1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Claudio Sacerdoti from contents of term.ml, names.ml and new support for constant inlining in functor application, Nov 2004 *) (* Optimizations and bug fixes by Élie Soubiran, from Feb 2008 *) (* This file provides types and functions for managing name substitution in module constructions *) open Pp open Util open Names open Constr (* For Inline, the int is an inlining level, and the constr (if present) is the term into which we should inline. *) type delta_hint = | Inline of int * constr Univ.univ_abstracted option | Equiv of KerName.t (* NB: earlier constructor Prefix_equiv of ModPath.t is now stored in a separate table, see Deltamap.t below *) module Deltamap = struct type t = ModPath.t MPmap.t * delta_hint KNmap.t let empty = MPmap.empty, KNmap.empty let is_empty (mm, km) = MPmap.is_empty mm && KNmap.is_empty km let add_kn kn hint (mm,km) = (mm,KNmap.add kn hint km) let add_mp mp mp' (mm,km) = (MPmap.add mp mp' mm, km) let find_mp mp map = MPmap.find mp (fst map) let find_kn kn map = KNmap.find kn (snd map) let mem_mp mp map = MPmap.mem mp (fst map) let fold_kn f map i = KNmap.fold f (snd map) i let fold fmp fkn (mm,km) i = MPmap.fold fmp mm (KNmap.fold fkn km i) let join map1 map2 = fold add_mp add_kn map1 map2 end (* Invariant: in the [delta_hint] map, an [Equiv] should only relate [KerName.t] with the same label (and section dirpath). *) type delta_resolver = Deltamap.t let empty_delta_resolver = Deltamap.empty module Umap : sig type 'a t val empty : 'a t val is_empty : 'a t -> bool val add_mbi : MBId.t -> 'a -> 'a t -> 'a t val add_mp : ModPath.t -> 'a -> 'a t -> 'a t val find : ModPath.t -> 'a t -> 'a val join : 'a t -> 'a t -> 'a t val fold : (ModPath.t -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b end = struct type 'a t = 'a MPmap.t let empty = MPmap.empty let is_empty m = MPmap.is_empty m let add_mbi mbi x m = MPmap.add (MPbound mbi) x m let add_mp mp x m = MPmap.add mp x m let find = MPmap.find let fold = MPmap.fold let join map1 map2 = fold add_mp map1 map2 end type substitution = (ModPath.t * delta_resolver) Umap.t let empty_subst = Umap.empty let is_empty_subst = Umap.is_empty (* <debug> *) let string_of_hint = function | Inline (_,Some _) -> "inline(Some _)" | Inline _ -> "inline()" | Equiv kn -> KerName.to_string kn let debug_string_of_delta resolve = let kn_to_string kn hint l = (KerName.to_string kn ^ "=>" ^ string_of_hint hint) :: l in let mp_to_string mp mp' l = (ModPath.to_string mp ^ "=>" ^ ModPath.to_string mp') :: l in let l = Deltamap.fold mp_to_string kn_to_string resolve [] in String.concat ", " (List.rev l) let list_contents sub = let one_pair (mp,reso) = (ModPath.to_string mp,debug_string_of_delta reso) in let mp_one_pair mp0 p l = (ModPath.to_string mp0, one_pair p)::l in Umap.fold mp_one_pair sub [] let debug_string_of_subst sub = let l = List.map (fun (s1,(s2,s3)) -> s1^"|->"^s2^"["^s3^"]") (list_contents sub) in "{" ^ String.concat "; " l ^ "}" let debug_pr_delta resolve = str (debug_string_of_delta resolve) let debug_pr_subst sub = let l = list_contents sub in let f (s1,(s2,s3)) = hov 2 (str s1 ++ spc () ++ str "|-> " ++ str s2 ++ spc () ++ str "[" ++ str s3 ++ str "]") in str "{" ++ hov 2 (prlist_with_sep pr_comma f l) ++ str "}" (* </debug> *) (** Extending a [delta_resolver] *) let add_inline_delta_resolver kn (lev,oc) = Deltamap.add_kn kn (Inline (lev,oc)) let add_kn_delta_resolver kn kn' = assert (Label.equal (KerName.label kn) (KerName.label kn')); Deltamap.add_kn kn (Equiv kn') let add_mp_delta_resolver mp1 mp2 = Deltamap.add_mp mp1 mp2 (** Extending a [substitution] without sequential composition *) let add_mbid mbid mp resolve s = Umap.add_mbi mbid (mp,resolve) s let add_mp mp1 mp2 resolve s = Umap.add_mp mp1 (mp2,resolve) s let map_mbid mbid mp resolve = add_mbid mbid mp resolve empty_subst let map_mp mp1 mp2 resolve = add_mp mp1 mp2 resolve empty_subst let mp_in_delta mp = Deltamap.mem_mp mp let kn_in_delta kn resolver = try match Deltamap.find_kn kn resolver with | Equiv _ -> true | Inline _ -> false with Not_found -> false let con_in_delta con resolver = kn_in_delta (Constant.user con) resolver let mind_in_delta mind resolver = kn_in_delta (MutInd.user mind) resolver let mp_of_delta resolve mp = try Deltamap.find_mp mp resolve with Not_found -> mp let find_prefix resolve mp = let rec sub_mp = function | MPdot(mp,l) as mp_sup -> (try Deltamap.find_mp mp_sup resolve with Not_found -> MPdot(sub_mp mp,l)) | p -> Deltamap.find_mp p resolve in try sub_mp mp with Not_found -> mp (** Applying a resolver to a kernel name *) exception Change_equiv_to_inline of (int * constr Univ.univ_abstracted) let solve_delta_kn resolve kn = try match Deltamap.find_kn kn resolve with | Equiv kn1 -> kn1 | Inline (lev, Some c) -> raise (Change_equiv_to_inline (lev,c)) | Inline (_, None) -> raise Not_found with Not_found -> let mp,l = KerName.repr kn in let new_mp = find_prefix resolve mp in if mp == new_mp then kn else KerName.make new_mp l let kn_of_delta resolve kn = try solve_delta_kn resolve kn with Change_equiv_to_inline _ -> kn (** Try a 1st resolver, and then a 2nd in case it had no effect *) let kn_of_deltas resolve1 resolve2 kn = let kn' = kn_of_delta resolve1 kn in if kn' == kn then kn_of_delta resolve2 kn else kn' let constant_of_delta_kn resolve kn = Constant.make kn (kn_of_delta resolve kn) let constant_of_deltas_kn resolve1 resolve2 kn = Constant.make kn (kn_of_deltas resolve1 resolve2 kn) let mind_of_delta_kn resolve kn = MutInd.make kn (kn_of_delta resolve kn) let mind_of_deltas_kn resolve1 resolve2 kn = MutInd.make kn (kn_of_deltas resolve1 resolve2 kn) let inline_of_delta inline resolver = match inline with | None -> [] | Some inl_lev -> let extract kn hint l = match hint with | Inline (lev,_) -> if lev <= inl_lev then (lev,kn)::l else l | _ -> l in Deltamap.fold_kn extract resolver [] let search_delta_inline resolve kn1 kn2 = let find kn = match Deltamap.find_kn kn resolve with | Inline (_,o) -> o | Equiv _ -> raise Not_found in try find kn1 with Not_found -> if kn1 == kn2 then None else try find kn2 with Not_found -> None let subst_mp0 sub mp = (* 's like subst *) let rec aux mp = match mp with | MPfile _ | MPbound _ -> Umap.find mp sub | MPdot (mp1,l) as mp2 -> begin try Umap.find mp2 sub with Not_found -> let mp1',resolve = aux mp1 in MPdot (mp1',l),resolve end in try Some (aux mp) with Not_found -> None let subst_mp sub mp = match subst_mp0 sub mp with None -> mp | Some (mp',_) -> mp' let subst_kn_delta sub kn = let mp,l = KerName.repr kn in match subst_mp0 sub mp with Some (mp',resolve) -> solve_delta_kn resolve (KerName.make mp' l) | None -> kn let subst_kn sub kn = let mp,l = KerName.repr kn in match subst_mp0 sub mp with Some (mp',_) -> (KerName.make mp' l) | None -> kn exception No_subst let subst_dual_mp sub mp1 mp2 = let o1 = subst_mp0 sub mp1 in let o2 = if mp1 == mp2 then o1 else subst_mp0 sub mp2 in match o1, o2 with | None, None -> raise No_subst | Some (mp1',resolve), None -> mp1', mp2, resolve, true | None, Some (mp2',resolve) -> mp1, mp2', resolve, false | Some (mp1',_), Some (mp2',resolve) -> mp1', mp2', resolve, false let progress f x ~orelse = let y = f x in if y != x then y else orelse let subst_mind sub mind = let mpu,l = MutInd.repr2 mind in let mpc = KerName.modpath (MutInd.canonical mind) in try let mpu,mpc,resolve,user = subst_dual_mp sub mpu mpc in let knu = KerName.make mpu l in let knc = if mpu == mpc then knu else KerName.make mpc l in let knc' = progress (kn_of_delta resolve) (if user then knu else knc) ~orelse:knc in MutInd.make knu knc' with No_subst -> mind let subst_ind sub (ind,i as indi) = let ind' = subst_mind sub ind in if ind' == ind then indi else ind',i let subst_pind sub (ind,u) = (subst_ind sub ind, u) let subst_con0 sub cst = let mpu,l = Constant.repr2 cst in let mpc = KerName.modpath (Constant.canonical cst) in let mpu,mpc,resolve,user = subst_dual_mp sub mpu mpc in let knu = KerName.make mpu l in let knc = if mpu == mpc then knu else KerName.make mpc l in match search_delta_inline resolve knu knc with | Some t -> (* In case of inlining, discard the canonical part (cf #2608) *) Constant.make1 knu, Some t | None -> let knc' = progress (kn_of_delta resolve) (if user then knu else knc) ~orelse:knc in let cst' = Constant.make knu knc' in cst', None let subst_con sub cst = try subst_con0 sub cst with No_subst -> cst, None let subst_pcon sub (con,u as pcon) = try let con', _can = subst_con0 sub con in con',u with No_subst -> pcon let subst_constant sub con = try fst (subst_con0 sub con) with No_subst -> con let subst_proj_repr sub p = Projection.Repr.map (subst_mind sub) p let subst_proj sub p = Projection.map (subst_mind sub) p let subst_retro_action subst action = let open Retroknowledge in match action with | Register_ind(prim,ind) -> let ind' = subst_ind subst ind in if ind == ind' then action else Register_ind(prim, ind') | Register_type(prim,c) -> let c' = subst_constant subst c in if c == c' then action else Register_type(prim, c') (* Here the semantics is completely unclear. What does "Hint Unfold t" means when "t" is a parameter? Does the user mean "Unfold X.t" or does she mean "Unfold y" where X.t is later on instantiated with y? I choose the first interpretation (i.e. an evaluable reference is never expanded). *) let subst_evaluable_reference subst = function | EvalVarRef id -> EvalVarRef id | EvalConstRef kn -> EvalConstRef (subst_constant subst kn) let rec map_kn f f' c = let func = map_kn f f' in match kind c with | Const kn -> (try f' kn with No_subst -> c) | Proj (p,t) -> let p' = Projection.map f p in let t' = func t in if p' == p && t' == t then c else mkProj (p', t') | Ind ((kn,i),u) -> let kn' = f kn in if kn'==kn then c else mkIndU ((kn',i),u) | Construct (((kn,i),j),u) -> let kn' = f kn in if kn'==kn then c else mkConstructU (((kn',i),j),u) | Case (ci,p,ct,l) -> let ci_ind = let (kn,i) = ci.ci_ind in let kn' = f kn in if kn'==kn then ci.ci_ind else kn',i in let p' = func p in let ct' = func ct in let l' = Array.Smart.map func l in if (ci.ci_ind==ci_ind && p'==p && l'==l && ct'==ct)then c else mkCase ({ci with ci_ind = ci_ind}, p',ct', l') | Cast (ct,k,t) -> let ct' = func ct in let t'= func t in if (t'==t && ct'==ct) then c else mkCast (ct', k, t') | Prod (na,t,ct) -> let ct' = func ct in let t'= func t in if (t'==t && ct'==ct) then c else mkProd (na, t', ct') | Lambda (na,t,ct) -> let ct' = func ct in let t'= func t in if (t'==t && ct'==ct) then c else mkLambda (na, t', ct') | LetIn (na,b,t,ct) -> let ct' = func ct in let t'= func t in let b'= func b in if (t'==t && ct'==ct && b==b') then c else mkLetIn (na, b', t', ct') | App (ct,l) -> let ct' = func ct in let l' = Array.Smart.map func l in if (ct'== ct && l'==l) then c else mkApp (ct',l') | Evar (e,l) -> let l' = Array.Smart.map func l in if (l'==l) then c else mkEvar (e,l') | Fix (ln,(lna,tl,bl)) -> let tl' = Array.Smart.map func tl in let bl' = Array.Smart.map func bl in if (bl == bl'&& tl == tl') then c else mkFix (ln,(lna,tl',bl')) | CoFix(ln,(lna,tl,bl)) -> let tl' = Array.Smart.map func tl in let bl' = Array.Smart.map func bl in if (bl == bl'&& tl == tl') then c else mkCoFix (ln,(lna,tl',bl')) | _ -> c let subst_mps sub c = let subst_pcon_term sub (con,u) = let con', can = subst_con0 sub con in match can with | None -> mkConstU (con',u) | Some t -> Vars.univ_instantiate_constr u t in if is_empty_subst sub then c else map_kn (subst_mind sub) (subst_pcon_term sub) c let rec replace_mp_in_mp mpfrom mpto mp = match mp with | _ when ModPath.equal mp mpfrom -> mpto | MPdot (mp1,l) -> let mp1' = replace_mp_in_mp mpfrom mpto mp1 in if mp1 == mp1' then mp else MPdot (mp1',l) | _ -> mp let replace_mp_in_kn mpfrom mpto kn = let mp,l = KerName.repr kn in let mp'' = replace_mp_in_mp mpfrom mpto mp in if mp==mp'' then kn else KerName.make mp'' l let rec mp_in_mp mp mp1 = match mp1 with | _ when ModPath.equal mp1 mp -> true | MPdot (mp2,_l) -> mp_in_mp mp mp2 | _ -> false let subset_prefixed_by mp resolver = let mp_prefix mkey mequ rslv = if mp_in_mp mp mkey then Deltamap.add_mp mkey mequ rslv else rslv in let kn_prefix kn hint rslv = match hint with | Inline _ -> rslv | Equiv _ -> if mp_in_mp mp (KerName.modpath kn) then Deltamap.add_kn kn hint rslv else rslv in Deltamap.fold mp_prefix kn_prefix resolver empty_delta_resolver let subst_dom_delta_resolver subst resolver = let mp_apply_subst mkey mequ rslv = Deltamap.add_mp (subst_mp subst mkey) mequ rslv in let kn_apply_subst kkey hint rslv = Deltamap.add_kn (subst_kn subst kkey) hint rslv in Deltamap.fold mp_apply_subst kn_apply_subst resolver empty_delta_resolver let subst_mp_delta sub mp mkey = match subst_mp0 sub mp with None -> empty_delta_resolver,mp | Some (mp',resolve) -> let mp1 = find_prefix resolve mp' in let resolve1 = subset_prefixed_by mp1 resolve in (subst_dom_delta_resolver (map_mp mp1 mkey empty_delta_resolver) resolve1),mp1 let gen_subst_delta_resolver dom subst resolver = let mp_apply_subst mkey mequ rslv = let mkey' = if dom then subst_mp subst mkey else mkey in let rslv',mequ' = subst_mp_delta subst mequ mkey in Deltamap.join rslv' (Deltamap.add_mp mkey' mequ' rslv) in let kn_apply_subst kkey hint rslv = let kkey' = if dom then subst_kn subst kkey else kkey in let hint' = match hint with | Equiv kequ -> (try Equiv (subst_kn_delta subst kequ) with Change_equiv_to_inline (lev,c) -> Inline (lev,Some c)) | Inline (lev,Some t) -> Inline (lev,Some (Univ.map_univ_abstracted (subst_mps subst) t)) | Inline (_,None) -> hint in Deltamap.add_kn kkey' hint' rslv in Deltamap.fold mp_apply_subst kn_apply_subst resolver empty_delta_resolver let subst_codom_delta_resolver = gen_subst_delta_resolver false let subst_dom_codom_delta_resolver = gen_subst_delta_resolver true let update_delta_resolver resolver1 resolver2 = let mp_apply_rslv mkey mequ rslv = Deltamap.add_mp mkey (find_prefix resolver2 mequ) rslv in let kn_apply_rslv kkey hint1 rslv = let hint = match hint1 with | Equiv kequ -> (try Equiv (solve_delta_kn resolver2 kequ) with Change_equiv_to_inline (lev,c) -> Inline (lev, Some c)) | Inline (_,Some _) -> hint1 | Inline (_,None) -> (try Deltamap.find_kn kkey resolver2 with Not_found -> hint1) in Deltamap.add_kn kkey hint rslv in Deltamap.fold mp_apply_rslv kn_apply_rslv resolver1 resolver2 let add_delta_resolver resolver1 resolver2 = if Deltamap.is_empty resolver2 then resolver1 else update_delta_resolver resolver1 resolver2 let substition_prefixed_by k mp subst = let mp_prefixmp kmp (mp_to,reso) sub = if mp_in_mp mp kmp && not (ModPath.equal mp kmp) then let new_key = replace_mp_in_mp mp k kmp in Umap.add_mp new_key (mp_to,reso) sub else sub in Umap.fold mp_prefixmp subst empty_subst let join subst1 subst2 = let apply_subst mpk add (mp,resolve) res = let mp',resolve' = match subst_mp0 subst2 mp with | None -> mp, None | Some (mp',resolve') -> mp', Some resolve' in let resolve'' = match resolve' with | Some res -> add_delta_resolver (subst_dom_codom_delta_resolver subst2 resolve) res | None -> subst_codom_delta_resolver subst2 resolve in let prefixed_subst = substition_prefixed_by mpk mp' subst2 in Umap.join prefixed_subst (add (mp',resolve'') res) in let mp_apply_subst mp = apply_subst mp (Umap.add_mp mp) in let subst = Umap.fold mp_apply_subst subst1 empty_subst in Umap.join subst2 subst type 'a substituted = { mutable subst_value : 'a; mutable subst_subst : substitution list; } let from_val x = { subst_value = x; subst_subst = []; } let force fsubst r = match r.subst_subst with | [] -> r.subst_value | s -> let subst = List.fold_left join empty_subst (List.rev s) in let x = fsubst subst r.subst_value in let () = r.subst_subst <- [] in let () = r.subst_value <- x in x let subst_substituted s r = { r with subst_subst = s :: r.subst_subst; } let force_constr = force subst_mps let subst_constr = subst_substituted (* debug *) let repr_substituted r = match r.subst_subst with | [] -> None, r.subst_value | s -> Some s, r.subst_value