1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Author: Jean-Christophe Filliâtre as part of the rebuilding of Coq around a purely functional abstract type-checker, Aug 1999 *) (* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *) (* Flag for predicativity of Set by Hugo Herbelin in Oct 2003 *) (* Support for virtual machine by Benjamin Grégoire in Oct 2004 *) (* Support for retroknowledge by Arnaud Spiwack in May 2007 *) (* Support for assumption dependencies by Arnaud Spiwack in May 2007 *) (* Miscellaneous maintenance by Bruno Barras, Hugo Herbelin, Jean-Marc Notin, Matthieu Sozeau *) (* This file defines the type of environments on which the type-checker works, together with simple related functions *) open CErrors open Util open Names open Constr open Vars open Declarations open Context.Rel.Declaration module NamedDecl = Context.Named.Declaration (* The type of environments. *) (* The key attached to each constant is used by the VM to retrieve previous *) (* evaluations of the constant. It is essentially an index in the symbols table *) (* used by the VM. *) type key = int CEphemeron.key option ref (** Linking information for the native compiler. *) type link_info = | Linked of string | LinkedInteractive of string | NotLinked type constant_key = Opaqueproof.opaque constant_body * (link_info ref * key) type mind_key = mutual_inductive_body * link_info ref module Globals = struct type view = { constants : constant_key Cmap_env.t ; inductives : mind_key Mindmap_env.t ; modules : module_body MPmap.t ; modtypes : module_type_body MPmap.t } type t = view let view x = x end type stratification = { env_universes : UGraph.t; env_sprop_allowed : bool; env_universes_lbound : Univ.Level.t; env_engagement : engagement } type val_kind = | VKvalue of (Vmvalues.values * Id.Set.t) CEphemeron.key | VKnone type lazy_val = val_kind ref let force_lazy_val vk = match !vk with | VKnone -> None | VKvalue v -> try Some (CEphemeron.get v) with CEphemeron.InvalidKey -> None let dummy_lazy_val () = ref VKnone let build_lazy_val vk key = vk := VKvalue (CEphemeron.create key) type named_context_val = { env_named_ctx : Constr.named_context; env_named_map : (Constr.named_declaration * lazy_val) Id.Map.t; } type rel_context_val = { env_rel_ctx : Constr.rel_context; env_rel_map : (Constr.rel_declaration * lazy_val) Range.t; } type env = { env_globals : Globals.t; env_named_context : named_context_val; (* section variables *) env_rel_context : rel_context_val; env_nb_rel : int; env_stratification : stratification; env_typing_flags : typing_flags; retroknowledge : Retroknowledge.retroknowledge; indirect_pterms : Opaqueproof.opaquetab; native_symbols : Nativevalues.symbols DPmap.t; } let empty_named_context_val = { env_named_ctx = []; env_named_map = Id.Map.empty; } let empty_rel_context_val = { env_rel_ctx = []; env_rel_map = Range.empty; } let empty_env = { env_globals = { Globals.constants = Cmap_env.empty ; inductives = Mindmap_env.empty ; modules = MPmap.empty ; modtypes = MPmap.empty }; env_named_context = empty_named_context_val; env_rel_context = empty_rel_context_val; env_nb_rel = 0; env_stratification = { env_universes = UGraph.initial_universes; env_sprop_allowed = false; env_universes_lbound = Univ.Level.set; env_engagement = PredicativeSet }; env_typing_flags = Declareops.safe_flags Conv_oracle.empty; retroknowledge = Retroknowledge.empty; indirect_pterms = Opaqueproof.empty_opaquetab; native_symbols = DPmap.empty; } (* Rel context *) let push_rel_context_val d ctx = { env_rel_ctx = Context.Rel.add d ctx.env_rel_ctx; env_rel_map = Range.cons (d, ref VKnone) ctx.env_rel_map; } let match_rel_context_val ctx = match ctx.env_rel_ctx with | [] -> None | decl :: rem -> let (_, lval) = Range.hd ctx.env_rel_map in let ctx = { env_rel_ctx = rem; env_rel_map = Range.tl ctx.env_rel_map } in Some (decl, lval, ctx) let push_rel d env = { env with env_rel_context = push_rel_context_val d env.env_rel_context; env_nb_rel = env.env_nb_rel + 1 } let lookup_rel n env = try fst (Range.get env.env_rel_context.env_rel_map (n - 1)) with Invalid_argument _ -> raise Not_found let lookup_rel_val n env = try snd (Range.get env.env_rel_context.env_rel_map (n - 1)) with Invalid_argument _ -> raise Not_found let rel_skipn n ctx = { env_rel_ctx = Util.List.skipn n ctx.env_rel_ctx; env_rel_map = Range.skipn n ctx.env_rel_map; } let env_of_rel n env = { env with env_rel_context = rel_skipn n env.env_rel_context; env_nb_rel = env.env_nb_rel - n } (* Named context *) let push_named_context_val_val d rval ctxt = (* assert (not (Id.Map.mem (NamedDecl.get_id d) ctxt.env_named_map)); *) { env_named_ctx = Context.Named.add d ctxt.env_named_ctx; env_named_map = Id.Map.add (NamedDecl.get_id d) (d, rval) ctxt.env_named_map; } let push_named_context_val d ctxt = push_named_context_val_val d (ref VKnone) ctxt let match_named_context_val c = match c.env_named_ctx with | [] -> None | decl :: ctx -> let (_, v) = Id.Map.find (NamedDecl.get_id decl) c.env_named_map in let map = Id.Map.remove (NamedDecl.get_id decl) c.env_named_map in let cval = { env_named_ctx = ctx; env_named_map = map } in Some (decl, v, cval) let map_named_val f ctxt = let open Context.Named.Declaration in let fold accu d = let d' = f d in let accu = if d == d' then accu else Id.Map.modify (get_id d) (fun _ (_, v) -> (d', v)) accu in (accu, d') in let map, ctx = List.fold_left_map fold ctxt.env_named_map ctxt.env_named_ctx in if map == ctxt.env_named_map then ctxt else { env_named_ctx = ctx; env_named_map = map } let push_named d env = {env with env_named_context = push_named_context_val d env.env_named_context} let lookup_named id env = fst (Id.Map.find id env.env_named_context.env_named_map) let lookup_named_val id env = snd(Id.Map.find id env.env_named_context.env_named_map) let lookup_named_ctxt id ctxt = fst (Id.Map.find id ctxt.env_named_map) let fold_constants f env acc = Cmap_env.fold (fun c (body,_) acc -> f c body acc) env.env_globals.Globals.constants acc let fold_inductives f env acc = Mindmap_env.fold (fun c (body,_) acc -> f c body acc) env.env_globals.Globals.inductives acc (* Global constants *) let lookup_constant_key kn env = Cmap_env.get kn env.env_globals.Globals.constants let lookup_constant kn env = fst (lookup_constant_key kn env) let mem_constant kn env = Cmap_env.mem kn env.env_globals.Globals.constants (* Mutual Inductives *) let lookup_mind_key kn env = Mindmap_env.get kn env.env_globals.Globals.inductives let lookup_mind kn env = fst (lookup_mind_key kn env) let mem_mind kn env = Mindmap_env.mem kn env.env_globals.Globals.inductives let mind_context env mind = let mib = lookup_mind mind env in Declareops.inductive_polymorphic_context mib let oracle env = env.env_typing_flags.conv_oracle let set_oracle env o = let env_typing_flags = { env.env_typing_flags with conv_oracle = o } in { env with env_typing_flags } let engagement env = env.env_stratification.env_engagement let typing_flags env = env.env_typing_flags let is_impredicative_set env = match engagement env with | ImpredicativeSet -> true | _ -> false let is_impredicative_sort env = function | Sorts.SProp | Sorts.Prop -> true | Sorts.Set -> is_impredicative_set env | Sorts.Type _ -> false let is_impredicative_univ env u = is_impredicative_sort env (Sorts.sort_of_univ u) let type_in_type env = not (typing_flags env).check_universes let deactivated_guard env = not (typing_flags env).check_guarded let indices_matter env = env.env_typing_flags.indices_matter let check_template env = env.env_typing_flags.check_template let universes env = env.env_stratification.env_universes let universes_lbound env = env.env_stratification.env_universes_lbound let set_universes_lbound env lbound = let env_stratification = { env.env_stratification with env_universes_lbound = lbound } in { env with env_stratification } let named_context env = env.env_named_context.env_named_ctx let named_context_val env = env.env_named_context let rel_context env = env.env_rel_context.env_rel_ctx let opaque_tables env = env.indirect_pterms let set_opaque_tables env indirect_pterms = { env with indirect_pterms } let empty_context env = match env.env_rel_context.env_rel_ctx, env.env_named_context.env_named_ctx with | [], [] -> true | _ -> false (* Rel context *) let evaluable_rel n env = is_local_def (lookup_rel n env) let nb_rel env = env.env_nb_rel let push_rel_context ctxt x = Context.Rel.fold_outside push_rel ctxt ~init:x let push_rec_types (lna,typarray,_) env = let ctxt = Array.map2_i (fun i na t -> LocalAssum (na, lift i t)) lna typarray in Array.fold_left (fun e assum -> push_rel assum e) env ctxt let fold_rel_context f env ~init = let rec fold_right env = match match_rel_context_val env.env_rel_context with | None -> init | Some (rd, _, rc) -> let env = { env with env_rel_context = rc; env_nb_rel = env.env_nb_rel - 1 } in f env rd (fold_right env) in fold_right env (* Named context *) let named_context_of_val c = c.env_named_ctx let ids_of_named_context_val c = Id.Map.domain c.env_named_map let empty_named_context = Context.Named.empty let push_named_context = List.fold_right push_named let val_of_named_context ctxt = List.fold_right push_named_context_val ctxt empty_named_context_val let eq_named_context_val c1 c2 = c1 == c2 || Context.Named.equal Constr.equal (named_context_of_val c1) (named_context_of_val c2) (* A local const is evaluable if it is defined *) let named_type id env = let open Context.Named.Declaration in get_type (lookup_named id env) let named_body id env = let open Context.Named.Declaration in get_value (lookup_named id env) let evaluable_named id env = match named_body id env with | Some _ -> true | _ -> false let reset_with_named_context ctxt env = { env with env_named_context = ctxt; env_rel_context = empty_rel_context_val; env_nb_rel = 0 } let reset_context = reset_with_named_context empty_named_context_val let pop_rel_context n env = let rec skip n ctx = if Int.equal n 0 then ctx else match match_rel_context_val ctx with | None -> invalid_arg "List.skipn" | Some (_, _, ctx) -> skip (pred n) ctx in let ctxt = env.env_rel_context in { env with env_rel_context = skip n ctxt; env_nb_rel = env.env_nb_rel - n } let fold_named_context f env ~init = let rec fold_right env = match match_named_context_val env.env_named_context with | None -> init | Some (d, _v, rem) -> let env = reset_with_named_context rem env in f env d (fold_right env) in fold_right env let fold_named_context_reverse f ~init env = Context.Named.fold_inside f ~init:init (named_context env) (* Universe constraints *) let map_universes f env = let s = env.env_stratification in { env with env_stratification = { s with env_universes = f s.env_universes } } let add_constraints c env = if Univ.Constraint.is_empty c then env else map_universes (UGraph.merge_constraints c) env let check_constraints c env = UGraph.check_constraints c env.env_stratification.env_universes let push_constraints_to_env (_,univs) env = add_constraints univs env let add_universes ~lbound ~strict ctx g = let g = Array.fold_left (fun g v -> UGraph.add_universe ~lbound ~strict v g) g (Univ.Instance.to_array (Univ.UContext.instance ctx)) in UGraph.merge_constraints (Univ.UContext.constraints ctx) g let push_context ?(strict=false) ctx env = map_universes (add_universes ~lbound:(universes_lbound env) ~strict ctx) env let add_universes_set ~lbound ~strict ctx g = let g = Univ.LSet.fold (* Be lenient, module typing reintroduces universes and constraints due to includes *) (fun v g -> try UGraph.add_universe ~lbound ~strict v g with UGraph.AlreadyDeclared -> g) (Univ.ContextSet.levels ctx) g in UGraph.merge_constraints (Univ.ContextSet.constraints ctx) g let push_context_set ?(strict=false) ctx env = map_universes (add_universes_set ~lbound:(universes_lbound env) ~strict ctx) env let push_subgraph (levels,csts) env = let lbound = universes_lbound env in let add_subgraph g = let newg = Univ.LSet.fold (fun v g -> UGraph.add_universe ~lbound ~strict:false v g) levels g in let newg = UGraph.merge_constraints csts newg in (if not (Univ.Constraint.is_empty csts) then let restricted = UGraph.constraints_for ~kept:(UGraph.domain g) newg in (if not (UGraph.check_constraints restricted g) then CErrors.anomaly Pp.(str "Local constraints imply new transitive constraints."))); newg in map_universes add_subgraph env let set_engagement c env = (* Unsafe *) { env with env_stratification = { env.env_stratification with env_engagement = c } } (* It's convenient to use [{flags with foo = bar}] so we're smart wrt to it. *) let same_flags { check_guarded; check_positive; check_universes; conv_oracle; indices_matter; share_reduction; enable_VM; enable_native_compiler; check_template; } alt = check_guarded == alt.check_guarded && check_positive == alt.check_positive && check_universes == alt.check_universes && conv_oracle == alt.conv_oracle && indices_matter == alt.indices_matter && share_reduction == alt.share_reduction && enable_VM == alt.enable_VM && enable_native_compiler == alt.enable_native_compiler && check_template == alt.check_template [@warning "+9"] let set_typing_flags c env = (* Unsafe *) if same_flags env.env_typing_flags c then env else { env with env_typing_flags = c } let make_sprop_cumulative = map_universes UGraph.make_sprop_cumulative let set_allow_sprop b env = { env with env_stratification = { env.env_stratification with env_sprop_allowed = b } } let sprop_allowed env = env.env_stratification.env_sprop_allowed (* Global constants *) let no_link_info = NotLinked let add_constant_key kn cb linkinfo env = let new_constants = Cmap_env.add kn (cb,(ref linkinfo, ref None)) env.env_globals.Globals.constants in let new_globals = { env.env_globals with Globals.constants = new_constants } in { env with env_globals = new_globals } let add_constant kn cb env = add_constant_key kn cb no_link_info env (* constant_type gives the type of a constant *) let constant_type env (kn,u) = let cb = lookup_constant kn env in let uctx = Declareops.constant_polymorphic_context cb in let csts = Univ.AUContext.instantiate u uctx in (subst_instance_constr u cb.const_type, csts) type const_evaluation_result = | NoBody | Opaque | IsPrimitive of CPrimitives.t exception NotEvaluableConst of const_evaluation_result let constant_value_and_type env (kn, u) = let cb = lookup_constant kn env in let uctx = Declareops.constant_polymorphic_context cb in let cst = Univ.AUContext.instantiate u uctx in let b' = match cb.const_body with | Def l_body -> Some (subst_instance_constr u (Mod_subst.force_constr l_body)) | OpaqueDef _ -> None | Undef _ | Primitive _ -> None in b', subst_instance_constr u cb.const_type, cst (* These functions should be called under the invariant that [env] already contains the constraints corresponding to the constant application. *) (* constant_type gives the type of a constant *) let constant_type_in env (kn,u) = let cb = lookup_constant kn env in subst_instance_constr u cb.const_type let constant_value_in env (kn,u) = let cb = lookup_constant kn env in match cb.const_body with | Def l_body -> let b = Mod_subst.force_constr l_body in subst_instance_constr u b | OpaqueDef _ -> raise (NotEvaluableConst Opaque) | Undef _ -> raise (NotEvaluableConst NoBody) | Primitive p -> raise (NotEvaluableConst (IsPrimitive p)) let constant_opt_value_in env cst = try Some (constant_value_in env cst) with NotEvaluableConst _ -> None (* A global const is evaluable if it is defined and not opaque *) let evaluable_constant kn env = let cb = lookup_constant kn env in match cb.const_body with | Def _ -> true | OpaqueDef _ -> false | Undef _ | Primitive _ -> false let is_primitive env c = let cb = lookup_constant c env in match cb.Declarations.const_body with | Declarations.Primitive _ -> true | _ -> false let polymorphic_constant cst env = Declareops.constant_is_polymorphic (lookup_constant cst env) let polymorphic_pconstant (cst,u) env = if Univ.Instance.is_empty u then false else polymorphic_constant cst env let type_in_type_constant cst env = not (lookup_constant cst env).const_typing_flags.check_universes let lookup_projection p env = let mind,i = Projection.inductive p in let mib = lookup_mind mind env in (if not (Int.equal mib.mind_nparams (Projection.npars p)) then anomaly ~label:"lookup_projection" Pp.(str "Bad number of parameters on projection.")); match mib.mind_record with | NotRecord | FakeRecord -> anomaly ~label:"lookup_projection" Pp.(str "not a projection") | PrimRecord infos -> let _,_,_,typs = infos.(i) in typs.(Projection.arg p) let get_projection env ind ~proj_arg = let mib = lookup_mind (fst ind) env in Declareops.inductive_make_projection ind mib ~proj_arg let get_projections env ind = let mib = lookup_mind (fst ind) env in Declareops.inductive_make_projections ind mib (* Mutual Inductives *) let polymorphic_ind (mind,_i) env = Declareops.inductive_is_polymorphic (lookup_mind mind env) let polymorphic_pind (ind,u) env = if Univ.Instance.is_empty u then false else polymorphic_ind ind env let type_in_type_ind (mind,_i) env = not (lookup_mind mind env).mind_typing_flags.check_universes let template_checked_ind (mind,_i) env = (lookup_mind mind env).mind_typing_flags.check_template let template_polymorphic_ind (mind,i) env = match (lookup_mind mind env).mind_packets.(i).mind_arity with | TemplateArity _ -> true | RegularArity _ -> false let template_polymorphic_variables (mind,i) env = match (lookup_mind mind env).mind_packets.(i).mind_arity with | TemplateArity { Declarations.template_param_levels = l; _ } -> List.map_filter (fun level -> level) l | RegularArity _ -> [] let template_polymorphic_pind (ind,u) env = if not (Univ.Instance.is_empty u) then false else template_polymorphic_ind ind env let add_mind_key kn (_mind, _ as mind_key) env = let new_inds = Mindmap_env.add kn mind_key env.env_globals.Globals.inductives in let new_globals = { env.env_globals with Globals.inductives = new_inds; } in { env with env_globals = new_globals } let add_mind kn mib env = let li = ref no_link_info in add_mind_key kn (mib, li) env (* Lookup of section variables *) let lookup_constant_variables c env = let cmap = lookup_constant c env in Context.Named.to_vars cmap.const_hyps let lookup_inductive_variables (kn,_i) env = let mis = lookup_mind kn env in Context.Named.to_vars mis.mind_hyps let lookup_constructor_variables (ind,_) env = lookup_inductive_variables ind env (* Universes *) let constant_context env c = let cb = lookup_constant c env in Declareops.constant_polymorphic_context cb let universes_of_global env r = let open GlobRef in match r with | VarRef _ -> Univ.AUContext.empty | ConstRef c -> constant_context env c | IndRef (mind,_) | ConstructRef ((mind,_),_) -> let mib = lookup_mind mind env in Declareops.inductive_polymorphic_context mib (* Returns the list of global variables in a term *) let vars_of_global env gr = let open GlobRef in match gr with | VarRef id -> Id.Set.singleton id | ConstRef kn -> lookup_constant_variables kn env | IndRef ind -> lookup_inductive_variables ind env | ConstructRef cstr -> lookup_constructor_variables cstr env let global_vars_set env constr = let rec filtrec acc c = match destRef c with | gr, _ -> Id.Set.union (vars_of_global env gr) acc | exception DestKO -> Constr.fold filtrec acc c in filtrec Id.Set.empty constr (* [keep_hyps env ids] keeps the part of the section context of [env] which contains the variables of the set [ids], and recursively the variables contained in the types of the needed variables. *) let really_needed env needed = let open! Context.Named.Declaration in Context.Named.fold_inside (fun need decl -> if Id.Set.mem (get_id decl) need then let globc = match decl with | LocalAssum _ -> Id.Set.empty | LocalDef (_,c,_) -> global_vars_set env c in Id.Set.union (global_vars_set env (get_type decl)) (Id.Set.union globc need) else need) ~init:needed (named_context env) let keep_hyps env needed = let open Context.Named.Declaration in let really_needed = really_needed env needed in Context.Named.fold_outside (fun d nsign -> if Id.Set.mem (get_id d) really_needed then Context.Named.add d nsign else nsign) (named_context env) ~init:empty_named_context (* Modules *) let add_modtype mtb env = let mp = mtb.mod_mp in let new_modtypes = MPmap.add mp mtb env.env_globals.Globals.modtypes in let new_globals = { env.env_globals with Globals.modtypes = new_modtypes } in { env with env_globals = new_globals } let shallow_add_module mb env = let mp = mb.mod_mp in let new_mods = MPmap.add mp mb env.env_globals.Globals.modules in let new_globals = { env.env_globals with Globals.modules = new_mods } in { env with env_globals = new_globals } let lookup_module mp env = MPmap.find mp env.env_globals.Globals.modules let lookup_modtype mp env = MPmap.find mp env.env_globals.Globals.modtypes (*s Judgments. *) type ('constr, 'types) punsafe_judgment = { uj_val : 'constr; uj_type : 'types } let on_judgment f j = { uj_val = f j.uj_val; uj_type = f j.uj_type } let on_judgment_value f j = { j with uj_val = f j.uj_val } let on_judgment_type f j = { j with uj_type = f j.uj_type } type unsafe_judgment = (constr, types) punsafe_judgment let make_judge v tj = { uj_val = v; uj_type = tj } let j_val j = j.uj_val let j_type j = j.uj_type type 'types punsafe_type_judgment = { utj_val : 'types; utj_type : Sorts.t } type unsafe_type_judgment = types punsafe_type_judgment exception Hyp_not_found let apply_to_hyp ctxt id f = let open Context.Named.Declaration in let rec aux rtail ctxt = match match_named_context_val ctxt with | Some (d, v, ctxt) -> if Id.equal (get_id d) id then push_named_context_val_val (f ctxt.env_named_ctx d rtail) v ctxt else let ctxt' = aux (d::rtail) ctxt in push_named_context_val_val d v ctxt' | None -> raise Hyp_not_found in aux [] ctxt (* To be used in Logic.clear_hyps *) let remove_hyps ids check_context check_value ctxt = let rec remove_hyps ctxt = match match_named_context_val ctxt with | None -> empty_named_context_val, false | Some (d, v, rctxt) -> let open Context.Named.Declaration in let (ans, seen) = remove_hyps rctxt in if Id.Set.mem (get_id d) ids then (ans, true) else if not seen then ctxt, false else let rctxt' = ans in let d' = check_context d in let v' = check_value v in if d == d' && v == v' && rctxt == rctxt' then ctxt, true else push_named_context_val_val d' v' rctxt', true in fst (remove_hyps ctxt) (* A general request *) let is_polymorphic env r = let open Names.GlobRef in match r with | VarRef _id -> false | ConstRef c -> polymorphic_constant c env | IndRef ind -> polymorphic_ind ind env | ConstructRef cstr -> polymorphic_ind (inductive_of_constructor cstr) env let is_template_polymorphic env r = let open Names.GlobRef in match r with | VarRef _id -> false | ConstRef _c -> false | IndRef ind -> template_polymorphic_ind ind env | ConstructRef cstr -> template_polymorphic_ind (inductive_of_constructor cstr) env let get_template_polymorphic_variables env r = let open Names.GlobRef in match r with | VarRef _id -> [] | ConstRef _c -> [] | IndRef ind -> template_polymorphic_variables ind env | ConstructRef cstr -> template_polymorphic_variables (inductive_of_constructor cstr) env let is_template_checked env r = let open Names.GlobRef in match r with | VarRef _id -> false | ConstRef _c -> false | IndRef ind -> template_checked_ind ind env | ConstructRef cstr -> template_checked_ind (inductive_of_constructor cstr) env let is_type_in_type env r = let open Names.GlobRef in match r with | VarRef _id -> false | ConstRef c -> type_in_type_constant c env | IndRef ind -> type_in_type_ind ind env | ConstructRef cstr -> type_in_type_ind (inductive_of_constructor cstr) env let set_retroknowledge env r = { env with retroknowledge = r } let set_native_symbols env native_symbols = { env with native_symbols } let add_native_symbols dir syms env = { env with native_symbols = DPmap.add dir syms env.native_symbols }