1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Names open Constr (** This module defines the entry types for global declarations. This information is entered in the environments. This includes global constants/axioms, mutual inductive definitions, modules and module types *) type universes_entry = | Monomorphic_entry of Univ.ContextSet.t | Polymorphic_entry of Name.t array * Univ.UContext.t type 'a in_universes_entry = 'a * universes_entry (** {6 Declaration of inductive types. } *) (** Assume the following definition in concrete syntax: {v Inductive I1 (x1:X1) ... (xn:Xn) : A1 := c11 : T11 | ... | c1n1 : T1n1 ... with Ip (x1:X1) ... (xn:Xn) : Ap := cp1 : Tp1 | ... | cpnp : Tpnp. v} then, in i{^ th} block, [mind_entry_params] is [xn:Xn;...;x1:X1]; [mind_entry_arity] is [Ai], defined in context [x1:X1;...;xn:Xn]; [mind_entry_lc] is [Ti1;...;Tini], defined in context [[A'1;...;A'p;x1:X1;...;xn:Xn]] where [A'i] is [Ai] generalized over [[x1:X1;...;xn:Xn]]. *) type one_inductive_entry = { mind_entry_typename : Id.t; mind_entry_arity : constr; mind_entry_template : bool; (* Use template polymorphism *) mind_entry_consnames : Id.t list; mind_entry_lc : constr list } type mutual_inductive_entry = { mind_entry_record : (Id.t array option) option; (** Some (Some ids): primitive records with ids the binder name of each record in their respective projections. Not used by the kernel. Some None: non-primitive record *) mind_entry_finite : Declarations.recursivity_kind; mind_entry_params : Constr.rel_context; mind_entry_inds : one_inductive_entry list; mind_entry_universes : universes_entry; mind_entry_variance : Univ.Variance.t array option; (* universe constraints and the constraints for subtyping of inductive types in the block. *) mind_entry_private : bool option; } (** {6 Constants (Definition/Axiom) } *) type definition_entry = { const_entry_body : constr; (* List of section variables *) const_entry_secctx : Id.Set.t option; (* State id on which the completion of type checking is reported *) const_entry_feedback : Stateid.t option; const_entry_type : types option; const_entry_universes : universes_entry; const_entry_inline_code : bool } type section_def_entry = { secdef_body : constr; secdef_secctx : Id.Set.t option; secdef_feedback : Stateid.t option; secdef_type : types option; } type 'a opaque_entry = { opaque_entry_body : 'a; (* List of section variables *) opaque_entry_secctx : Id.Set.t; (* State id on which the completion of type checking is reported *) opaque_entry_feedback : Stateid.t option; opaque_entry_type : types; opaque_entry_universes : universes_entry; } type inline = int option (* inlining level, None for no inlining *) type parameter_entry = Id.Set.t option * types in_universes_entry * inline type primitive_entry = { prim_entry_type : types option; prim_entry_univs : Univ.ContextSet.t; (* always monomorphic *) prim_entry_content : CPrimitives.op_or_type; } type 'a proof_output = constr Univ.in_universe_context_set * 'a type 'a const_entry_body = 'a proof_output Future.computation type constant_entry = | DefinitionEntry : definition_entry -> constant_entry | ParameterEntry : parameter_entry -> constant_entry | PrimitiveEntry : primitive_entry -> constant_entry (** {6 Modules } *) type module_struct_entry = Declarations.module_alg_expr type module_params_entry = (MBId.t * module_struct_entry) list (** older first *) type module_type_entry = module_params_entry * module_struct_entry type module_entry = | MType of module_params_entry * module_struct_entry | MExpr of module_params_entry * module_struct_entry * module_struct_entry option