1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Util open Names open Univ open Constr open Vars open Declarations open Declareops open Environ open Reduction open Type_errors open Context.Rel.Declaration type mind_specif = mutual_inductive_body * one_inductive_body (* raise Not_found if not an inductive type *) let lookup_mind_specif env (kn,tyi) = let mib = Environ.lookup_mind kn env in if tyi >= Array.length mib.mind_packets then user_err Pp.(str "Inductive.lookup_mind_specif: invalid inductive index"); (mib, mib.mind_packets.(tyi)) let find_rectype env c = let (t, l) = decompose_app (whd_all env c) in match kind t with | Ind ind -> (ind, l) | _ -> raise Not_found let find_inductive env c = let (t, l) = decompose_app (whd_all env c) in match kind t with | Ind ind when (fst (lookup_mind_specif env (out_punivs ind))).mind_finite <> CoFinite -> (ind, l) | _ -> raise Not_found let find_coinductive env c = let (t, l) = decompose_app (whd_all env c) in match kind t with | Ind ind when (fst (lookup_mind_specif env (out_punivs ind))).mind_finite == CoFinite -> (ind, l) | _ -> raise Not_found let inductive_params (mib,_) = mib.mind_nparams let inductive_paramdecls (mib,u) = Vars.subst_instance_context u mib.mind_params_ctxt let instantiate_inductive_constraints mib u = Univ.AUContext.instantiate u (Declareops.inductive_polymorphic_context mib) (************************************************************************) (* Build the substitution that replaces Rels by the appropriate *) (* inductives *) let ind_subst mind mib u = let ntypes = mib.mind_ntypes in let make_Ik k = mkIndU ((mind,ntypes-k-1),u) in List.init ntypes make_Ik (* Instantiate inductives in constructor type *) let constructor_instantiate mind u mib c = let s = ind_subst mind mib u in substl s (subst_instance_constr u c) let instantiate_params full t u args sign = let fail () = anomaly ~label:"instantiate_params" (Pp.str "type, ctxt and args mismatch.") in let (rem_args, subs, ty) = Context.Rel.fold_outside (fun decl (largs,subs,ty) -> match (decl, largs, kind ty) with | (LocalAssum _, a::args, Prod(_,_,t)) -> (args, a::subs, t) | (LocalDef (_,b,_), _, LetIn(_,_,_,t)) -> (largs, (substl subs (subst_instance_constr u b))::subs, t) | (_,[],_) -> if full then fail() else ([], subs, ty) | _ -> fail ()) sign ~init:(args,[],t) in let () = if not (List.is_empty rem_args) then fail () in substl subs ty let full_inductive_instantiate mib u params sign = let dummy = Sorts.prop in let t = Term.mkArity (Vars.subst_instance_context u sign,dummy) in fst (Term.destArity (instantiate_params true t u params mib.mind_params_ctxt)) let full_constructor_instantiate ((mind,_),u,(mib,_),params) t = let inst_ind = constructor_instantiate mind u mib t in instantiate_params true inst_ind u params mib.mind_params_ctxt (************************************************************************) (************************************************************************) (* Functions to build standard types related to inductive *) (* Computing the actual sort of an applied or partially applied inductive type: I_i: forall uniformparams:utyps, forall otherparams:otyps, Type(a) uniformargs : utyps otherargs : otyps I_1:forall ...,s_1;...I_n:forall ...,s_n |- sort(C_kj(uniformargs)) = s_kj s'_k = max(..s_kj..) merge(..s'_k..) = ..s''_k.. -------------------------------------------------------------------- Gamma |- I_i uniformargs otherargs : phi(s''_i) where - if p=0, phi() = Prop - if p=1, phi(s) = s - if p<>1, phi(s) = sup(Set,s) Remark: Set (predicative) is encoded as Type(0) *) (* Template polymorphism *) (* cons_subst add the mapping [u |-> su] in subst if [u] is not *) (* in the domain or add [u |-> sup x su] if [u] is already mapped *) (* to [x]. *) let cons_subst u su subst = try Univ.LMap.add u (Univ.sup (Univ.LMap.find u subst) su) subst with Not_found -> Univ.LMap.add u su subst (* remember_subst updates the mapping [u |-> x] by [u |-> sup x u] *) (* if it is presents and returns the substitution unchanged if not.*) let remember_subst u subst = try let su = Universe.make u in Univ.LMap.add u (Univ.sup (Univ.LMap.find u subst) su) subst with Not_found -> subst (* Bind expected levels of parameters to actual levels *) (* Propagate the new levels in the signature *) let make_subst env = let rec make subst = function | LocalDef _ :: sign, exp, args -> make subst (sign, exp, args) | _d::sign, None::exp, args -> let args = match args with _::args -> args | [] -> [] in make subst (sign, exp, args) | _d::sign, Some u::exp, a::args -> (* We recover the level of the argument, but we don't change the *) (* level in the corresponding type in the arity; this level in the *) (* arity is a global level which, at typing time, will be enforce *) (* to be greater than the level of the argument; this is probably *) (* a useless extra constraint *) let s = Sorts.univ_of_sort (snd (dest_arity env (Lazy.force a))) in make (cons_subst u s subst) (sign, exp, args) | LocalAssum (_na,_t) :: sign, Some u::exp, [] -> (* No more argument here: we add the remaining universes to the *) (* substitution (when [u] is distinct from all other universes in the *) (* template, it is identity substitution otherwise (ie. when u is *) (* already in the domain of the substitution) [remember_subst] will *) (* update its image [x] by [sup x u] in order not to forget the *) (* dependency in [u] that remains to be fulfilled. *) make (remember_subst u subst) (sign, exp, []) | _sign, [], _ -> (* Uniform parameters are exhausted *) subst | [], _, _ -> assert false in make Univ.LMap.empty exception SingletonInductiveBecomesProp of Id.t let instantiate_universes env ctx ar argsorts = let args = Array.to_list argsorts in let subst = make_subst env (ctx,ar.template_param_levels,args) in let level = Univ.subst_univs_universe (Univ.make_subst subst) ar.template_level in let ty = (* Singleton type not containing types are interpretable in Prop *) if is_type0m_univ level then Sorts.prop (* Non singleton type not containing types are interpretable in Set *) else if is_type0_univ level then Sorts.set (* This is a Type with constraints *) else Sorts.sort_of_univ level in (ctx, ty) (* Type of an inductive type *) let relevance_of_inductive env ind = let _, mip = lookup_mind_specif env ind in mip.mind_relevance let type_of_inductive_gen ?(polyprop=true) env ((_,mip),u) paramtyps = match mip.mind_arity with | RegularArity a -> subst_instance_constr u a.mind_user_arity | TemplateArity ar -> let ctx = List.rev mip.mind_arity_ctxt in let ctx,s = instantiate_universes env ctx ar paramtyps in (* The Ocaml extraction cannot handle (yet?) "Prop-polymorphism", i.e. the situation where a non-Prop singleton inductive becomes Prop when applied to Prop params *) if not polyprop && not (is_type0m_univ ar.template_level) && Sorts.is_prop s then raise (SingletonInductiveBecomesProp mip.mind_typename); Term.mkArity (List.rev ctx,s) let type_of_inductive env pind = type_of_inductive_gen env pind [||] let constrained_type_of_inductive env ((mib,_mip),u as pind) = let ty = type_of_inductive env pind in let cst = instantiate_inductive_constraints mib u in (ty, cst) let constrained_type_of_inductive_knowing_parameters env ((mib,_mip),u as pind) args = let ty = type_of_inductive_gen env pind args in let cst = instantiate_inductive_constraints mib u in (ty, cst) let type_of_inductive_knowing_parameters env ?(polyprop=true) mip args = type_of_inductive_gen ~polyprop env mip args (* The max of an array of universes *) let cumulate_constructor_univ u = let open Sorts in function | SProp | Prop -> (* SProp is non cumulative but allowed in constructors of any inductive (except non-sprop primitive records) *) u | Set -> Universe.sup Universe.type0 u | Type u' -> Universe.sup u u' let max_inductive_sort = Array.fold_left cumulate_constructor_univ Universe.type0m (************************************************************************) (* Type of a constructor *) let type_of_constructor (cstr, u) (mib,mip) = let ind = inductive_of_constructor cstr in let specif = mip.mind_user_lc in let i = index_of_constructor cstr in let nconstr = Array.length mip.mind_consnames in if i > nconstr then user_err Pp.(str "Not enough constructors in the type."); constructor_instantiate (fst ind) u mib specif.(i-1) let constrained_type_of_constructor (_cstr,u as cstru) (mib,_mip as ind) = let ty = type_of_constructor cstru ind in let cst = instantiate_inductive_constraints mib u in (ty, cst) let arities_of_specif (kn,u) (mib,mip) = let specif = mip.mind_nf_lc in let map (ctx, c) = let cty = Term.it_mkProd_or_LetIn c ctx in constructor_instantiate kn u mib cty in Array.map map specif let arities_of_constructors ind specif = arities_of_specif (fst (fst ind), snd ind) specif let type_of_constructors (ind,u) (mib,mip) = let specif = mip.mind_user_lc in Array.map (constructor_instantiate (fst ind) u mib) specif (************************************************************************) (* Type of case predicates *) (* Get type of inductive, with parameters instantiated *) let inductive_sort_family mip = match mip.mind_arity with | RegularArity s -> Sorts.family s.mind_sort | TemplateArity _ -> Sorts.InType let mind_arity mip = mip.mind_arity_ctxt, inductive_sort_family mip let get_instantiated_arity (_ind,u) (mib,mip) params = let sign, s = mind_arity mip in full_inductive_instantiate mib u params sign, s let elim_sort (_,mip) = mip.mind_kelim let is_private (mib,_) = mib.mind_private = Some true let is_primitive_record (mib,_) = match mib.mind_record with | PrimRecord _ -> true | NotRecord | FakeRecord -> false let build_dependent_inductive ind (_,mip) params = let realargs,_ = List.chop mip.mind_nrealdecls mip.mind_arity_ctxt in Term.applist (mkIndU ind, List.map (lift mip.mind_nrealdecls) params @ Context.Rel.to_extended_list mkRel 0 realargs) (* This exception is local *) exception LocalArity of (Sorts.family * Sorts.family * Sorts.family * arity_error) option let check_allowed_sort ksort specif = if not (Sorts.family_leq ksort (elim_sort specif)) then let s = inductive_sort_family (snd specif) in raise (LocalArity (Some(elim_sort specif, ksort,s,error_elim_explain ksort s))) let is_correct_arity env c pj ind specif params = let arsign,_ = get_instantiated_arity ind specif params in let rec srec env pt ar = let pt' = whd_all env pt in match kind pt', ar with | Prod (na1,a1,t), (LocalAssum (_,a1'))::ar' -> let () = try conv env a1 a1' with NotConvertible -> raise (LocalArity None) in srec (push_rel (LocalAssum (na1,a1)) env) t ar' (* The last Prod domain is the type of the scrutinee *) | Prod (na1,a1,a2), [] -> (* whnf of t was not needed here! *) let env' = push_rel (LocalAssum (na1,a1)) env in let ksort = match kind (whd_all env' a2) with | Sort s -> Sorts.family s | _ -> raise (LocalArity None) in let dep_ind = build_dependent_inductive ind specif params in let _ = try conv env a1 dep_ind with NotConvertible -> raise (LocalArity None) in check_allowed_sort ksort specif | _, (LocalDef _ as d)::ar' -> srec (push_rel d env) (lift 1 pt') ar' | _ -> raise (LocalArity None) in try srec env pj.uj_type (List.rev arsign) with LocalArity kinds -> error_elim_arity env ind c pj kinds (************************************************************************) (* Type of case branches *) (* [p] is the predicate, [i] is the constructor number (starting from 0), and [cty] is the type of the constructor (params not instantiated) *) let build_branches_type (ind,u) (_,mip as specif) params p = let build_one_branch i (ctx, c) = let cty = Term.it_mkProd_or_LetIn c ctx in let typi = full_constructor_instantiate (ind,u,specif,params) cty in let (cstrsign,ccl) = Term.decompose_prod_assum typi in let nargs = Context.Rel.length cstrsign in let (_,allargs) = decompose_app ccl in let (lparams,vargs) = List.chop (inductive_params specif) allargs in let cargs = let cstr = ith_constructor_of_inductive ind (i+1) in let dep_cstr = Term.applist (mkConstructU (cstr,u),lparams@(Context.Rel.to_extended_list mkRel 0 cstrsign)) in vargs @ [dep_cstr] in let base = Term.lambda_appvect_assum (mip.mind_nrealdecls+1) (lift nargs p) (Array.of_list cargs) in Term.it_mkProd_or_LetIn base cstrsign in Array.mapi build_one_branch mip.mind_nf_lc (* [p] is the predicate, [c] is the match object, [realargs] is the list of real args of the inductive type *) let build_case_type env n p c realargs = whd_betaiota env (Term.lambda_appvect_assum (n+1) p (Array.of_list (realargs@[c]))) let type_case_branches env (pind,largs) pj c = let specif = lookup_mind_specif env (fst pind) in let nparams = inductive_params specif in let (params,realargs) = List.chop nparams largs in let p = pj.uj_val in let () = is_correct_arity env c pj pind specif params in let lc = build_branches_type pind specif params p in let ty = build_case_type env (snd specif).mind_nrealdecls p c realargs in (lc, ty) (************************************************************************) (* Checking the case annotation is relevant *) let check_case_info env (indsp,u) r ci = let (mib,mip as spec) = lookup_mind_specif env indsp in if not (eq_ind indsp ci.ci_ind) || not (Int.equal mib.mind_nparams ci.ci_npar) || not (Array.equal Int.equal mip.mind_consnrealdecls ci.ci_cstr_ndecls) || not (Array.equal Int.equal mip.mind_consnrealargs ci.ci_cstr_nargs) || not (ci.ci_relevance == r) || is_primitive_record spec then raise (TypeError(env,WrongCaseInfo((indsp,u),ci))) (************************************************************************) (************************************************************************) (* Guard conditions for fix and cofix-points *) (* Check if t is a subterm of Rel n, and gives its specification, assuming lst already gives index of subterms with corresponding specifications of recursive arguments *) (* A powerful notion of subterm *) (* To each inductive definition corresponds an array describing the structure of recursive arguments for each constructor, we call it the recursive spec of the type (it has type recargs vect). For checking the guard, we start from the decreasing argument (Rel n) with its recursive spec. During checking the guardness condition, we collect patterns variables corresponding to subterms of n, each of them with its recursive spec. They are organised in a list lst of type (int * recargs) list which is sorted with respect to the first argument. *) (*************************************************************) (* Environment annotated with marks on recursive arguments *) (* tells whether it is a strict or loose subterm *) type size = Large | Strict (* merging information *) let size_glb s1 s2 = match s1,s2 with Strict, Strict -> Strict | _ -> Large (* possible specifications for a term: - Not_subterm: when the size of a term is not related to the recursive argument of the fixpoint - Subterm: when the term is a subterm of the recursive argument the wf_paths argument specifies which subterms are recursive - Dead_code: when the term has been built by elimination over an empty type *) type subterm_spec = Subterm of (size * wf_paths) | Dead_code | Not_subterm let eq_wf_paths = Rtree.equal Declareops.eq_recarg let inter_recarg r1 r2 = match r1, r2 with | Norec, Norec -> Some r1 | Mrec i1, Mrec i2 | Imbr i1, Imbr i2 | Mrec i1, Imbr i2 -> if Names.eq_ind i1 i2 then Some r1 else None | Imbr i1, Mrec i2 -> if Names.eq_ind i1 i2 then Some r2 else None | _ -> None let inter_wf_paths = Rtree.inter Declareops.eq_recarg inter_recarg Norec let incl_wf_paths = Rtree.incl Declareops.eq_recarg inter_recarg Norec let spec_of_tree t = if eq_wf_paths t mk_norec then Not_subterm else Subterm (Strict, t) let inter_spec s1 s2 = match s1, s2 with | _, Dead_code -> s1 | Dead_code, _ -> s2 | Not_subterm, _ -> s1 | _, Not_subterm -> s2 | Subterm (a1,t1), Subterm (a2,t2) -> Subterm (size_glb a1 a2, inter_wf_paths t1 t2) let subterm_spec_glb = Array.fold_left inter_spec Dead_code type guard_env = { env : env; (* dB of last fixpoint *) rel_min : int; (* dB of variables denoting subterms *) genv : subterm_spec Lazy.t list; } let make_renv env recarg tree = { env = env; rel_min = recarg+2; (* recarg = 0 ==> Rel 1 -> recarg; Rel 2 -> fix *) genv = [Lazy.from_val(Subterm(Large,tree))] } let push_var renv (x,ty,spec) = { env = push_rel (LocalAssum (x,ty)) renv.env; rel_min = renv.rel_min+1; genv = spec:: renv.genv } let assign_var_spec renv (i,spec) = { renv with genv = List.assign renv.genv (i-1) spec } let push_var_renv renv (x,ty) = push_var renv (x,ty,lazy Not_subterm) (* Fetch recursive information about a variable p *) let subterm_var p renv = try Lazy.force (List.nth renv.genv (p-1)) with Failure _ | Invalid_argument _ -> Not_subterm let push_ctxt_renv renv ctxt = let n = Context.Rel.length ctxt in { env = push_rel_context ctxt renv.env; rel_min = renv.rel_min+n; genv = iterate (fun ge -> lazy Not_subterm::ge) n renv.genv } let push_fix_renv renv (_,v,_ as recdef) = let n = Array.length v in { env = push_rec_types recdef renv.env; rel_min = renv.rel_min+n; genv = iterate (fun ge -> lazy Not_subterm::ge) n renv.genv } (* Definition and manipulation of the stack *) type stack_element = |SClosure of guard_env*constr |SArg of subterm_spec Lazy.t let push_stack_closures renv l stack = List.fold_right (fun h b -> (SClosure (renv,h))::b) l stack let push_stack_args l stack = List.fold_right (fun h b -> (SArg h)::b) l stack (******************************) (* {6 Computing the recursive subterms of a term (propagation of size information through Cases).} *) let lookup_subterms env ind = let (_,mip) = lookup_mind_specif env ind in mip.mind_recargs let match_inductive ind ra = match ra with | (Mrec i | Imbr i) -> eq_ind ind i | Norec -> false (* In {match c as z in ci y_s return P with |C_i x_s => t end} [branches_specif renv c_spec ci] returns an array of x_s specs knowing c_spec. *) let branches_specif renv c_spec ci = let car = (* We fetch the regular tree associated to the inductive of the match. This is just to get the number of constructors (and constructor arities) that fit the match branches without forcing c_spec. Note that c_spec might be more precise than [v] below, because of nested inductive types. *) let (_,mip) = lookup_mind_specif renv.env ci.ci_ind in let v = dest_subterms mip.mind_recargs in Array.map List.length v in Array.mapi (fun i nca -> (* i+1-th cstructor has arity nca *) let lvra = lazy (match Lazy.force c_spec with Subterm (_,t) when match_inductive ci.ci_ind (dest_recarg t) -> let vra = Array.of_list (dest_subterms t).(i) in assert (Int.equal nca (Array.length vra)); Array.map spec_of_tree vra | Dead_code -> Array.make nca Dead_code | _ -> Array.make nca Not_subterm) in List.init nca (fun j -> lazy (Lazy.force lvra).(j))) car let check_inductive_codomain env p = let absctx, ar = dest_lam_assum env p in let env = push_rel_context absctx env in let arctx, s = dest_prod_assum env ar in let env = push_rel_context arctx env in let i,_l' = decompose_app (whd_all env s) in isInd i (* The following functions are almost duplicated from indtypes.ml, except that they carry here a poorer environment (containing less information). *) let ienv_push_var (env, lra) (x,a,ra) = (push_rel (LocalAssum (x,a)) env, (Norec,ra)::lra) let ienv_push_inductive (env, ra_env) ((mind,u),lpar) = let mib = Environ.lookup_mind mind env in let ntypes = mib.mind_ntypes in let push_ind specif env = let r = specif.mind_relevance in let anon = Context.make_annot Anonymous r in let decl = LocalAssum (anon, hnf_prod_applist env (type_of_inductive env ((mib,specif),u)) lpar) in push_rel decl env in let env = Array.fold_right push_ind mib.mind_packets env in let rc = Array.mapi (fun j t -> (Imbr (mind,j),t)) (Rtree.mk_rec_calls ntypes) in let lra_ind = Array.rev_to_list rc in let ra_env = List.map (fun (r,t) -> (r,Rtree.lift ntypes t)) ra_env in (env, lra_ind @ ra_env) let rec ienv_decompose_prod (env,_ as ienv) n c = if Int.equal n 0 then (ienv,c) else let c' = whd_all env c in match kind c' with Prod(na,a,b) -> let ienv' = ienv_push_var ienv (na,a,mk_norec) in ienv_decompose_prod ienv' (n-1) b | _ -> assert false let dummy_univ = Level.(make (UGlobal.make (DirPath.make [Id.of_string "implicit"]) 0)) let dummy_implicit_sort = mkType (Universe.make dummy_univ) let lambda_implicit_lift n a = let anon = Context.make_annot Anonymous Sorts.Relevant in let lambda_implicit a = mkLambda (anon, dummy_implicit_sort, a) in iterate lambda_implicit n (lift n a) (* This removes global parameters of the inductive types in lc (for nested inductive types only ) *) let abstract_mind_lc ntyps npars lc = let lc = Array.map (fun (ctx, c) -> Term.it_mkProd_or_LetIn c ctx) lc in if Int.equal npars 0 then lc else let make_abs = List.init ntyps (function i -> lambda_implicit_lift npars (mkRel (i+1))) in Array.map (substl make_abs) lc (* [get_recargs_approx env tree ind args] builds an approximation of the recargs tree for ind, knowing args. The argument tree is used to know when candidate nested types should be traversed, pruning the tree otherwise. This code is very close to check_positive in indtypes.ml, but does no positivity check and does not compute the number of recursive arguments. *) let get_recargs_approx env tree ind args = let rec build_recargs (env, ra_env as ienv) tree c = let x,largs = decompose_app (whd_all env c) in match kind x with | Prod (na,b,d) -> assert (List.is_empty largs); build_recargs (ienv_push_var ienv (na, b, mk_norec)) tree d | Rel k -> (* Free variables are allowed and assigned Norec *) (try snd (List.nth ra_env (k-1)) with Failure _ | Invalid_argument _ -> mk_norec) | Ind ind_kn -> (* When the inferred tree allows it, we consider that we have a potential nested inductive type *) begin match dest_recarg tree with | Imbr kn' | Mrec kn' when eq_ind (fst ind_kn) kn' -> build_recargs_nested ienv tree (ind_kn, largs) | _ -> mk_norec end | _err -> mk_norec and build_recargs_nested (env,_ra_env as ienv) tree (((mind,i),u), largs) = (* If the inferred tree already disallows recursion, no need to go further *) if eq_wf_paths tree mk_norec then tree else let mib = Environ.lookup_mind mind env in let auxnpar = mib.mind_nparams_rec in let nonrecpar = mib.mind_nparams - auxnpar in let (lpar,_) = List.chop auxnpar largs in let auxntyp = mib.mind_ntypes in (* Extends the environment with a variable corresponding to the inductive def *) let (env',_ as ienv') = ienv_push_inductive ienv ((mind,u),lpar) in (* Parameters expressed in env' *) let lpar' = List.map (lift auxntyp) lpar in (* In case of mutual inductive types, we use the recargs tree which was computed statically. This is fine because nested inductive types with mutually recursive containers are not supported. *) let trees = if Int.equal auxntyp 1 then [|dest_subterms tree|] else Array.map (fun mip -> dest_subterms mip.mind_recargs) mib.mind_packets in let mk_irecargs j specif = (* The nested inductive type with parameters removed *) let auxlcvect = abstract_mind_lc auxntyp auxnpar specif.mind_nf_lc in let paths = Array.mapi (fun k c -> let c' = hnf_prod_applist env' c lpar' in (* skip non-recursive parameters *) let (ienv',c') = ienv_decompose_prod ienv' nonrecpar c' in build_recargs_constructors ienv' trees.(j).(k) c') auxlcvect in mk_paths (Imbr (mind,j)) paths in let irecargs = Array.mapi mk_irecargs mib.mind_packets in (Rtree.mk_rec irecargs).(i) and build_recargs_constructors ienv trees c = let rec recargs_constr_rec (env,_ra_env as ienv) trees lrec c = let x,largs = decompose_app (whd_all env c) in match kind x with | Prod (na,b,d) -> let () = assert (List.is_empty largs) in let recarg = build_recargs ienv (List.hd trees) b in let ienv' = ienv_push_var ienv (na,b,mk_norec) in recargs_constr_rec ienv' (List.tl trees) (recarg::lrec) d | _hd -> List.rev lrec in recargs_constr_rec ienv trees [] c in (* starting with ra_env = [] seems safe because any unbounded Rel will be assigned Norec *) build_recargs_nested (env,[]) tree (ind, args) (* [restrict_spec env spec p] restricts the size information in spec to what is allowed to flow through a match with predicate p in environment env. *) let restrict_spec env spec p = if spec = Not_subterm then spec else let absctx, ar = dest_lam_assum env p in (* Optimization: if the predicate is not dependent, no restriction is needed and we avoid building the recargs tree. *) if noccur_with_meta 1 (Context.Rel.length absctx) ar then spec else let env = push_rel_context absctx env in let arctx, s = dest_prod_assum env ar in let env = push_rel_context arctx env in let i,args = decompose_app (whd_all env s) in match kind i with | Ind i -> begin match spec with | Dead_code -> spec | Subterm(st,tree) -> let recargs = get_recargs_approx env tree i args in let recargs = inter_wf_paths tree recargs in Subterm(st,recargs) | _ -> assert false end | _ -> Not_subterm (* [subterm_specif renv t] computes the recursive structure of [t] and compare its size with the size of the initial recursive argument of the fixpoint we are checking. [renv] collects such information about variables. *) let rec subterm_specif renv stack t = (* maybe reduction is not always necessary! *) let f,l = decompose_app (whd_all renv.env t) in match kind f with | Rel k -> subterm_var k renv | Case (ci,p,c,lbr) -> let stack' = push_stack_closures renv l stack in let cases_spec = branches_specif renv (lazy_subterm_specif renv [] c) ci in let stl = Array.mapi (fun i br' -> let stack_br = push_stack_args (cases_spec.(i)) stack' in subterm_specif renv stack_br br') lbr in let spec = subterm_spec_glb stl in restrict_spec renv.env spec p | Fix ((recindxs,i),(_,typarray,bodies as recdef)) -> (* when proving that the fixpoint f(x)=e is less than n, it is enough to prove that e is less than n assuming f is less than n furthermore when f is applied to a term which is strictly less than n, one may assume that x itself is strictly less than n *) if not (check_inductive_codomain renv.env typarray.(i)) then Not_subterm else let (ctxt,clfix) = dest_prod renv.env typarray.(i) in let oind = let env' = push_rel_context ctxt renv.env in try Some(fst(find_inductive env' clfix)) with Not_found -> None in (match oind with None -> Not_subterm (* happens if fix is polymorphic *) | Some (ind, _) -> let nbfix = Array.length typarray in let recargs = lookup_subterms renv.env ind in (* pushing the fixpoints *) let renv' = push_fix_renv renv recdef in let renv' = (* Why Strict here ? To be general, it could also be Large... *) assign_var_spec renv' (nbfix-i, lazy (Subterm(Strict,recargs))) in let decrArg = recindxs.(i) in let theBody = bodies.(i) in let nbOfAbst = decrArg+1 in let sign,strippedBody = Term.decompose_lam_n_assum nbOfAbst theBody in (* pushing the fix parameters *) let stack' = push_stack_closures renv l stack in let renv'' = push_ctxt_renv renv' sign in let renv'' = if List.length stack' < nbOfAbst then renv'' else let decrArg = List.nth stack' decrArg in let arg_spec = stack_element_specif decrArg in assign_var_spec renv'' (1, arg_spec) in subterm_specif renv'' [] strippedBody) | Lambda (x,a,b) -> let () = assert (List.is_empty l) in let spec,stack' = extract_stack stack in subterm_specif (push_var renv (x,a,spec)) stack' b (* Metas and evars are considered OK *) | (Meta _|Evar _) -> Dead_code | Proj (p, c) -> let subt = subterm_specif renv stack c in (match subt with | Subterm (_s, wf) -> (* We take the subterm specs of the constructor of the record *) let wf_args = (dest_subterms wf).(0) in (* We extract the tree of the projected argument *) let n = Projection.arg p in spec_of_tree (List.nth wf_args n) | Dead_code -> Dead_code | Not_subterm -> Not_subterm) | Var _ | Sort _ | Cast _ | Prod _ | LetIn _ | App _ | Const _ | Ind _ | Construct _ | CoFix _ | Int _ -> Not_subterm (* Other terms are not subterms *) and lazy_subterm_specif renv stack t = lazy (subterm_specif renv stack t) and stack_element_specif = function |SClosure (h_renv,h) -> lazy_subterm_specif h_renv [] h |SArg x -> x and extract_stack = function | [] -> Lazy.from_val Not_subterm , [] | h::t -> stack_element_specif h, t (* Check term c can be applied to one of the mutual fixpoints. *) let check_is_subterm x tree = match Lazy.force x with | Subterm (Strict,tree') -> incl_wf_paths tree tree' | Dead_code -> true | _ -> false (************************************************************************) exception FixGuardError of env * guard_error let error_illegal_rec_call renv fx (arg_renv,arg) = let (_,le_vars,lt_vars) = List.fold_left (fun (i,le,lt) sbt -> match Lazy.force sbt with (Subterm(Strict,_) | Dead_code) -> (i+1, le, i::lt) | (Subterm(Large,_)) -> (i+1, i::le, lt) | _ -> (i+1, le ,lt)) (1,[],[]) renv.genv in raise (FixGuardError (renv.env, RecursionOnIllegalTerm(fx,(arg_renv.env, arg), le_vars,lt_vars))) let error_partial_apply renv fx = raise (FixGuardError (renv.env,NotEnoughArgumentsForFixCall fx)) let filter_stack_domain env p stack = let absctx, ar = dest_lam_assum env p in (* Optimization: if the predicate is not dependent, no restriction is needed and we avoid building the recargs tree. *) if noccur_with_meta 1 (Context.Rel.length absctx) ar then stack else let env = push_rel_context absctx env in let rec filter_stack env ar stack = let t = whd_all env ar in match stack, kind t with | elt :: stack', Prod (n,a,c0) -> let d = LocalAssum (n,a) in let ctx, a = dest_prod_assum env a in let env = push_rel_context ctx env in let ty, args = decompose_app (whd_all env a) in let elt = match kind ty with | Ind ind -> let spec' = stack_element_specif elt in (match (Lazy.force spec') with | Not_subterm | Dead_code -> elt | Subterm(s,path) -> let recargs = get_recargs_approx env path ind args in let path = inter_wf_paths path recargs in SArg (lazy (Subterm(s,path)))) | _ -> (SArg (lazy Not_subterm)) in elt :: filter_stack (push_rel d env) c0 stack' | _,_ -> List.fold_right (fun _ l -> SArg (lazy Not_subterm) :: l) stack [] in filter_stack env ar stack (* Check if [def] is a guarded fixpoint body with decreasing arg. given [recpos], the decreasing arguments of each mutually defined fixpoint. *) let check_one_fix renv recpos trees def = let nfi = Array.length recpos in (* Checks if [t] only make valid recursive calls [stack] is the list of constructor's argument specification and arguments that will be applied after reduction. example u in t where we have (match .. with |.. => t end) u *) let rec check_rec_call renv stack t = (* if [t] does not make recursive calls, it is guarded: *) if noccur_with_meta renv.rel_min nfi t then () else let (f,l) = decompose_app (whd_betaiotazeta renv.env t) in match kind f with | Rel p -> (* Test if [p] is a fixpoint (recursive call) *) if renv.rel_min <= p && p < renv.rel_min+nfi then begin List.iter (check_rec_call renv []) l; (* the position of the invoked fixpoint: *) let glob = renv.rel_min+nfi-1-p in (* the decreasing arg of the rec call: *) let np = recpos.(glob) in let stack' = push_stack_closures renv l stack in if List.length stack' <= np then error_partial_apply renv glob else (* Retrieve the expected tree for the argument *) (* Check the decreasing arg is smaller *) let z = List.nth stack' np in if not (check_is_subterm (stack_element_specif z) trees.(glob)) then begin match z with |SClosure (z,z') -> error_illegal_rec_call renv glob (z,z') |SArg _ -> error_partial_apply renv glob end end else begin match lookup_rel p renv.env with | LocalAssum _ -> List.iter (check_rec_call renv []) l | LocalDef (_,c,_) -> try List.iter (check_rec_call renv []) l with FixGuardError _ -> check_rec_call renv stack (Term.applist(lift p c,l)) end | Case (ci,p,c_0,lrest) -> begin try List.iter (check_rec_call renv []) (c_0::p::l); (* compute the recarg info for the arguments of each branch *) let case_spec = branches_specif renv (lazy_subterm_specif renv [] c_0) ci in let stack' = push_stack_closures renv l stack in let stack' = filter_stack_domain renv.env p stack' in lrest |> Array.iteri (fun k br' -> let stack_br = push_stack_args case_spec.(k) stack' in check_rec_call renv stack_br br') with (FixGuardError _ as exn) -> let exn = CErrors.push exn in (* we try hard to reduce the match away by looking for a constructor in c_0 (we unfold definitions too) *) let c_0 = whd_all renv.env c_0 in let hd, _ = decompose_app c_0 in match kind hd with | Construct _ -> (* the call to whd_betaiotazeta will reduce the apparent iota redex away *) check_rec_call renv [] (Term.applist (mkCase (ci,p,c_0,lrest), l)) | _ -> Exninfo.iraise exn end (* Enables to traverse Fixpoint definitions in a more intelligent way, ie, the rule : if - g = fix g (y1:T1)...(yp:Tp) {struct yp} := e & - f is guarded with respect to the set of pattern variables S in a1 ... am & - f is guarded with respect to the set of pattern variables S in T1 ... Tp & - ap is a sub-term of the formal argument of f & - f is guarded with respect to the set of pattern variables S+{yp} in e then f is guarded with respect to S in (g a1 ... am). Eduardo 7/9/98 *) | Fix ((recindxs,i),(_,typarray,bodies as recdef)) -> let decrArg = recindxs.(i) in begin try List.iter (check_rec_call renv []) l; Array.iter (check_rec_call renv []) typarray; let renv' = push_fix_renv renv recdef in let stack' = push_stack_closures renv l stack in bodies |> Array.iteri (fun j body -> if Int.equal i j && (List.length stack' > decrArg) then let recArg = List.nth stack' decrArg in let arg_sp = stack_element_specif recArg in check_nested_fix_body renv' (decrArg+1) arg_sp body else check_rec_call renv' [] body) with (FixGuardError _ as exn) -> let exn = CErrors.push exn in (* we try hard to reduce the fix away by looking for a constructor in l[decrArg] (we unfold definitions too) *) if List.length l <= decrArg then Exninfo.iraise exn; let recArg = List.nth l decrArg in let recArg = whd_all renv.env recArg in let hd, _ = decompose_app recArg in match kind hd with | Construct _ -> let before, after = CList.(firstn decrArg l, skipn (decrArg+1) l) in check_rec_call renv [] (Term.applist (mkFix ((recindxs,i),recdef), (before @ recArg :: after))) | _ -> Exninfo.iraise exn end | Const (kn,_u as cu) -> if evaluable_constant kn renv.env then try List.iter (check_rec_call renv []) l with (FixGuardError _ ) -> let value = (Term.applist(constant_value_in renv.env cu, l)) in check_rec_call renv stack value else List.iter (check_rec_call renv []) l | Lambda (x,a,b) -> let () = assert (List.is_empty l) in check_rec_call renv [] a ; let spec, stack' = extract_stack stack in check_rec_call (push_var renv (x,a,spec)) stack' b | Prod (x,a,b) -> let () = assert (List.is_empty l && List.is_empty stack) in check_rec_call renv [] a; check_rec_call (push_var_renv renv (x,a)) [] b | CoFix (_i,(_,typarray,bodies as recdef)) -> List.iter (check_rec_call renv []) l; Array.iter (check_rec_call renv []) typarray; let renv' = push_fix_renv renv recdef in Array.iter (check_rec_call renv' []) bodies | (Ind _ | Construct _) -> List.iter (check_rec_call renv []) l | Proj (p, c) -> begin try List.iter (check_rec_call renv []) l; check_rec_call renv [] c with (FixGuardError _ as exn) -> let exn = CErrors.push exn in (* we try hard to reduce the proj away by looking for a constructor in c (we unfold definitions too) *) let c = whd_all renv.env c in let hd, _ = decompose_app c in match kind hd with | Construct _ -> check_rec_call renv [] (Term.applist (mkProj(Projection.unfold p,c), l)) | _ -> Exninfo.iraise exn end | Var id -> begin let open! Context.Named.Declaration in match lookup_named id renv.env with | LocalAssum _ -> List.iter (check_rec_call renv []) l | LocalDef (_,c,_) -> try List.iter (check_rec_call renv []) l with (FixGuardError _) -> check_rec_call renv stack (Term.applist(c,l)) end | Sort _ | Int _ -> assert (List.is_empty l) (* l is not checked because it is considered as the meta's context *) | (Evar _ | Meta _) -> () | (App _ | LetIn _ | Cast _) -> assert false (* beta zeta reduction *) and check_nested_fix_body renv decr recArgsDecrArg body = if Int.equal decr 0 then check_rec_call (assign_var_spec renv (1,recArgsDecrArg)) [] body else match kind body with | Lambda (x,a,b) -> check_rec_call renv [] a; let renv' = push_var_renv renv (x,a) in check_nested_fix_body renv' (decr-1) recArgsDecrArg b | _ -> anomaly (Pp.str "Not enough abstractions in fix body.") in check_rec_call renv [] def let judgment_of_fixpoint (_, types, bodies) = Array.map2 (fun typ body -> { uj_val = body ; uj_type = typ }) types bodies let inductive_of_mutfix env ((nvect,bodynum),(names,types,bodies as recdef)) = let nbfix = Array.length bodies in if Int.equal nbfix 0 || not (Int.equal (Array.length nvect) nbfix) || not (Int.equal (Array.length types) nbfix) || not (Int.equal (Array.length names) nbfix) || bodynum < 0 || bodynum >= nbfix then anomaly (Pp.str "Ill-formed fix term."); let fixenv = push_rec_types recdef env in let vdefj = judgment_of_fixpoint recdef in let raise_err env i err = error_ill_formed_rec_body env err names i fixenv vdefj in (* Check the i-th definition with recarg k *) let find_ind i k def = (* check fi does not appear in the k+1 first abstractions, gives the type of the k+1-eme abstraction (must be an inductive) *) let rec check_occur env n def = match kind (whd_all env def) with | Lambda (x,a,b) -> if noccur_with_meta n nbfix a then let env' = push_rel (LocalAssum (x,a)) env in if Int.equal n (k + 1) then (* get the inductive type of the fixpoint *) let (mind, _) = try find_inductive env a with Not_found -> raise_err env i (RecursionNotOnInductiveType a) in let mib,_ = lookup_mind_specif env (out_punivs mind) in if mib.mind_finite != Finite then raise_err env i (RecursionNotOnInductiveType a); (mind, (env', b)) else check_occur env' (n+1) b else anomaly ~label:"check_one_fix" (Pp.str "Bad occurrence of recursive call.") | _ -> raise_err env i NotEnoughAbstractionInFixBody in let ((ind, _), _) as res = check_occur fixenv 1 def in let _, ind = lookup_mind_specif env ind in (* recursive sprop means non record with projections -> squashed *) if Sorts.Irrelevant == ind.mind_relevance then begin if names.(i).Context.binder_relevance == Sorts.Relevant then raise_err env i FixpointOnIrrelevantInductive end; res in (* Do it on every fixpoint *) let rv = Array.map2_i find_ind nvect bodies in (Array.map fst rv, Array.map snd rv) let check_fix env ((nvect,_),(names,_,bodies as recdef) as fix) = let flags = Environ.typing_flags env in if flags.check_guarded then let (minds, rdef) = inductive_of_mutfix env fix in let get_tree (kn,i) = let mib = Environ.lookup_mind kn env in mib.mind_packets.(i).mind_recargs in let trees = Array.map (fun (mind,_) -> get_tree mind) minds in for i = 0 to Array.length bodies - 1 do let (fenv,body) = rdef.(i) in let renv = make_renv fenv nvect.(i) trees.(i) in try check_one_fix renv nvect trees body with FixGuardError (fixenv,err) -> error_ill_formed_rec_body fixenv err names i (push_rec_types recdef env) (judgment_of_fixpoint recdef) done else () (* let cfkey = CProfile.declare_profile "check_fix";; let check_fix env fix = CProfile.profile3 cfkey check_fix env fix;; *) (************************************************************************) (* Co-fixpoints. *) exception CoFixGuardError of env * guard_error let anomaly_ill_typed () = anomaly ~label:"check_one_cofix" (Pp.str "too many arguments applied to constructor.") let rec codomain_is_coind env c = let b = whd_all env c in match kind b with | Prod (x,a,b) -> codomain_is_coind (push_rel (LocalAssum (x,a)) env) b | _ -> (try find_coinductive env b with Not_found -> raise (CoFixGuardError (env, CodomainNotInductiveType b))) let check_one_cofix env nbfix def deftype = let rec check_rec_call env alreadygrd n tree vlra t = if not (noccur_with_meta n nbfix t) then let c,args = decompose_app (whd_all env t) in match kind c with | Rel p when n <= p && p < n+nbfix -> (* recursive call: must be guarded and no nested recursive call allowed *) if not alreadygrd then raise (CoFixGuardError (env,UnguardedRecursiveCall t)) else if not(List.for_all (noccur_with_meta n nbfix) args) then raise (CoFixGuardError (env,NestedRecursiveOccurrences)) | Construct ((_,i as cstr_kn),_u) -> let lra = vlra.(i-1) in let mI = inductive_of_constructor cstr_kn in let (mib,_mip) = lookup_mind_specif env mI in let realargs = List.skipn mib.mind_nparams args in let rec process_args_of_constr = function | (t::lr), (rar::lrar) -> if eq_wf_paths rar mk_norec then if noccur_with_meta n nbfix t then process_args_of_constr (lr, lrar) else raise (CoFixGuardError (env,RecCallInNonRecArgOfConstructor t)) else begin check_rec_call env true n rar (dest_subterms rar) t; process_args_of_constr (lr, lrar) end | [],_ -> () | _ -> anomaly_ill_typed () in process_args_of_constr (realargs, lra) | Lambda (x,a,b) -> let () = assert (List.is_empty args) in if noccur_with_meta n nbfix a then let env' = push_rel (LocalAssum (x,a)) env in check_rec_call env' alreadygrd (n+1) tree vlra b else raise (CoFixGuardError (env,RecCallInTypeOfAbstraction a)) | CoFix (_j,(_,varit,vdefs as recdef)) -> if List.for_all (noccur_with_meta n nbfix) args then if Array.for_all (noccur_with_meta n nbfix) varit then let nbfix = Array.length vdefs in let env' = push_rec_types recdef env in (Array.iter (check_rec_call env' alreadygrd (n+nbfix) tree vlra) vdefs; List.iter (check_rec_call env alreadygrd n tree vlra) args) else raise (CoFixGuardError (env,RecCallInTypeOfDef c)) else raise (CoFixGuardError (env,UnguardedRecursiveCall c)) | Case (_,p,tm,vrest) -> begin let tree = match restrict_spec env (Subterm (Strict, tree)) p with | Dead_code -> assert false | Subterm (_, tree') -> tree' | _ -> raise (CoFixGuardError (env, ReturnPredicateNotCoInductive c)) in if (noccur_with_meta n nbfix p) then if (noccur_with_meta n nbfix tm) then if (List.for_all (noccur_with_meta n nbfix) args) then let vlra = dest_subterms tree in Array.iter (check_rec_call env alreadygrd n tree vlra) vrest else raise (CoFixGuardError (env,RecCallInCaseFun c)) else raise (CoFixGuardError (env,RecCallInCaseArg c)) else raise (CoFixGuardError (env,RecCallInCasePred c)) end | Meta _ -> () | Evar _ -> List.iter (check_rec_call env alreadygrd n tree vlra) args | Rel _ | Var _ | Sort _ | Cast _ | Prod _ | LetIn _ | App _ | Const _ | Ind _ | Fix _ | Proj _ | Int _ -> raise (CoFixGuardError (env,NotGuardedForm t)) in let ((mind, _),_) = codomain_is_coind env deftype in let vlra = lookup_subterms env mind in check_rec_call env false 1 vlra (dest_subterms vlra) def (* The function which checks that the whole block of definitions satisfies the guarded condition *) let check_cofix env (_bodynum,(names,types,bodies as recdef)) = let flags = Environ.typing_flags env in if flags.check_guarded then let nbfix = Array.length bodies in for i = 0 to nbfix-1 do let fixenv = push_rec_types recdef env in try check_one_cofix fixenv nbfix bodies.(i) types.(i) with CoFixGuardError (errenv,err) -> error_ill_formed_rec_body errenv err names i fixenv (judgment_of_fixpoint recdef) done else ()