1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2019 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
open Names
open Constr
(** This module defines the entry types for global declarations. This
information is entered in the environments. This includes global
constants/axioms, mutual inductive definitions, modules and module
types *)
type universes_entry =
| Monomorphic_entry of Univ.ContextSet.t
| Polymorphic_entry of Name.t array * Univ.UContext.t
type 'a in_universes_entry = 'a * universes_entry
(** {6 Declaration of inductive types. } *)
(** Assume the following definition in concrete syntax:
{v Inductive I1 (x1:X1) ... (xn:Xn) : A1 := c11 : T11 | ... | c1n1 : T1n1
...
with Ip (x1:X1) ... (xn:Xn) : Ap := cp1 : Tp1 | ... | cpnp : Tpnp. v}
then, in i{^ th} block, [mind_entry_params] is [xn:Xn;...;x1:X1];
[mind_entry_arity] is [Ai], defined in context [x1:X1;...;xn:Xn];
[mind_entry_lc] is [Ti1;...;Tini], defined in context [[A'1;...;A'p;x1:X1;...;xn:Xn]] where [A'i] is [Ai] generalized over [[x1:X1;...;xn:Xn]].
*)
type one_inductive_entry = {
mind_entry_typename : Id.t;
mind_entry_arity : constr;
mind_entry_template : bool; (* Use template polymorphism *)
mind_entry_consnames : Id.t list;
mind_entry_lc : constr list }
type mutual_inductive_entry = {
mind_entry_record : (Id.t array option) option;
(** Some (Some ids): primitive records with ids the binder name of each
record in their respective projections. Not used by the kernel.
Some None: non-primitive record *)
mind_entry_finite : Declarations.recursivity_kind;
mind_entry_params : Constr.rel_context;
mind_entry_inds : one_inductive_entry list;
mind_entry_universes : universes_entry;
mind_entry_variance : Univ.Variance.t array option;
(* universe constraints and the constraints for subtyping of
inductive types in the block. *)
mind_entry_private : bool option;
}
(** {6 Constants (Definition/Axiom) } *)
type definition_entry = {
const_entry_body : constr;
(* List of section variables *)
const_entry_secctx : Id.Set.t option;
(* State id on which the completion of type checking is reported *)
const_entry_feedback : Stateid.t option;
const_entry_type : types option;
const_entry_universes : universes_entry;
const_entry_inline_code : bool }
type section_def_entry = {
secdef_body : constr;
secdef_secctx : Id.Set.t option;
secdef_feedback : Stateid.t option;
secdef_type : types option;
}
type 'a opaque_entry = {
opaque_entry_body : 'a;
(* List of section variables *)
opaque_entry_secctx : Id.Set.t;
(* State id on which the completion of type checking is reported *)
opaque_entry_feedback : Stateid.t option;
opaque_entry_type : types;
opaque_entry_universes : universes_entry;
}
type inline = int option (* inlining level, None for no inlining *)
type parameter_entry =
Id.Set.t option * types in_universes_entry * inline
type primitive_entry = {
prim_entry_type : types option;
prim_entry_univs : Univ.ContextSet.t; (* always monomorphic *)
prim_entry_content : CPrimitives.op_or_type;
}
type 'a proof_output = constr Univ.in_universe_context_set * 'a
type 'a const_entry_body = 'a proof_output Future.computation
type constant_entry =
| DefinitionEntry : definition_entry -> constant_entry
| ParameterEntry : parameter_entry -> constant_entry
| PrimitiveEntry : primitive_entry -> constant_entry
(** {6 Modules } *)
type module_struct_entry = Declarations.module_alg_expr
type module_params_entry =
(MBId.t * module_struct_entry) list (** older first *)
type module_type_entry = module_params_entry * module_struct_entry
type module_entry =
| MType of module_params_entry * module_struct_entry
| MExpr of
module_params_entry * module_struct_entry * module_struct_entry option