1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Util open Names open Term open Constr open Vars open Declarations open Declareops open Inductive open Environ open Reduction open Entries open Context.Rel.Declaration (* Terminology: paramdecls (ou paramsctxt?) args = params + realargs (called vargs when an array, largs when a list) params = recparams + nonrecparams nonrecargs = nonrecparams + realargs env_ar = initial env + declaration of inductive types env_ar_par = env_ar + declaration of parameters nmr = ongoing computation of recursive parameters *) (* [weaker_noccur_between env n nvars t] (defined above), checks that no de Bruijn indices between [n] and [n+nvars] occur in [t]. If some such occurrences are found, then reduction is performed (lazily for efficiency purposes) in order to determine whether these occurrences are occurrences in the normal form. If the occurrences are eliminated a witness reduct [Some t'] of [t] is returned otherwise [None] is returned. *) let weaker_noccur_between env x nvars t = if noccur_between x nvars t then Some t else let t' = whd_all env t in if noccur_between x nvars t' then Some t' else None (************************************************************************) (* Various well-formedness check for inductive declarations *) exception InductiveError = Type_errors.InductiveError (************************************************************************) (************************************************************************) (* Positivity *) type ill_formed_ind = | LocalNonPos of int | LocalNotEnoughArgs of int | LocalNotConstructor of Constr.rel_context * int | LocalNonPar of int * int * int exception IllFormedInd of ill_formed_ind (* [mind_extract_params mie] extracts the params from an inductive types declaration, and checks that they are all present (and all the same) for all the given types. *) let mind_extract_params = decompose_prod_n_assum let explain_ind_err id ntyp env nparamsctxt c err = let open Type_errors in let (_lparams,c') = mind_extract_params nparamsctxt c in match err with | LocalNonPos kt -> raise (InductiveError (NonPos (env,c',mkRel (kt+nparamsctxt)))) | LocalNotEnoughArgs kt -> raise (InductiveError (NotEnoughArgs (env,c',mkRel (kt+nparamsctxt)))) | LocalNotConstructor (paramsctxt,nargs)-> let nparams = Context.Rel.nhyps paramsctxt in raise (InductiveError (NotConstructor (env,id,c',mkRel (ntyp+nparamsctxt), nparams,nargs))) | LocalNonPar (n,i,l) -> raise (InductiveError (NonPar (env,c',n,mkRel i,mkRel (l+nparamsctxt)))) let failwith_non_pos n ntypes c = for k = n to n + ntypes - 1 do if not (noccurn k c) then raise (IllFormedInd (LocalNonPos (k-n+1))) done let failwith_non_pos_vect n ntypes v = Array.iter (failwith_non_pos n ntypes) v; anomaly ~label:"failwith_non_pos_vect" (Pp.str "some k in [n;n+ntypes-1] should occur.") let failwith_non_pos_list n ntypes l = List.iter (failwith_non_pos n ntypes) l; anomaly ~label:"failwith_non_pos_list" (Pp.str "some k in [n;n+ntypes-1] should occur.") (* Check the inductive type is called with the expected parameters *) (* [n] is the index of the last inductive type in [env] *) let check_correct_par (env,n,ntypes,_) paramdecls ind_index args = let nparams = Context.Rel.nhyps paramdecls in let args = Array.of_list args in if Array.length args < nparams then raise (IllFormedInd (LocalNotEnoughArgs ind_index)); let (params,realargs) = Array.chop nparams args in let nparamdecls = List.length paramdecls in let rec check param_index paramdecl_index = function | [] -> () | LocalDef _ :: paramdecls -> check param_index (paramdecl_index+1) paramdecls | _::paramdecls -> match kind (whd_all env params.(param_index)) with | Rel w when Int.equal w paramdecl_index -> check (param_index-1) (paramdecl_index+1) paramdecls | _ -> let paramdecl_index_in_env = paramdecl_index-n+nparamdecls+1 in let err = LocalNonPar (param_index+1, paramdecl_index_in_env, ind_index) in raise (IllFormedInd err) in check (nparams-1) (n-nparamdecls) paramdecls; if not (Array.for_all (noccur_between n ntypes) realargs) then failwith_non_pos_vect n ntypes realargs (* Computes the maximum number of recursive parameters: the first parameters which are constant in recursive arguments [n] is the current depth, [nmr] is the maximum number of possible recursive parameters *) let compute_rec_par (env,n,_,_) paramsctxt nmr largs = if Int.equal nmr 0 then 0 else (* start from 0, params will be in reverse order *) let (lpar,_) = List.chop nmr largs in let rec find k index = function ([],_) -> nmr | (_,[]) -> assert false (* |paramsctxt|>=nmr *) | (lp, LocalDef _ :: paramsctxt) -> find k (index-1) (lp,paramsctxt) | (p::lp,_::paramsctxt) -> ( match kind (whd_all env p) with | Rel w when Int.equal w index -> find (k+1) (index-1) (lp,paramsctxt) | _ -> k) in find 0 (n-1) (lpar,List.rev paramsctxt) (* [env] is the typing environment [n] is the dB of the last inductive type [ntypes] is the number of inductive types in the definition (i.e. range of inductives is [n; n+ntypes-1]) [lra] is the list of recursive tree of each variable *) let ienv_push_var (env, n, ntypes, lra) (x,a,ra) = (push_rel (LocalAssum (x,a)) env, n+1, ntypes, (Norec,ra)::lra) let ienv_push_inductive (env, n, ntypes, ra_env) ((mi,u),lrecparams) = let auxntyp = 1 in let specif = (lookup_mind_specif env mi, u) in let ty = type_of_inductive env specif in let env' = let r = (snd (fst specif)).mind_relevance in let anon = Context.make_annot Anonymous r in let decl = LocalAssum (anon, hnf_prod_applist env ty lrecparams) in push_rel decl env in let ra_env' = (Imbr mi,(Rtree.mk_rec_calls 1).(0)) :: List.map (fun (r,t) -> (r,Rtree.lift 1 t)) ra_env in (* New index of the inductive types *) let newidx = n + auxntyp in (env', newidx, ntypes, ra_env') let rec ienv_decompose_prod (env,_,_,_ as ienv) n c = if Int.equal n 0 then (ienv,c) else let c' = whd_all env c in match kind c' with Prod(na,a,b) -> let ienv' = ienv_push_var ienv (na,a,mk_norec) in ienv_decompose_prod ienv' (n-1) b | _ -> assert false let array_min nmr a = if Int.equal nmr 0 then 0 else Array.fold_left (fun k (nmri,_) -> min k nmri) nmr a (** [check_positivity_one ienv paramsctxt (mind,i) nnonrecargs lcnames indlc] checks the positivity of the [i]-th member of the mutually inductive definition [mind]. It returns an [Rtree.t] which represents the position of the recursive calls of inductive in [i] for use by the guard condition (terms at these positions are considered sub-terms) as well as the number of of non-uniform arguments (used to generate induction schemes, so a priori less relevant to the kernel). If [chkpos] is [false] then positivity is assumed, and [check_positivity_one] computes the subterms occurrences in a best-effort fashion. *) let check_positivity_one ~chkpos recursive (env,_,ntypes,_ as ienv) paramsctxt (_,i as ind) nnonrecargs lcnames indlc = let nparamsctxt = Context.Rel.length paramsctxt in let nmr = Context.Rel.nhyps paramsctxt in (** Positivity of one argument [c] of a constructor (i.e. the constructor [cn] has a type of the shape [… -> c … -> P], where, more generally, the arrows may be dependent). *) let rec check_pos (env, n, ntypes, ra_env as ienv) nmr c = let x,largs = decompose_app (whd_all env c) in match kind x with | Prod (na,b,d) -> let () = assert (List.is_empty largs) in (** If one of the inductives of the mutually inductive block occurs in the left-hand side of a product, then such an occurrence is a non-strictly-positive recursive call. Occurrences in the right-hand side of the product must be strictly positive.*) (match weaker_noccur_between env n ntypes b with | None when chkpos -> failwith_non_pos_list n ntypes [b] | None -> check_pos (ienv_push_var ienv (na, b, mk_norec)) nmr d | Some b -> check_pos (ienv_push_var ienv (na, b, mk_norec)) nmr d) | Rel k -> (try let (ra,rarg) = List.nth ra_env (k-1) in let largs = List.map (whd_all env) largs in let nmr1 = (match ra with Mrec _ -> compute_rec_par ienv paramsctxt nmr largs | _ -> nmr) in (** The case where one of the inductives of the mutually inductive block occurs as an argument of another is not known to be safe. So Coq rejects it. *) if chkpos && not (List.for_all (noccur_between n ntypes) largs) then failwith_non_pos_list n ntypes largs else (nmr1,rarg) with Failure _ | Invalid_argument _ -> (nmr,mk_norec)) | Ind ind_kn -> (** If one of the inductives of the mutually inductive block being defined appears in a parameter, then we have a nested inductive type. The positivity is then discharged to the [check_positive_nested] function. *) if List.for_all (noccur_between n ntypes) largs then (nmr,mk_norec) else check_positive_nested ienv nmr (ind_kn, largs) | _err -> (** If an inductive of the mutually inductive block appears in any other way, then the positivy check gives up. *) if not chkpos || (noccur_between n ntypes x && List.for_all (noccur_between n ntypes) largs) then (nmr,mk_norec) else failwith_non_pos_list n ntypes (x::largs) (** [check_positive_nested] handles the case of nested inductive calls, that is, when an inductive types from the mutually inductive block is called as an argument of an inductive types (for the moment, this inductive type must be a previously defined types, not one of the types of the mutually inductive block being defined). *) (* accesses to the environment are not factorised, but is it worth? *) and check_positive_nested (env,n,ntypes,_ra_env as ienv) nmr ((mi,u), largs) = let (mib,mip) = lookup_mind_specif env mi in let auxnrecpar = mib.mind_nparams_rec in let auxnnonrecpar = mib.mind_nparams - auxnrecpar in let (auxrecparams,auxnonrecargs) = try List.chop auxnrecpar largs with Failure _ -> raise (IllFormedInd (LocalNonPos n)) in (** Inductives of the inductive block being defined are only allowed to appear nested in the parameters of another inductive type. Not in the proper indices. *) if chkpos && not (List.for_all (noccur_between n ntypes) auxnonrecargs) then failwith_non_pos_list n ntypes auxnonrecargs; (* Nested mutual inductive types are not supported *) let auxntyp = mib.mind_ntypes in if not (Int.equal auxntyp 1) then raise (IllFormedInd (LocalNonPos n)); (* The nested inductive type with parameters removed *) let auxlcvect = abstract_mind_lc auxntyp auxnrecpar mip.mind_nf_lc in (* Extends the environment with a variable corresponding to the inductive def *) let (env',_,_,_ as ienv') = ienv_push_inductive ienv ((mi,u),auxrecparams) in (* Parameters expressed in env' *) let auxrecparams' = List.map (lift auxntyp) auxrecparams in let irecargs_nmr = (** Checks that the "nesting" inductive type is covariant in the relevant parameters. In other words, that the (nested) parameters which are instantiated with inductives of the mutually inductive block occur positively in the types of the nested constructors. *) Array.map (function c -> let c' = hnf_prod_applist env' c auxrecparams' in (* skip non-recursive parameters *) let (ienv',c') = ienv_decompose_prod ienv' auxnnonrecpar c' in check_constructors ienv' false nmr c') auxlcvect in let irecargs = Array.map snd irecargs_nmr and nmr' = array_min nmr irecargs_nmr in (nmr',(Rtree.mk_rec [|mk_paths (Imbr mi) irecargs|]).(0)) (** [check_constructors ienv check_head nmr c] checks the positivity condition in the type [c] of a constructor (i.e. that recursive calls to the inductives of the mutually inductive definition appear strictly positively in each of the arguments of the constructor, see also [check_pos]). If [check_head] is [true], then the type of the fully applied constructor (the "head" of the type [c]) is checked to be the right (properly applied) inductive type. *) and check_constructors ienv check_head nmr c = let rec check_constr_rec (env,n,ntypes,_ra_env as ienv) nmr lrec c = let x,largs = decompose_app (whd_all env c) in match kind x with | Prod (na,b,d) -> let () = assert (List.is_empty largs) in if not recursive && not (noccur_between n ntypes b) then raise (InductiveError Type_errors.BadEntry); let nmr',recarg = check_pos ienv nmr b in let ienv' = ienv_push_var ienv (na,b,mk_norec) in check_constr_rec ienv' nmr' (recarg::lrec) d | hd -> let () = if check_head then begin match hd with | Rel j when Int.equal j (n + ntypes - i - 1) -> check_correct_par ienv paramsctxt (ntypes - i) largs | _ -> raise (IllFormedInd (LocalNotConstructor(paramsctxt,nnonrecargs))) end else if chkpos && not (List.for_all (noccur_between n ntypes) largs) then failwith_non_pos_list n ntypes largs in (nmr, List.rev lrec) in check_constr_rec ienv nmr [] c in let irecargs_nmr = Array.map2 (fun id c -> let _,rawc = mind_extract_params nparamsctxt c in try check_constructors ienv true nmr rawc with IllFormedInd err -> explain_ind_err id (ntypes-i) env nparamsctxt c err) (Array.of_list lcnames) indlc in let irecargs = Array.map snd irecargs_nmr and nmr' = array_min nmr irecargs_nmr in (nmr', mk_paths (Mrec ind) irecargs) (** [check_positivity ~chkpos kn env_ar paramsctxt inds] checks that the mutually inductive block [inds] is strictly positive. If [chkpos] is [false] then positivity is assumed, and [check_positivity_one] computes the subterms occurrences in a best-effort fashion. *) let check_positivity ~chkpos kn names env_ar_par paramsctxt finite inds = let ntypes = Array.length inds in let recursive = finite != BiFinite in let rc = Array.mapi (fun j t -> (Mrec (kn,j),t)) (Rtree.mk_rec_calls ntypes) in let ra_env_ar = Array.rev_to_list rc in let nparamsctxt = Context.Rel.length paramsctxt in let nmr = Context.Rel.nhyps paramsctxt in let check_one i (_,lcnames) (nindices,lc) = let ra_env_ar_par = List.init nparamsctxt (fun _ -> (Norec,mk_norec)) @ ra_env_ar in let ienv = (env_ar_par, 1+nparamsctxt, ntypes, ra_env_ar_par) in check_positivity_one ~chkpos recursive ienv paramsctxt (kn,i) nindices lcnames lc in let irecargs_nmr = Array.map2_i check_one names inds in let irecargs = Array.map snd irecargs_nmr and nmr' = array_min nmr irecargs_nmr in (nmr',Rtree.mk_rec irecargs) (************************************************************************) (************************************************************************) (* Build the inductive packet *) let repair_arity indices = function | RegularArity ar -> ar.mind_user_arity | TemplateArity ar -> mkArity (indices,Sorts.sort_of_univ ar.template_level) let fold_inductive_blocks f = Array.fold_left (fun acc ((arity,lc),(indices,_),_) -> f (Array.fold_left f acc lc) (repair_arity indices arity)) let used_section_variables env inds = let fold l c = Id.Set.union (Environ.global_vars_set env c) l in let ids = fold_inductive_blocks fold Id.Set.empty inds in keep_hyps env ids let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i)) let rel_list n m = Array.to_list (rel_vect n m) (** From a rel context describing the constructor arguments, build an expansion function. The term built is expecting to be substituted first by a substitution of the form [params, x : ind params] *) let compute_projections (kn, i as ind) mib = let pkt = mib.mind_packets.(i) in let u = Univ.make_abstract_instance (Declareops.inductive_polymorphic_context mib) in let subst = List.init mib.mind_ntypes (fun i -> mkIndU ((kn, mib.mind_ntypes - i - 1), u)) in let (ctx, cty) = pkt.mind_nf_lc.(0) in let cty = it_mkProd_or_LetIn cty ctx in let rctx, _ = decompose_prod_assum (substl subst cty) in let ctx, paramslet = List.chop pkt.mind_consnrealdecls.(0) rctx in (** We build a substitution smashing the lets in the record parameters so that typechecking projections requires just a substitution and not matching with a parameter context. *) let paramsletsubst = (* [Ind inst] is typed in context [params-wo-let] *) let inst' = rel_list 0 mib.mind_nparams in (* {params-wo-let |- subst:params] *) let subst = subst_of_rel_context_instance paramslet inst' in (* {params-wo-let, x:Ind inst' |- subst':(params,x:Ind inst)] *) let subst = (* For the record parameter: *) mkRel 1 :: List.map (lift 1) subst in subst in let projections decl (i, j, labs, rs, pbs, letsubst) = match decl with | LocalDef (_na,c,_t) -> (* From [params, field1,..,fieldj |- c(params,field1,..,fieldj)] to [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] *) let c = liftn 1 j c in (* From [params, x:I, field1,..,fieldj |- c(params,field1,..,fieldj)] to [params-wo-let, x:I |- c(params,proj1 x,..,projj x)] *) let c2 = substl letsubst c in (* From [params-wo-let, x:I |- subst:(params, x:I, field1,..,fieldj)] to [params-wo-let, x:I |- subst:(params, x:I, field1,..,fieldj+1)] *) let letsubst = c2 :: letsubst in (i, j+1, labs, rs, pbs, letsubst) | LocalAssum (na,t) -> match na.Context.binder_name with | Name id -> let r = na.Context.binder_relevance in let lab = Label.of_id id in let kn = Projection.Repr.make ind ~proj_npars:mib.mind_nparams ~proj_arg:i lab in (* from [params, field1,..,fieldj |- t(params,field1,..,fieldj)] to [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj] *) let t = liftn 1 j t in (* from [params, x:I, field1,..,fieldj |- t(params,field1,..,fieldj)] to [params-wo-let, x:I |- t(params,proj1 x,..,projj x)] *) let projty = substl letsubst t in (* from [params, x:I, field1,..,fieldj |- t(field1,..,fieldj)] to [params, x:I |- t(proj1 x,..,projj x)] *) let fterm = mkProj (Projection.make kn false, mkRel 1) in (i + 1, j + 1, lab :: labs, r :: rs, projty :: pbs, fterm :: letsubst) | Anonymous -> assert false (* checked by indTyping *) in let (_, _, labs, rs, pbs, _letsubst) = List.fold_right projections ctx (0, 1, [], [], [], paramsletsubst) in Array.of_list (List.rev labs), Array.of_list (List.rev rs), Array.of_list (List.rev pbs) let build_inductive env names prv univs variance paramsctxt kn isrecord isfinite inds nmr recargs = let ntypes = Array.length inds in (* Compute the set of used section variables *) let hyps = used_section_variables env inds in let nparamargs = Context.Rel.nhyps paramsctxt in (* Check one inductive *) let build_one_packet (id,cnames) ((arity,lc),(indices,splayed_lc),kelim) recarg = (* Type of constructors in normal form *) let nf_lc = Array.map (fun (d, b) -> (d@paramsctxt, b)) splayed_lc in let consnrealdecls = Array.map (fun (d,_) -> Context.Rel.length d) splayed_lc in let consnrealargs = Array.map (fun (d,_) -> Context.Rel.nhyps d) splayed_lc in let mind_relevance = match arity with | RegularArity { mind_sort;_ } -> Sorts.relevance_of_sort mind_sort | TemplateArity _ -> Sorts.Relevant in (* Assigning VM tags to constructors *) let nconst, nblock = ref 0, ref 0 in let transf num = let arity = List.length (dest_subterms recarg).(num) in if Int.equal arity 0 then let p = (!nconst, 0) in incr nconst; p else let p = (!nblock + 1, arity) in incr nblock; p (* les tag des constructeur constant commence a 0, les tag des constructeur non constant a 1 (0 => accumulator) *) in let rtbl = Array.init (List.length cnames) transf in (* Build the inductive packet *) { mind_typename = id; mind_arity = arity; mind_arity_ctxt = indices @ paramsctxt; mind_nrealargs = Context.Rel.nhyps indices; mind_nrealdecls = Context.Rel.length indices; mind_kelim = kelim; mind_consnames = Array.of_list cnames; mind_consnrealdecls = consnrealdecls; mind_consnrealargs = consnrealargs; mind_user_lc = lc; mind_nf_lc = nf_lc; mind_recargs = recarg; mind_relevance; mind_nb_constant = !nconst; mind_nb_args = !nblock; mind_reloc_tbl = rtbl; } in let packets = Array.map3 build_one_packet names inds recargs in let mib = (* Build the mutual inductive *) { mind_record = NotRecord; mind_ntypes = ntypes; mind_finite = isfinite; mind_hyps = hyps; mind_nparams = nparamargs; mind_nparams_rec = nmr; mind_params_ctxt = paramsctxt; mind_packets = packets; mind_universes = univs; mind_variance = variance; mind_private = prv; mind_typing_flags = Environ.typing_flags env; } in let record_info = match isrecord with | Some (Some rid) -> (** The elimination criterion ensures that all projections can be defined. *) let map i id = let labs, rs, projs = compute_projections (kn, i) mib in (id, labs, rs, projs) in PrimRecord (Array.mapi map rid) | Some None -> FakeRecord | None -> NotRecord in { mib with mind_record = record_info } (************************************************************************) (************************************************************************) let check_inductive env kn mie = (* First type-check the inductive definition *) let (env_ar_par, univs, variance, record, paramsctxt, inds) = IndTyping.typecheck_inductive env mie in (* Then check positivity conditions *) let chkpos = (Environ.typing_flags env).check_positive in let names = Array.map_of_list (fun entry -> entry.mind_entry_typename, entry.mind_entry_consnames) mie.mind_entry_inds in let (nmr,recargs) = check_positivity ~chkpos kn names env_ar_par paramsctxt mie.mind_entry_finite (Array.map (fun ((_,lc),(indices,_),_) -> Context.Rel.nhyps indices,lc) inds) in (* Build the inductive packets *) build_inductive env names mie.mind_entry_private univs variance paramsctxt kn record mie.mind_entry_finite inds nmr recargs