1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Univ open Term open Constr open Declarations open Environ open Entries open Type_errors open Context.Rel.Declaration (** Check name unicity. Redundant with safe_typing's add_field checks -> to remove?. *) (* [check_constructors_names id s cl] checks that all the constructors names appearing in [l] are not present in the set [s], and returns the new set of names. The name [id] is the name of the current inductive type, used when reporting the error. *) let check_constructors_names = let rec check idset = function | [] -> idset | c::cl -> if Id.Set.mem c idset then raise (InductiveError (SameNamesConstructors c)) else check (Id.Set.add c idset) cl in check (* [mind_check_names mie] checks the names of an inductive types declaration, and raises the corresponding exceptions when two types or two constructors have the same name. *) let mind_check_names mie = let rec check indset cstset = function | [] -> () | ind::inds -> let id = ind.mind_entry_typename in let cl = ind.mind_entry_consnames in if Id.Set.mem id indset then raise (InductiveError (SameNamesTypes id)) else let cstset' = check_constructors_names cstset cl in check (Id.Set.add id indset) cstset' inds in check Id.Set.empty Id.Set.empty mie.mind_entry_inds (* The above verification is not necessary from the kernel point of vue since inductive and constructors are not referred to by their name, but only by the name of the inductive packet and an index. *) (************************************************************************) (************************** Cumulativity checking************************) (************************************************************************) (* Check arities and constructors *) let check_subtyping_arity_constructor env subst arcn numparams is_arity = let numchecked = ref 0 in let basic_check ev tp = if !numchecked < numparams then () else Reduction.conv_leq ev tp (subst tp); numchecked := !numchecked + 1 in let check_typ typ typ_env = match typ with | LocalAssum (_, typ') -> begin try basic_check typ_env typ'; Environ.push_rel typ typ_env with Reduction.NotConvertible -> CErrors.anomaly ~label:"bad inductive subtyping relation" Pp.(str "Invalid subtyping relation") end | _ -> CErrors.anomaly Pp.(str "") in let typs, codom = Reduction.dest_prod env arcn in let last_env = Context.Rel.fold_outside check_typ typs ~init:env in if not is_arity then basic_check last_env codom else () let check_cumulativity univs variances env_ar params data = let uctx = match univs with | Monomorphic_entry _ -> raise (InductiveError BadUnivs) | Polymorphic_entry (_,uctx) -> uctx in let instance = UContext.instance uctx in if Instance.length instance != Array.length variances then raise (InductiveError BadUnivs); let numparams = Context.Rel.nhyps params in let new_levels = Array.init (Instance.length instance) (fun i -> Level.(make (UGlobal.make DirPath.empty i))) in let lmap = Array.fold_left2 (fun lmap u u' -> LMap.add u u' lmap) LMap.empty (Instance.to_array instance) new_levels in let dosubst = Vars.subst_univs_level_constr lmap in let instance_other = Instance.of_array new_levels in let constraints_other = Univ.subst_univs_level_constraints lmap (UContext.constraints uctx) in let uctx_other = Univ.UContext.make (instance_other, constraints_other) in let env = Environ.push_context uctx_other env_ar in let subtyp_constraints = Univ.enforce_leq_variance_instances variances instance instance_other Constraint.empty in let env = Environ.add_constraints subtyp_constraints env in (* process individual inductive types: *) List.iter (fun (arity,lc) -> check_subtyping_arity_constructor env dosubst arity numparams true; Array.iter (fun cnt -> check_subtyping_arity_constructor env dosubst cnt numparams false) lc) data (************************************************************************) (************************** Type checking *******************************) (************************************************************************) type univ_info = { ind_squashed : bool; ind_has_relevant_arg : bool; ind_min_univ : Universe.t option; (* Some for template *) ind_univ : Universe.t } let check_univ_leq ?(is_real_arg=false) env u info = let ind_univ = info.ind_univ in let info = if not info.ind_has_relevant_arg && is_real_arg && not (Univ.Universe.is_sprop u) then {info with ind_has_relevant_arg=true} else info in (* Inductive types provide explicit lifting from SProp to other universes, so allow SProp <= any. *) if type_in_type env || Univ.Universe.is_sprop u || UGraph.check_leq (universes env) u ind_univ then { info with ind_min_univ = Option.map (Universe.sup u) info.ind_min_univ } else if is_impredicative_univ env ind_univ then if Option.is_empty info.ind_min_univ then { info with ind_squashed = true } else raise (InductiveError BadUnivs) else raise (InductiveError BadUnivs) let check_context_univs ~ctor env info ctx = let check_one d (info,env) = let info = match d with | LocalAssum (_,t) -> (* could be retyping if it becomes available in the kernel *) let tj = Typeops.infer_type env t in check_univ_leq ~is_real_arg:ctor env (Sorts.univ_of_sort tj.utj_type) info | LocalDef _ -> info in info, push_rel d env in fst (Context.Rel.fold_outside ~init:(info,env) check_one ctx) let check_indices_matter env_params info indices = if not (indices_matter env_params) then info else check_context_univs ~ctor:false env_params info indices (* env_ar contains the inductives before the current ones in the block, and no parameters *) let check_arity env_params env_ar ind = let {utj_val=arity;utj_type=_} = Typeops.infer_type env_params ind.mind_entry_arity in let indices, ind_sort = Reduction.dest_arity env_params arity in let ind_min_univ = if ind.mind_entry_template then Some Universe.type0m else None in let univ_info = { ind_squashed=false; ind_has_relevant_arg=false; ind_min_univ; ind_univ=Sorts.univ_of_sort ind_sort; } in let univ_info = check_indices_matter env_params univ_info indices in (* We do not need to generate the universe of the arity with params; if later, after the validation of the inductive definition, full_arity is used as argument or subject to cast, an upper universe will be generated *) let arity = it_mkProd_or_LetIn arity (Environ.rel_context env_params) in let x = Context.make_annot (Name ind.mind_entry_typename) (Sorts.relevance_of_sort ind_sort) in push_rel (LocalAssum (x, arity)) env_ar, (arity, indices, univ_info) let check_constructor_univs env_ar_par info (args,_) = (* We ignore the output, positivity will check that it's the expected inductive type *) check_context_univs ~ctor:true env_ar_par info args let check_constructors env_ar_par isrecord params lc (arity,indices,univ_info) = let lc = Array.map_of_list (fun c -> (Typeops.infer_type env_ar_par c).utj_val) lc in let splayed_lc = Array.map (Reduction.dest_prod_assum env_ar_par) lc in let univ_info = match Array.length lc with (* Empty type: all OK *) | 0 -> univ_info (* SProp primitive records are OK, if we squash and become fakerecord also OK *) | 1 when isrecord -> univ_info (* Unit and identity types must squash if SProp *) | 1 -> check_univ_leq env_ar_par Univ.Universe.type0m univ_info (* More than 1 constructor: must squash if Prop/SProp *) | _ -> check_univ_leq env_ar_par Univ.Universe.type0 univ_info in let univ_info = Array.fold_left (check_constructor_univs env_ar_par) univ_info splayed_lc in (* generalize the constructors over the parameters *) let lc = Array.map (fun c -> Term.it_mkProd_or_LetIn c params) lc in (arity, lc), (indices, splayed_lc), univ_info let check_record data = List.for_all (fun (_,(_,splayed_lc),info) -> (* records must have all projections definable -> equivalent to not being squashed *) not info.ind_squashed (* relevant records must have at least 1 relevant argument *) && (Univ.Universe.is_sprop info.ind_univ || info.ind_has_relevant_arg) && (match splayed_lc with (* records must have 1 constructor with at least 1 argument, and no anonymous fields *) | [|ctx,_|] -> let module D = Context.Rel.Declaration in List.exists D.is_local_assum ctx && List.for_all (fun d -> not (D.is_local_assum d) || not (Name.is_anonymous (D.get_name d))) ctx | _ -> false)) data (* Allowed eliminations *) (* Previous comment: *) (* Unitary/empty Prop: elimination to all sorts are realizable *) (* unless the type is large. If it is large, forbids large elimination *) (* which otherwise allows simulating the inconsistent system Type:Type. *) (* -> this is now handled by is_smashed: *) (* - all_sorts in case of small, unitary Prop (not smashed) *) (* - logical_sorts in case of large, unitary Prop (smashed) *) let allowed_sorts {ind_squashed;ind_univ;ind_min_univ=_;ind_has_relevant_arg=_} = if not ind_squashed then InType else Sorts.family (Sorts.sort_of_univ ind_univ) (* For a level to be template polymorphic, it must be introduced by the definition (so have no constraint except lbound <= l) and not to be constrained from below, so any universe l' <= l can be used as an instance of l. All bounds from above, i.e. l <=/< r will be valid for any l' <= l. *) let unbounded_from_below u cstrs = Univ.Constraint.for_all (fun (l, d, r) -> match d with | Eq -> not (Univ.Level.equal l u) && not (Univ.Level.equal r u) | Lt | Le -> not (Univ.Level.equal r u)) cstrs (* Returns the list [x_1, ..., x_n] of levels contributing to template polymorphism. The elements x_k is None if the k-th parameter (starting from the most recent and ignoring let-definitions) is not contributing to the inductive type's sort or is Some u_k if its level is u_k and is contributing. *) let template_polymorphic_univs ~template_check uctx paramsctxt concl = let check_level l = if Univ.LSet.mem l (Univ.ContextSet.levels uctx) && unbounded_from_below l (Univ.ContextSet.constraints uctx) then Some l else None in let univs = Univ.Universe.levels concl in let univs = if template_check then Univ.LSet.filter (fun l -> Option.has_some (check_level l) || Univ.Level.is_prop l) univs else univs (* Doesn't check the universes can be generalized *) in let fold acc = function | (LocalAssum (_, p)) -> (let c = Term.strip_prod_assum p in match kind c with | Sort (Type u) -> if template_check then (match Univ.Universe.level u with | Some l -> if Univ.LSet.mem l univs && not (Univ.Level.is_prop l) then Some l else None | None -> None) else Univ.Universe.level u | _ -> None) :: acc | LocalDef _ -> acc in let params = List.fold_left fold [] paramsctxt in params, univs let abstract_packets ~template_check univs usubst params ((arity,lc),(indices,splayed_lc),univ_info) = let arity = Vars.subst_univs_level_constr usubst arity in let lc = Array.map (Vars.subst_univs_level_constr usubst) lc in let indices = Vars.subst_univs_level_context usubst indices in let splayed_lc = Array.map (fun (args,out) -> let args = Vars.subst_univs_level_context usubst args in let out = Vars.subst_univs_level_constr usubst out in args,out) splayed_lc in let ind_univ = Univ.subst_univs_level_universe usubst univ_info.ind_univ in let arity = match univ_info.ind_min_univ with | None -> RegularArity {mind_user_arity = arity; mind_sort = Sorts.sort_of_univ ind_univ} | Some min_univ -> let ctx = match univs with | Monomorphic ctx -> ctx | Polymorphic _ -> CErrors.anomaly ~label:"polymorphic_template_ind" Pp.(strbrk "Template polymorphism and full polymorphism are incompatible.") in let param_levels, concl_levels = template_polymorphic_univs ~template_check ctx params min_univ in if template_check && List.for_all (fun x -> Option.is_empty x) param_levels && Univ.LSet.is_empty concl_levels then CErrors.anomaly ~label:"polymorphic_template_ind" Pp.(strbrk "Ill-formed template inductive declaration: not polymorphic on any universe.") else TemplateArity {template_param_levels = param_levels; template_level = min_univ} in let kelim = allowed_sorts univ_info in (arity,lc), (indices,splayed_lc), kelim let typecheck_inductive env (mie:mutual_inductive_entry) = let () = match mie.mind_entry_inds with | [] -> CErrors.anomaly Pp.(str "empty inductive types declaration.") | _ -> () in (* Check unicity of names (redundant with safe_typing's add_field checks) *) mind_check_names mie; assert (List.is_empty (Environ.rel_context env)); let has_template_poly = List.exists (fun oie -> oie.mind_entry_template) mie.mind_entry_inds in (* universes *) let env_univs = match mie.mind_entry_universes with | Monomorphic_entry ctx -> let env = if has_template_poly then set_universes_lbound env Univ.Level.prop else env in push_context_set ctx env | Polymorphic_entry (_, ctx) -> push_context ctx env in (* Params *) let env_params, params = Typeops.check_context env_univs mie.mind_entry_params in (* Arities *) let env_ar, data = List.fold_left_map (check_arity env_params) env_univs mie.mind_entry_inds in let env_ar_par = push_rel_context params env_ar in (* Constructors *) let isrecord = match mie.mind_entry_record with | Some (Some _) -> true | Some None | None -> false in let data = List.map2 (fun ind data -> check_constructors env_ar_par isrecord params ind.mind_entry_lc data) mie.mind_entry_inds data in let record = mie.mind_entry_record in let data, record = match record with | None | Some None -> data, record | Some (Some _) -> if check_record data then data, record else (* if someone tried to declare a record as SProp but it can't be primitive we must squash. *) let data = List.map (fun (a,b,univs) -> a,b,check_univ_leq env_ar_par Univ.Universe.type0m univs) data in data, Some None in let () = match mie.mind_entry_variance with | None -> () | Some variances -> check_cumulativity mie.mind_entry_universes variances env_ar params (List.map pi1 data) in (* Abstract universes *) let usubst, univs = Declareops.abstract_universes mie.mind_entry_universes in let params = Vars.subst_univs_level_context usubst params in let template_check = Environ.check_template env in let data = List.map (abstract_packets ~template_check univs usubst params) data in let env_ar_par = let ctx = Environ.rel_context env_ar_par in let ctx = Vars.subst_univs_level_context usubst ctx in let env = Environ.pop_rel_context (Environ.nb_rel env_ar_par) env_ar_par in Environ.push_rel_context ctx env in env_ar_par, univs, mie.mind_entry_variance, record, params, Array.of_list data