1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Jacek Chrzaszcz, Aug 2002 as part of the implementation of the Coq module system *) (* This module provides the main functions for type-checking module declarations *) open Util open Names open Declarations open Entries open Environ open Modops open Mod_subst type 'alg translation = module_signature * 'alg * delta_resolver * Univ.ContextSet.t let rec mp_from_mexpr = function | MEident mp -> mp | MEapply (expr,_) -> mp_from_mexpr expr | MEwith (expr,_) -> mp_from_mexpr expr let is_modular = function | SFBmodule _ | SFBmodtype _ -> true | SFBconst _ | SFBmind _ -> false (** Split a [structure_body] at some label corresponding to a modular definition or not. *) let split_struc k m struc = let rec split rev_before = function | [] -> raise Not_found | (k',b)::after when Label.equal k k' && (is_modular b) == (m : bool) -> List.rev rev_before,b,after | h::tail -> split (h::rev_before) tail in split [] struc let discr_resolver mtb = match mtb.mod_type with | NoFunctor _ -> mtb.mod_delta | MoreFunctor _ -> empty_delta_resolver let rec rebuild_mp mp l = match l with | []-> mp | i::r -> rebuild_mp (MPdot(mp,Label.of_id i)) r let (+++) = Univ.ContextSet.union let rec check_with_def env struc (idl,(c,ctx)) mp equiv = let lab,idl = match idl with | [] -> assert false | id::idl -> Label.of_id id, idl in try let modular = not (List.is_empty idl) in let before,spec,after = split_struc lab modular struc in let env' = Modops.add_structure mp before equiv env in if List.is_empty idl then (* Toplevel definition *) let cb = match spec with | SFBconst cb -> cb | _ -> error_not_a_constant lab in (* In the spirit of subtyping.check_constant, we accept any implementations of parameters and opaques terms, as long as they have the right type *) let c', univs, ctx' = match cb.const_universes, ctx with | Monomorphic _, None -> let c',cst = match cb.const_body with | Undef _ | OpaqueDef _ -> let j = Typeops.infer env' c in assert (j.uj_val == c); (* relevances should already be correct here *) let typ = cb.const_type in let cst' = Reduction.infer_conv_leq env' (Environ.universes env') j.uj_type typ in j.uj_val, cst' | Def cs -> let c' = Mod_subst.force_constr cs in c, Reduction.infer_conv env' (Environ.universes env') c c' | Primitive _ -> error_incorrect_with_constraint lab in c', Monomorphic Univ.ContextSet.empty, cst | Polymorphic uctx, Some ctx -> let () = if not (UGraph.check_subtype ~lbound:(Environ.universes_lbound env) (Environ.universes env) uctx ctx) then error_incorrect_with_constraint lab in (** Terms are compared in a context with De Bruijn universe indices *) let env' = Environ.push_context ~strict:false (Univ.AUContext.repr uctx) env in let cst = match cb.const_body with | Undef _ | OpaqueDef _ -> let j = Typeops.infer env' c in assert (j.uj_val == c); (* relevances should already be correct here *) let typ = cb.const_type in let cst' = Reduction.infer_conv_leq env' (Environ.universes env') j.uj_type typ in cst' | Def cs -> let c' = Mod_subst.force_constr cs in let cst' = Reduction.infer_conv env' (Environ.universes env') c c' in cst' | Primitive _ -> error_incorrect_with_constraint lab in if not (Univ.Constraint.is_empty cst) then error_incorrect_with_constraint lab; c, Polymorphic ctx, Univ.Constraint.empty | _ -> error_incorrect_with_constraint lab in let def = Def (Mod_subst.from_val c') in (* let ctx' = Univ.UContext.make (newus, cst) in *) let cb' = { cb with const_body = def; const_universes = univs ; const_body_code = Option.map Cemitcodes.from_val (Cbytegen.compile_constant_body ~fail_on_error:false env' cb.const_universes def) } in before@(lab,SFBconst(cb'))::after, c', ctx' else (* Definition inside a sub-module *) let mb = match spec with | SFBmodule mb -> mb | _ -> error_not_a_module (Label.to_string lab) in begin match mb.mod_expr with | Abstract -> let struc = Modops.destr_nofunctor mb.mod_type in let struc',c',cst = check_with_def env' struc (idl,(c,ctx)) (MPdot(mp,lab)) mb.mod_delta in let mb' = { mb with mod_type = NoFunctor struc'; mod_type_alg = None } in before@(lab,SFBmodule mb')::after, c', cst | _ -> error_generative_module_expected lab end with | Not_found -> error_no_such_label lab | Reduction.NotConvertible -> error_incorrect_with_constraint lab let rec check_with_mod env struc (idl,mp1) mp equiv = let lab,idl = match idl with | [] -> assert false | id::idl -> Label.of_id id, idl in try let before,spec,after = split_struc lab true struc in let env' = Modops.add_structure mp before equiv env in let old = match spec with | SFBmodule mb -> mb | _ -> error_not_a_module (Label.to_string lab) in if List.is_empty idl then (* Toplevel module definition *) let mb_mp1 = lookup_module mp1 env in let mtb_mp1 = module_type_of_module mb_mp1 in let cst = match old.mod_expr with | Abstract -> let mtb_old = module_type_of_module old in let chk_cst = Subtyping.check_subtypes env' mtb_mp1 mtb_old in Univ.ContextSet.add_constraints chk_cst old.mod_constraints | Algebraic (NoFunctor (MEident(mp'))) -> check_modpath_equiv env' mp1 mp'; old.mod_constraints | _ -> error_generative_module_expected lab in let mp' = MPdot (mp,lab) in let new_mb = strengthen_and_subst_mb mb_mp1 mp' false in let new_mb' = { new_mb with mod_mp = mp'; mod_expr = Algebraic (NoFunctor (MEident mp1)); mod_constraints = cst } in let new_equiv = add_delta_resolver equiv new_mb.mod_delta in (* we propagate the new equality in the rest of the signature with the identity substitution accompanied by the new resolver*) let id_subst = map_mp mp' mp' new_mb.mod_delta in let new_after = subst_structure id_subst after in before@(lab,SFBmodule new_mb')::new_after, new_equiv, cst else (* Module definition of a sub-module *) let mp' = MPdot (mp,lab) in let old = match spec with | SFBmodule msb -> msb | _ -> error_not_a_module (Label.to_string lab) in begin match old.mod_expr with | Abstract -> let struc = destr_nofunctor old.mod_type in let struc',equiv',cst = check_with_mod env' struc (idl,mp1) mp' old.mod_delta in let new_mb = { old with mod_type = NoFunctor struc'; mod_type_alg = None; mod_delta = equiv' } in let new_equiv = add_delta_resolver equiv equiv' in let id_subst = map_mp mp' mp' equiv' in let new_after = subst_structure id_subst after in before@(lab,SFBmodule new_mb)::new_after, new_equiv, cst | Algebraic (NoFunctor (MEident mp0)) -> let mpnew = rebuild_mp mp0 idl in check_modpath_equiv env' mpnew mp; before@(lab,spec)::after, equiv, Univ.ContextSet.empty | _ -> error_generative_module_expected lab end with | Not_found -> error_no_such_label lab | Reduction.NotConvertible -> error_incorrect_with_constraint lab let check_with env mp (sign,alg,reso,cst) = function |WithDef(idl, (c, ctx)) -> let struc = destr_nofunctor sign in let struc', c', cst' = check_with_def env struc (idl, (c, ctx)) mp reso in let wd' = WithDef (idl, (c', ctx)) in NoFunctor struc', MEwith (alg,wd'), reso, Univ.ContextSet.add_constraints cst' cst |WithMod(idl,mp1) as wd -> let struc = destr_nofunctor sign in let struc',reso',cst' = check_with_mod env struc (idl,mp1) mp reso in NoFunctor struc', MEwith (alg,wd), reso', cst+++cst' let translate_apply env inl (sign,alg,reso,cst1) mp1 mkalg = let farg_id, farg_b, fbody_b = destr_functor sign in let mtb = module_type_of_module (lookup_module mp1 env) in let cst2 = Subtyping.check_subtypes env mtb farg_b in let mp_delta = discr_resolver mtb in let mp_delta = inline_delta_resolver env inl mp1 farg_id farg_b mp_delta in let subst = map_mbid farg_id mp1 mp_delta in let body = subst_signature subst fbody_b in let alg' = mkalg alg mp1 in let reso' = subst_codom_delta_resolver subst reso in body,alg',reso', Univ.ContextSet.add_constraints cst2 cst1 (** Translation of a module struct entry : - We translate to a module when a [module_path] is given, otherwise to a module type. - The first output is the expanded signature - The second output is the algebraic expression, kept for the extraction. *) let mk_alg_app alg arg = MEapply (alg,arg) let rec translate_mse env mpo inl = function |MEident mp1 as me -> let mb = match mpo with |Some mp -> strengthen_and_subst_mb (lookup_module mp1 env) mp false |None -> let mt = lookup_modtype mp1 env in module_body_of_type mt.mod_mp mt in mb.mod_type, me, mb.mod_delta, Univ.ContextSet.empty |MEapply (fe,mp1) -> translate_apply env inl (translate_mse env mpo inl fe) mp1 mk_alg_app |MEwith(me, with_decl) -> assert (mpo == None); (* No 'with' syntax for modules *) let mp = mp_from_mexpr me in check_with env mp (translate_mse env None inl me) with_decl let mk_mod mp e ty cst reso = { mod_mp = mp; mod_expr = e; mod_type = ty; mod_type_alg = None; mod_constraints = cst; mod_delta = reso; mod_retroknowledge = ModBodyRK []; } let mk_modtype mp ty cst reso = let mb = mk_mod mp Abstract ty cst reso in { mb with mod_expr = (); mod_retroknowledge = ModTypeRK } let rec translate_mse_funct env mpo inl mse = function |[] -> let sign,alg,reso,cst = translate_mse env mpo inl mse in sign, NoFunctor alg, reso, cst |(mbid, ty) :: params -> let mp_id = MPbound mbid in let mtb = translate_modtype env mp_id inl ([],ty) in let env' = add_module_type mp_id mtb env in let sign,alg,reso,cst = translate_mse_funct env' mpo inl mse params in let alg' = MoreFunctor (mbid,mtb,alg) in MoreFunctor (mbid, mtb, sign), alg',reso, cst +++ mtb.mod_constraints and translate_modtype env mp inl (params,mte) = let sign,alg,reso,cst = translate_mse_funct env None inl mte params in let mtb = mk_modtype (mp_from_mexpr mte) sign cst reso in let mtb' = subst_modtype_and_resolver mtb mp in { mtb' with mod_type_alg = Some alg } (** [finalize_module] : from an already-translated (or interactive) implementation and an (optional) signature entry, produces a final [module_body] *) let finalize_module env mp (sign,alg,reso,cst) restype = match restype with |None -> let impl = match alg with Some e -> Algebraic e | None -> FullStruct in mk_mod mp impl sign cst reso |Some (params_mte,inl) -> let res_mtb = translate_modtype env mp inl params_mte in let auto_mtb = mk_modtype mp sign Univ.ContextSet.empty reso in let cst' = Subtyping.check_subtypes env auto_mtb res_mtb in let impl = match alg with Some e -> Algebraic e | None -> Struct sign in { res_mtb with mod_mp = mp; mod_expr = impl; mod_retroknowledge = ModBodyRK []; (** cst from module body typing, cst' from subtyping, constraints from module type. *) mod_constraints = Univ.ContextSet.add_constraints cst' (cst +++ res_mtb.mod_constraints) } let translate_module env mp inl = function |MType (params,ty) -> let mtb = translate_modtype env mp inl (params,ty) in module_body_of_type mp mtb |MExpr (params,mse,oty) -> let (sg,alg,reso,cst) = translate_mse_funct env (Some mp) inl mse params in let restype = Option.map (fun ty -> ((params,ty),inl)) oty in finalize_module env mp (sg,Some alg,reso,cst) restype (** We now forbid any Include of functors with restricted signatures. Otherwise, we could end with the creation of undesired axioms (see #3746). Note that restricted non-functorized modules are ok, thanks to strengthening. *) let rec unfunct = function |NoFunctor me -> me |MoreFunctor(_,_,me) -> unfunct me let rec forbid_incl_signed_functor env = function |MEapply(fe,_) -> forbid_incl_signed_functor env fe |MEwith _ -> assert false (* No 'with' syntax for modules *) |MEident mp1 -> let mb = lookup_module mp1 env in match mb.mod_type, mb.mod_type_alg, mb.mod_expr with |MoreFunctor _, Some _, _ -> (* functor + restricted signature = error *) error_include_restricted_functor mp1 |MoreFunctor _, None, Algebraic me -> (* functor, no signature yet, a definition which may be restricted *) forbid_incl_signed_functor env (unfunct me) |_ -> () let rec translate_mse_inclmod env mp inl = function |MEident mp1 -> let mb = strengthen_and_subst_mb (lookup_module mp1 env) mp true in let sign = clean_bounded_mod_expr mb.mod_type in sign,(),mb.mod_delta,Univ.ContextSet.empty |MEapply (fe,arg) -> let ftrans = translate_mse_inclmod env mp inl fe in translate_apply env inl ftrans arg (fun _ _ -> ()) |MEwith _ -> assert false (* No 'with' syntax for modules *) let translate_mse_incl is_mod env mp inl me = if is_mod then let () = forbid_incl_signed_functor env me in translate_mse_inclmod env mp inl me else let mtb = translate_modtype env mp inl ([],me) in let sign = clean_bounded_mod_expr mtb.mod_type in sign,(),mtb.mod_delta,mtb.mod_constraints