

  let hcons =
    Hashcons.simple_hcons HashKN.generate HashKN.hcons
      (ModPath.hcons,DirPath.hcons,String.hcons)
end

module KNmap = HMap.Make(KerName)
module KNpred = Predicate.Make(KerName)
module KNset = KNmap.Set

(** {6 Kernel pairs } *)

(** For constant and inductive names, we use a kernel name couple (kn1,kn2)
   where kn1 corresponds to the name used at toplevel (i.e. what the user see)
   and kn2 corresponds to the canonical kernel name i.e. in the environment
   we have {% kn1 \rhd_{\delta}^* kn2 \rhd_{\delta} t %}

   Invariants :
    - the user and canonical kn may differ only on their [module_path],
      the dirpaths and labels should be the same
    - when user and canonical parts differ, we cannot be in a section
      anymore, hence the dirpath must be empty
    - two pairs with the same user part should have the same canonical part
      in a given environment (though with backtracking, the hash-table can
      contains pairs with same user part but different canonical part from
      a previous state of the session)

   Note: since most of the time the canonical and user parts are equal,
   we handle this case with a particular constructor to spare some memory *)

module KerPair = struct

  type t =
    | Same of KerName.t (** user = canonical *)
    | Dual of KerName.t * KerName.t (** user then canonical *)

  type kernel_pair = t

  let canonical = function
    | Same kn -> kn
    | Dual (_,kn) -> kn

  let user = function
    | Same kn -> kn
    | Dual (kn,_) -> kn

  let same kn = Same kn
  let make knu knc = if KerName.equal knu knc then Same knc else Dual (knu,knc)

  let make1 = same
  let make2 mp l = same (KerName.make mp l)
  let repr2 kp = KerName.repr (user kp)
  let label kp = KerName.label (user kp)
  let modpath kp = KerName.modpath (user kp)

  let change_label kp lbl =
    let (mp1,l1) = KerName.repr (user kp)
    and (mp2,l2) = KerName.repr (canonical kp) in
    assert (String.equal l1 l2);
    if String.equal lbl l1 then kp
    else
      let kn = KerName.make mp1 lbl in
      if mp1 == mp2 then same kn
      else make kn (KerName.make mp2 lbl)

  let to_string kp = KerName.to_string (user kp)
  let print kp = str (to_string kp)

  let debug_to_string = function
    | Same kn -> "(" ^ KerName.debug_to_string kn ^ ")"
    | Dual (knu,knc) ->
      "(" ^ KerName.debug_to_string knu ^ "," ^ KerName.debug_to_string knc ^ ")"

  let debug_print kp = str (debug_to_string kp)

  (** For ordering kernel pairs, both user or canonical parts may make
      sense, according to your needs: user for the environments, canonical
      for other uses (ex: non-logical things). *)

  module UserOrd = struct
    type t = kernel_pair
    let compare x y = KerName.compare (user x) (user y)
    let equal x y = x == y || KerName.equal (user x) (user y)
    let hash x = KerName.hash (user x)
  end

  module CanOrd = struct
    type t = kernel_pair
    let compare x y = KerName.compare (canonical x) (canonical y)
    let equal x y = x == y || KerName.equal (canonical x) (canonical y)
    let hash x = KerName.hash (canonical x)
  end

  module SyntacticOrd = struct
    let compare x y = match x, y with
      | Same knx, Same kny -> KerName.compare knx kny
      | Dual (knux,kncx), Dual (knuy,kncy) ->
        let c = KerName.compare knux knuy in
        if not (Int.equal c 0) then c
        else KerName.compare kncx kncy
      | Same _, _ -> -1
      | Dual _, _ -> 1
    let equal x y = x == y || compare x y = 0
    let hash = function
      | Same kn -> KerName.hash kn
      | Dual (knu, knc) ->
        Hashset.Combine.combine (KerName.hash knu) (KerName.hash knc)
  end

  (** Default (logical) comparison and hash is on the canonical part *)
  let equal = CanOrd.equal
  let hash = CanOrd.hash

  module Self_Hashcons =
    struct
      type t = kernel_pair
      type u = KerName.t -> KerName.t
      let hashcons hkn = function
        | Same kn -> Same (hkn kn)
        | Dual (knu,knc) -> make (hkn knu) (hkn knc)
      let eq x y = (* physical comparison on subterms *)
        x == y ||
        match x,y with
        | Same x, Same y -> x == y
        | Dual (ux,cx), Dual (uy,cy) -> ux == uy && cx == cy
        | (Same _ | Dual _), _ -> false
      (** Hash-consing (despite having the same user part implies having
          the same canonical part is a logical invariant of the system, it
          is not necessarily an invariant in memory, so we treat kernel
          names as they are syntactically for hash-consing) *)
      let hash = function
      | Same kn -> KerName.hash kn
      | Dual (knu, knc) ->
        Hashset.Combine.combine (KerName.hash knu) (KerName.hash knc)
    end

  module HashKP = Hashcons.Make(Self_Hashcons)

end

(** {6 Constant Names} *)

module Constant = KerPair

module Cmap = HMap.Make(Constant.CanOrd)
(** A map whose keys are constants (values of the {!Constant.t} type).
    Keys are ordered wrt. "canonical form" of the constant. *)

module Cmap_env = HMap.Make(Constant.UserOrd)
(** A map whose keys are constants (values of the {!Constant.t} type).
    Keys are ordered wrt. "user form" of the constant. *)

module Cpred = Predicate.Make(Constant.CanOrd)
module Cset = Cmap.Set
module Cset_env = Cmap_env.Set

(** {6 Names of mutual inductive types } *)

module MutInd = KerPair

module Mindmap = HMap.Make(MutInd.CanOrd)
module Mindset = Mindmap.Set
module Mindmap_env = HMap.Make(MutInd.UserOrd)

(** Designation of a (particular) inductive type. *)
type inductive = MutInd.t      (* the name of the inductive type *)
               * int           (* the position of this inductive type
                                  within the block of mutually-recursive inductive types.
                                  BEWARE: indexing starts from 0. *)

(** Designation of a (particular) constructor of a (particular) inductive type. *)
type constructor = inductive   (* designates the inductive type *)
                 * int         (* the index of the constructor
                                  BEWARE: indexing starts from 1. *)

let ind_modpath (mind,_) = MutInd.modpath mind
let constr_modpath (ind,_) = ind_modpath ind

let ith_mutual_inductive (mind, _) i = (mind, i)
let ith_constructor_of_inductive ind i = (ind, i)
let inductive_of_constructor (ind, _i) = ind
let index_of_constructor (_ind, i) = i

let eq_ind (m1, i1) (m2, i2) = Int.equal i1 i2 && MutInd.equal m1 m2
let eq_user_ind (m1, i1) (m2, i2) =
  Int.equal i1 i2 && MutInd.UserOrd.equal m1 m2
let eq_syntactic_ind (m1, i1) (m2, i2) =
  Int.equal i1 i2 && MutInd.SyntacticOrd.equal m1 m2

let ind_ord (m1, i1) (m2, i2) =
  let c = Int.compare i1 i2 in
  if Int.equal c 0 then MutInd.CanOrd.compare m1 m2 else c
let ind_user_ord (m1, i1) (m2, i2) =
  let c = Int.compare i1 i2 in
  if Int.equal c 0 then MutInd.UserOrd.compare m1 m2 else c
let ind_syntactic_ord (m1, i1) (m2, i2) =
  let c = Int.compare i1 i2 in
  if Int.equal c 0 then MutInd.SyntacticOrd.compare m1 m2 else c

let ind_hash (m, i) =
  Hashset.Combine.combine (MutInd.hash m) (Int.hash i)
let ind_user_hash (m, i) =
  Hashset.Combine.combine (MutInd.UserOrd.hash m) (Int.hash i)
let ind_syntactic_hash (m, i) =
  Hashset.Combine.combine (MutInd.SyntacticOrd.hash m) (Int.hash i)

let eq_constructor (ind1, j1) (ind2, j2) = Int.equal j1 j2 && eq_ind ind1 ind2
let eq_user_constructor (ind1, j1) (ind2, j2) =
  Int.equal j1 j2 && eq_user_ind ind1 ind2
let eq_syntactic_constructor (ind1, j1) (ind2, j2) =
  Int.equal j1 j2 && eq_syntactic_ind ind1 ind2

let constructor_ord (ind1, j1) (ind2, j2) =
  let c = Int.compare j1 j2 in
  if Int.equal c 0 then ind_ord ind1 ind2 else c
let constructor_user_ord (ind1, j1) (ind2, j2) =
  let c = Int.compare j1 j2 in
  if Int.equal c 0 then ind_user_ord ind1 ind2 else c
let constructor_syntactic_ord (ind1, j1) (ind2, j2) =
  let c = Int.compare j1 j2 in
  if Int.equal c 0 then ind_syntactic_ord ind1 ind2 else c

let constructor_hash (ind, i) =
  Hashset.Combine.combine (ind_hash ind) (Int.hash i)
let constructor_user_hash (ind, i) =
  Hashset.Combine.combine (ind_user_hash ind) (Int.hash i)
let constructor_syntactic_hash (ind, i) =
  Hashset.Combine.combine (ind_syntactic_hash ind) (Int.hash i)

module InductiveOrdered = struct
  type t = inductive
  let compare = ind_ord
end

module InductiveOrdered_env = struct
  type t = inductive
  let compare = ind_user_ord
end

module Indset = Set.Make(InductiveOrdered)
module Indset_env = Set.Make(InductiveOrdered_env)
module Indmap = Map.Make(InductiveOrdered)
module Indmap_env = Map.Make(InductiveOrdered_env)

module ConstructorOrdered = struct
  type t = constructor
  let compare = constructor_ord
end

module ConstructorOrdered_env = struct
  type t = constructor
  let compare = constructor_user_ord
end

module Constrset = Set.Make(ConstructorOrdered)
module Constrset_env = Set.Make(ConstructorOrdered_env)
module Constrmap = Map.Make(ConstructorOrdered)
module Constrmap_env = Map.Make(ConstructorOrdered_env)

(** {6 Hash-consing of name objects } *)

module Hind = Hashcons.Make(
  struct
    type t = inductive
    type u = MutInd.t -> MutInd.t
    let hashcons hmind (mind, i) = (hmind mind, i)
    let eq (mind1,i1) (mind2,i2) = mind1 == mind2 && Int.equal i1 i2
    let hash = ind_hash
  end)

module Hconstruct = Hashcons.Make(
  struct
    type t = constructor
    type u = inductive -> inductive
    let hashcons hind (ind, j) = (hind ind, j)
    let eq (ind1, j1) (ind2, j2) = ind1 == ind2 && Int.equal j1 j2
    let hash = constructor_hash
  end)

let hcons_con = Hashcons.simple_hcons Constant.HashKP.generate Constant.HashKP.hcons KerName.hcons
let hcons_mind = Hashcons.simple_hcons MutInd.HashKP.generate MutInd.HashKP.hcons KerName.hcons
let hcons_ind = Hashcons.simple_hcons Hind.generate Hind.hcons hcons_mind
let hcons_construct = Hashcons.simple_hcons Hconstruct.generate Hconstruct.hcons hcons_ind

(*****************)

type 'a tableKey =
  | ConstKey of 'a
  | VarKey of Id.t
  | RelKey of Int.t

type inv_rel_key = int (* index in the [rel_context] part of environment
                          starting by the end, {\em inverse}
                          of de Bruijn indice *)

let eq_table_key f ik1 ik2 =
  if ik1 == ik2 then true
  else match ik1,ik2 with
  | ConstKey c1, ConstKey c2 -> f c1 c2
  | VarKey id1, VarKey id2 -> Id.equal id1 id2
  | RelKey k1, RelKey k2 -> Int.equal k1 k2
  | _ -> false

let eq_mind_chk = MutInd.UserOrd.equal
let eq_ind_chk (kn1,i1) (kn2,i2) = Int.equal i1 i2 && eq_mind_chk kn1 kn2

(*******************************************************************)
(** Compatibility layers *)

let eq_constant_key = Constant.UserOrd.equal

(** Compatibility layer for [ModPath] *)

type module_path = ModPath.t =
  | MPfile of DirPath.t
  | MPbound of MBId.t
  | MPdot of module_path * Label.t

(** Compatibility layer for [Constant] *)

module Projection =
struct
  module Repr = struct
    type t =
      { proj_ind : inductive;
        proj_npars : int;
        proj_arg : int;
        proj_name : Label.t; }

    let make proj_ind ~proj_npars ~proj_arg proj_name =
      {proj_ind;proj_npars;proj_arg;proj_name}

    let inductive c = c.proj_ind

    let mind c = fst c.proj_ind

    let constant c = KerPair.change_label (mind c) c.proj_name

    let label c = c.proj_name

    let npars c = c.proj_npars

    let arg c = c.proj_arg

    let equal a b =
      eq_ind a.proj_ind b.proj_ind && Int.equal a.proj_arg b.proj_arg

    let hash p =
      Hashset.Combine.combinesmall p.proj_arg (ind_hash p.proj_ind)

    module SyntacticOrd = struct
      let compare a b =
        let c = ind_syntactic_ord a.proj_ind b.proj_ind in
        if c == 0 then Int.compare a.proj_arg b.proj_arg
        else c

      let equal a b =
        a.proj_arg == b.proj_arg && eq_syntactic_ind a.proj_ind b.proj_ind

      let hash p =
        Hashset.Combine.combinesmall p.proj_arg (ind_hash p.proj_ind)
    end
    module CanOrd = struct
      let compare a b =
        let c = ind_ord a.proj_ind b.proj_ind in
        if c == 0 then Int.compare a.proj_arg b.proj_arg
        else c

      let equal a b =
        a.proj_arg == b.proj_arg && eq_ind a.proj_ind b.proj_ind

      let hash p =
        Hashset.Combine.combinesmall p.proj_arg (ind_hash p.proj_ind)
    end
    module UserOrd = struct
      let compare a b =
        let c = ind_user_ord a.proj_ind b.proj_ind in
        if c == 0 then Int.compare a.proj_arg b.proj_arg
        else c

      let equal a b =
        a.proj_arg == b.proj_arg && eq_user_ind a.proj_ind b.proj_ind

      let hash p =
        Hashset.Combine.combinesmall p.proj_arg (ind_user_hash p.proj_ind)
    end

    let compare a b =
      let c = ind_ord a.proj_ind b.proj_ind in
      if c == 0 then Int.compare a.proj_arg b.proj_arg
      else c

    module Self_Hashcons = struct
      type nonrec t = t
      type u = (inductive -> inductive) * (Id.t -> Id.t)
      let hashcons (hind,hid) p =
        { proj_ind = hind p.proj_ind;
          proj_npars = p.proj_npars;
          proj_arg = p.proj_arg;
          proj_name = hid p.proj_name }
      let eq p p' =
        p == p' || (p.proj_ind == p'.proj_ind && p.proj_npars == p'.proj_npars && p.proj_arg == p'.proj_arg && p.proj_name == p'.proj_name)
      let hash = hash
    end
    module HashRepr = Hashcons.Make(Self_Hashcons)
    let hcons = Hashcons.simple_hcons HashRepr.generate HashRepr.hcons (hcons_ind,Id.hcons)

    let map_npars f p =
      let ind = fst p.proj_ind in
      let npars = p.proj_npars in
      let ind', npars' = f ind npars in
      if ind == ind' && npars == npars' then p
      else {p with proj_ind = (ind',snd p.proj_ind); proj_npars = npars'}

    let map f p = map_npars (fun mind n -> f mind, n) p

    let to_string p = Constant.to_string (constant p)
    let print p = Constant.print (constant p)
  end

  type t = Repr.t * bool

  let make c b = (c, b)

  let mind (c,_) = Repr.mind c
  let inductive (c,_) = Repr.inductive c
  let npars (c,_) = Repr.npars c
  let arg (c,_) = Repr.arg c
  let constant (c,_) = Repr.constant c
  let label (c,_) = Repr.label c
  let repr = fst
  let unfolded = snd
  let unfold (c, b as p) = if b then p else (c, true)

  let equal (c, b) (c', b') = Repr.equal c c' && b == b'

  let repr_equal p p' = Repr.equal (repr p) (repr p')

  let hash (c, b) = (if b then 0 else 1) + Repr.hash c

  module SyntacticOrd = struct
    let compare (c, b) (c', b') =
      if b = b' then Repr.SyntacticOrd.compare c c' else -1
    let equal (c, b as x) (c', b' as x') =
      x == x' || b = b' && Repr.SyntacticOrd.equal c c'
    let hash (c, b) = (if b then 0 else 1) + Repr.SyntacticOrd.hash c
  end
  module CanOrd = struct
    let compare (c, b) (c', b') =
      if b = b' then Repr.CanOrd.compare c c' else -1
    let equal (c, b as x) (c', b' as x') =
      x == x' || b = b' && Repr.CanOrd.equal c c'
    let hash (c, b) = (if b then 0 else 1) + Repr.CanOrd.hash c
  end

  module Self_Hashcons =
    struct
      type nonrec t = t
      type u = Repr.t -> Repr.t
      let hashcons hc (c,b) = (hc c,b)
      let eq ((c,b) as x) ((c',b') as y) =
        x == y || (c == c' && b == b')
      let hash = hash
    end

  module HashProjection = Hashcons.Make(Self_Hashcons)

  let hcons = Hashcons.simple_hcons HashProjection.generate HashProjection.hcons Repr.hcons

  let compare (c, b) (c', b') =
    if b == b' then Repr.compare c c'
    else if b then 1 else -1

  let map f (c, b as x) =
    let c' = Repr.map f c in
    if c' == c then x else (c', b)

  let map_npars f (c, b as x) =
    let c' = Repr.map_npars f c in
    if c' == c then x else (c', b)

  let to_string p = Constant.to_string (constant p)
  let print p = Constant.print (constant p)

end

module GlobRefInternal = struct

  type t =
    | VarRef of variable           (** A reference to the section-context. *)
    | ConstRef of Constant.t       (** A reference to the environment. *)
    | IndRef of inductive          (** A reference to an inductive type. *)
    | ConstructRef of constructor  (** A reference to a constructor of an inductive type. *)

  let equal gr1 gr2 =
    gr1 == gr2 || match gr1,gr2 with
    | ConstRef con1, ConstRef con2 -> Constant.equal con1 con2
    | IndRef kn1, IndRef kn2 -> eq_ind kn1 kn2
    | ConstructRef kn1, ConstructRef kn2 -> eq_constructor kn1 kn2
    | VarRef v1, VarRef v2 -> Id.equal v1 v2
    | (ConstRef _ | IndRef _ | ConstructRef _ | VarRef _), _ -> false

  let global_eq_gen eq_cst eq_ind eq_cons x y =
    x == y ||
    match x, y with
    | ConstRef cx, ConstRef cy -> eq_cst cx cy
    | IndRef indx, IndRef indy -> eq_ind indx indy
    | ConstructRef consx, ConstructRef consy -> eq_cons consx consy
    | VarRef v1, VarRef v2 -> Id.equal v1 v2
    | (VarRef _ | ConstRef _ | IndRef _ | ConstructRef _), _ -> false

  let global_ord_gen ord_cst ord_ind ord_cons x y =
    if x == y then 0
    else match x, y with
    | VarRef v1, VarRef v2 -> Id.compare v1 v2
    | VarRef _, _ -> -1
    | _, VarRef _ -> 1
    | ConstRef cx, ConstRef cy -> ord_cst cx cy
    | ConstRef _, _ -> -1
    | _, ConstRef _ -> 1
    | IndRef indx, IndRef indy -> ord_ind indx indy
    | IndRef _, _ -> -1
    | _ , IndRef _ -> 1
    | ConstructRef consx, ConstructRef consy -> ord_cons consx consy

  let global_hash_gen hash_cst hash_ind hash_cons gr =
    let open Hashset.Combine in
    match gr with
    | ConstRef c -> combinesmall 1 (hash_cst c)
    | IndRef i -> combinesmall 2 (hash_ind i)
    | ConstructRef c -> combinesmall 3 (hash_cons c)
    | VarRef id -> combinesmall 4 (Id.hash id)

end

module GlobRef = struct

  type t = GlobRefInternal.t =
    | VarRef of variable           (** A reference to the section-context. *)
    | ConstRef of Constant.t       (** A reference to the environment. *)
    | IndRef of inductive          (** A reference to an inductive type. *)
    | ConstructRef of constructor  (** A reference to a constructor of an inductive type. *)

  let equal = GlobRefInternal.equal

  (* By default, [global_reference] are ordered on their canonical part *)

  module Ordered = struct
    open Constant.CanOrd
    type t = GlobRefInternal.t
    let compare gr1 gr2 =
      GlobRefInternal.global_ord_gen compare ind_ord constructor_ord gr1 gr2
    let equal gr1 gr2 = GlobRefInternal.global_eq_gen equal eq_ind eq_constructor gr1 gr2
    let hash gr = GlobRefInternal.global_hash_gen hash ind_hash constructor_hash gr
  end

  module Ordered_env = struct
    open Constant.UserOrd
    type t = GlobRefInternal.t
    let compare gr1 gr2 =
      GlobRefInternal.global_ord_gen compare ind_user_ord constructor_user_ord gr1 gr2
    let equal gr1 gr2 =
      GlobRefInternal.global_eq_gen equal eq_user_ind eq_user_constructor gr1 gr2
    let hash gr = GlobRefInternal.global_hash_gen hash ind_user_hash constructor_user_hash gr
  end

  module Map = HMap.Make(Ordered)
  module Set = Map.Set

  (* Alternative sets and maps indexed by the user part of the kernel names *)

  module Map_env = HMap.Make(Ordered_env)
  module Set_env = Map_env.Set

end

type evaluable_global_reference =
  | EvalVarRef of Id.t
  | EvalConstRef of Constant.t

(* Better to have it here that in closure, since used in grammar.cma *)
let eq_egr e1 e2 = match e1, e2 with
    EvalConstRef con1, EvalConstRef con2 -> Constant.equal con1 con2
  | EvalVarRef id1, EvalVarRef id2 -> Id.equal id1 id2
  | _, _ -> false

(** Located identifiers and objects with syntax. *)

type lident = Id.t CAst.t
type lname = Name.t CAst.t
type lstring = string CAst.t