1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Declarations open Mod_subst open Util module RelDecl = Context.Rel.Declaration (** Operations concernings types in [Declarations] : [constant_body], [mutual_inductive_body], [module_body] ... *) let safe_flags oracle = { check_guarded = true; check_positive = true; check_universes = true; conv_oracle = oracle; share_reduction = true; enable_VM = true; enable_native_compiler = true; indices_matter = true; check_template = true; } (** {6 Arities } *) let subst_decl_arity f g sub ar = match ar with | RegularArity x -> let x' = f sub x in if x' == x then ar else RegularArity x' | TemplateArity x -> let x' = g sub x in if x' == x then ar else TemplateArity x' let map_decl_arity f g = function | RegularArity a -> RegularArity (f a) | TemplateArity a -> TemplateArity (g a) let hcons_template_arity ar = { template_param_levels = ar.template_param_levels; (* List.Smart.map (Option.Smart.map Univ.hcons_univ_level) ar.template_param_levels; *) template_level = Univ.hcons_univ ar.template_level } let universes_context = function | Monomorphic _ -> Univ.AUContext.empty | Polymorphic ctx -> ctx let abstract_universes = function | Entries.Monomorphic_entry ctx -> Univ.empty_level_subst, Monomorphic ctx | Entries.Polymorphic_entry (nas, ctx) -> let (inst, auctx) = Univ.abstract_universes nas ctx in let inst = Univ.make_instance_subst inst in (inst, Polymorphic auctx) (** {6 Constants } *) let constant_is_polymorphic cb = match cb.const_universes with | Monomorphic _ -> false | Polymorphic _ -> true let constant_has_body cb = match cb.const_body with | Undef _ | Primitive _ -> false | Def _ | OpaqueDef _ -> true let constant_polymorphic_context cb = universes_context cb.const_universes let is_opaque cb = match cb.const_body with | OpaqueDef _ -> true | Undef _ | Def _ | Primitive _ -> false (** {7 Constant substitutions } *) let subst_rel_declaration sub = RelDecl.map_constr (subst_mps sub) let subst_rel_context sub = List.Smart.map (subst_rel_declaration sub) let subst_const_type sub arity = if is_empty_subst sub then arity else subst_mps sub arity (** No need here to check for physical equality after substitution, at least for Def due to the delayed substitution [subst_constr_subst]. *) let subst_const_def sub def = match def with | Undef _ | Primitive _ -> def | Def c -> Def (subst_constr sub c) | OpaqueDef o -> OpaqueDef (Opaqueproof.subst_opaque sub o) let subst_const_body sub cb = assert (List.is_empty cb.const_hyps); (* we're outside sections *) if is_empty_subst sub then cb else let body' = subst_const_def sub cb.const_body in let type' = subst_const_type sub cb.const_type in if body' == cb.const_body && type' == cb.const_type then cb else { const_hyps = []; const_body = body'; const_type = type'; const_body_code = Option.map (Cemitcodes.subst_to_patch_subst sub) cb.const_body_code; const_universes = cb.const_universes; const_relevance = cb.const_relevance; const_inline_code = cb.const_inline_code; const_typing_flags = cb.const_typing_flags } (** {7 Hash-consing of constants } *) (** This hash-consing is currently quite partial : we only share internal fields (e.g. constr), and not the records themselves. But would it really bring substantial gains ? *) let hcons_rel_decl = RelDecl.map_name Names.Name.hcons %> RelDecl.map_value Constr.hcons %> RelDecl.map_type Constr.hcons let hcons_rel_context l = List.Smart.map hcons_rel_decl l let hcons_const_def = function | Undef inl -> Undef inl | Primitive p -> Primitive p | Def l_constr -> let constr = force_constr l_constr in Def (from_val (Constr.hcons constr)) | OpaqueDef _ as x -> x (* hashconsed when turned indirect *) let hcons_universes cbu = match cbu with | Monomorphic ctx -> Monomorphic (Univ.hcons_universe_context_set ctx) | Polymorphic ctx -> Polymorphic (Univ.hcons_abstract_universe_context ctx) let hcons_const_body cb = { cb with const_body = hcons_const_def cb.const_body; const_type = Constr.hcons cb.const_type; const_universes = hcons_universes cb.const_universes; } (** {6 Inductive types } *) let eq_recarg r1 r2 = match r1, r2 with | Norec, Norec -> true | Mrec i1, Mrec i2 -> Names.eq_ind i1 i2 | Imbr i1, Imbr i2 -> Names.eq_ind i1 i2 | _ -> false let subst_recarg sub r = match r with | Norec -> r | Mrec (kn,i) -> let kn' = subst_mind sub kn in if kn==kn' then r else Mrec (kn',i) | Imbr (kn,i) -> let kn' = subst_mind sub kn in if kn==kn' then r else Imbr (kn',i) let mk_norec = Rtree.mk_node Norec [||] let mk_paths r recargs = Rtree.mk_node r (Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs) let dest_recarg p = fst (Rtree.dest_node p) (* dest_subterms returns the sizes of each argument of each constructor of an inductive object of size [p]. This should never be done for Norec, because the number of sons does not correspond to the number of constructors. *) let dest_subterms p = let (ra,cstrs) = Rtree.dest_node p in assert (match ra with Norec -> false | _ -> true); Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs let recarg_length p j = let (_,cstrs) = Rtree.dest_node p in Array.length (snd (Rtree.dest_node cstrs.(j-1))) let subst_wf_paths sub p = Rtree.Smart.map (subst_recarg sub) p (** {7 Substitution of inductive declarations } *) let subst_regular_ind_arity sub s = let uar' = subst_mps sub s.mind_user_arity in if uar' == s.mind_user_arity then s else { mind_user_arity = uar'; mind_sort = s.mind_sort } let subst_template_ind_arity _sub s = s (* FIXME records *) let subst_ind_arity = subst_decl_arity subst_regular_ind_arity subst_template_ind_arity let subst_mind_packet sub mbp = { mind_consnames = mbp.mind_consnames; mind_consnrealdecls = mbp.mind_consnrealdecls; mind_consnrealargs = mbp.mind_consnrealargs; mind_typename = mbp.mind_typename; mind_nf_lc = Array.Smart.map (fun (ctx, c) -> Context.Rel.map (subst_mps sub) ctx, subst_mps sub c) mbp.mind_nf_lc; mind_arity_ctxt = subst_rel_context sub mbp.mind_arity_ctxt; mind_arity = subst_ind_arity sub mbp.mind_arity; mind_user_lc = Array.Smart.map (subst_mps sub) mbp.mind_user_lc; mind_nrealargs = mbp.mind_nrealargs; mind_nrealdecls = mbp.mind_nrealdecls; mind_kelim = mbp.mind_kelim; mind_recargs = subst_wf_paths sub mbp.mind_recargs (*wf_paths*); mind_relevance = mbp.mind_relevance; mind_nb_constant = mbp.mind_nb_constant; mind_nb_args = mbp.mind_nb_args; mind_reloc_tbl = mbp.mind_reloc_tbl } let subst_mind_record sub r = match r with | NotRecord -> NotRecord | FakeRecord -> FakeRecord | PrimRecord infos -> let map (id, ps, rs, pb as info) = let pb' = Array.Smart.map (subst_mps sub) pb in if pb' == pb then info else (id, ps, rs, pb') in let infos' = Array.Smart.map map infos in if infos' == infos then r else PrimRecord infos' let subst_mind_body sub mib = { mind_record = subst_mind_record sub mib.mind_record ; mind_finite = mib.mind_finite ; mind_ntypes = mib.mind_ntypes ; mind_hyps = (match mib.mind_hyps with [] -> [] | _ -> assert false); mind_nparams = mib.mind_nparams; mind_nparams_rec = mib.mind_nparams_rec; mind_params_ctxt = Context.Rel.map (subst_mps sub) mib.mind_params_ctxt; mind_packets = Array.Smart.map (subst_mind_packet sub) mib.mind_packets ; mind_universes = mib.mind_universes; mind_variance = mib.mind_variance; mind_private = mib.mind_private; mind_typing_flags = mib.mind_typing_flags; } let inductive_polymorphic_context mib = universes_context mib.mind_universes let inductive_is_polymorphic mib = match mib.mind_universes with | Monomorphic _ -> false | Polymorphic _ctx -> true let inductive_is_cumulative mib = Option.has_some mib.mind_variance let inductive_make_projection ind mib ~proj_arg = match mib.mind_record with | NotRecord | FakeRecord -> None | PrimRecord infos -> let _, labs, _, _ = infos.(snd ind) in Some (Names.Projection.Repr.make ind ~proj_npars:mib.mind_nparams ~proj_arg labs.(proj_arg)) let inductive_make_projections ind mib = match mib.mind_record with | NotRecord | FakeRecord -> None | PrimRecord infos -> let _, labs, _, _ = infos.(snd ind) in let projs = Array.mapi (fun proj_arg lab -> Names.Projection.Repr.make ind ~proj_npars:mib.mind_nparams ~proj_arg lab) labs in Some projs let relevance_of_projection_repr mib p = let _mind,i = Names.Projection.Repr.inductive p in match mib.mind_record with | NotRecord | FakeRecord -> CErrors.anomaly ~label:"relevance_of_projection" Pp.(str "not a projection") | PrimRecord infos -> let _,_,rs,_ = infos.(i) in rs.(Names.Projection.Repr.arg p) (** {6 Hash-consing of inductive declarations } *) let hcons_regular_ind_arity a = { mind_user_arity = Constr.hcons a.mind_user_arity; mind_sort = Sorts.hcons a.mind_sort } (** Just as for constants, this hash-consing is quite partial *) let hcons_ind_arity = map_decl_arity hcons_regular_ind_arity hcons_template_arity (** Substitution of inductive declarations *) let hcons_mind_packet oib = let user = Array.Smart.map Constr.hcons oib.mind_user_lc in let map (ctx, c) = Context.Rel.map Constr.hcons ctx, Constr.hcons c in let nf = Array.Smart.map map oib.mind_nf_lc in { oib with mind_typename = Names.Id.hcons oib.mind_typename; mind_arity_ctxt = hcons_rel_context oib.mind_arity_ctxt; mind_arity = hcons_ind_arity oib.mind_arity; mind_consnames = Array.Smart.map Names.Id.hcons oib.mind_consnames; mind_user_lc = user; mind_nf_lc = nf } let hcons_mind mib = { mib with mind_packets = Array.Smart.map hcons_mind_packet mib.mind_packets; mind_params_ctxt = hcons_rel_context mib.mind_params_ctxt; mind_universes = hcons_universes mib.mind_universes } (** Hashconsing of modules *) let hcons_functorize hty he hself f = match f with | NoFunctor e -> let e' = he e in if e == e' then f else NoFunctor e' | MoreFunctor (mid, ty, nf) -> (** FIXME *) let mid' = mid in let ty' = hty ty in let nf' = hself nf in if mid == mid' && ty == ty' && nf == nf' then f else MoreFunctor (mid, ty', nf') let hcons_module_alg_expr me = me let rec hcons_structure_field_body sb = match sb with | SFBconst cb -> let cb' = hcons_const_body cb in if cb == cb' then sb else SFBconst cb' | SFBmind mib -> let mib' = hcons_mind mib in if mib == mib' then sb else SFBmind mib' | SFBmodule mb -> let mb' = hcons_module_body mb in if mb == mb' then sb else SFBmodule mb' | SFBmodtype mb -> let mb' = hcons_module_type mb in if mb == mb' then sb else SFBmodtype mb' and hcons_structure_body sb = (** FIXME *) let map (l, sfb as fb) = let l' = Names.Label.hcons l in let sfb' = hcons_structure_field_body sfb in if l == l' && sfb == sfb' then fb else (l', sfb') in List.Smart.map map sb and hcons_module_signature ms = hcons_functorize hcons_module_type hcons_structure_body hcons_module_signature ms and hcons_module_expression me = hcons_functorize hcons_module_type hcons_module_alg_expr hcons_module_expression me and hcons_module_implementation mip = match mip with | Abstract -> Abstract | Algebraic me -> let me' = hcons_module_expression me in if me == me' then mip else Algebraic me' | Struct ms -> let ms' = hcons_module_signature ms in if ms == ms' then mip else Struct ms | FullStruct -> FullStruct and hcons_generic_module_body : 'a. ('a -> 'a) -> 'a generic_module_body -> 'a generic_module_body = fun hcons_impl mb -> let mp' = mb.mod_mp in let expr' = hcons_impl mb.mod_expr in let type' = hcons_module_signature mb.mod_type in let type_alg' = mb.mod_type_alg in let constraints' = Univ.hcons_universe_context_set mb.mod_constraints in let delta' = mb.mod_delta in let retroknowledge' = mb.mod_retroknowledge in if mb.mod_mp == mp' && mb.mod_expr == expr' && mb.mod_type == type' && mb.mod_type_alg == type_alg' && mb.mod_constraints == constraints' && mb.mod_delta == delta' && mb.mod_retroknowledge == retroknowledge' then mb else { mod_mp = mp'; mod_expr = expr'; mod_type = type'; mod_type_alg = type_alg'; mod_constraints = constraints'; mod_delta = delta'; mod_retroknowledge = retroknowledge'; } and hcons_module_body mb = hcons_generic_module_body hcons_module_implementation mb and hcons_module_type mb = hcons_generic_module_body (fun () -> ()) mb