1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Names open Constr (** This module defines the internal representation of global declarations. This includes global constants/axioms, mutual inductive definitions, modules and module types *) type set_predicativity = ImpredicativeSet | PredicativeSet type engagement = set_predicativity (** {6 Representation of constants (Definition/Axiom) } *) (** Non-universe polymorphic mode polymorphism (Coq 8.2+): inductives and constants hiding inductives are implicitly polymorphic when applied to parameters, on the universes appearing in the whnf of their parameters and their conclusion, in a template style. In truly universe polymorphic mode, we always use RegularArity. *) type template_arity = { template_param_levels : Univ.Level.t option list; template_level : Univ.Universe.t; } type ('a, 'b) declaration_arity = | RegularArity of 'a | TemplateArity of 'b (** Inlining level of parameters at functor applications. None means no inlining *) type inline = int option (** A constant can have no body (axiom/parameter), or a transparent body, or an opaque one *) (* Global declarations (i.e. constants) can be either: *) type ('a, 'opaque) constant_def = | Undef of inline (** a global assumption *) | Def of 'a (** or a transparent global definition *) | OpaqueDef of 'opaque (** or an opaque global definition *) | Primitive of CPrimitives.t (** or a primitive operation *) type universes = | Monomorphic of Univ.ContextSet.t | Polymorphic of Univ.AUContext.t (** The [typing_flags] are instructions to the type-checker which modify its behaviour. The typing flags used in the type-checking of a constant are tracked in their {!constant_body} so that they can be displayed to the user. *) type typing_flags = { check_guarded : bool; (** If [false] then fixed points and co-fixed points are assumed to be total. *) check_positive : bool; (** If [false] then inductive types are assumed positive and co-inductive types are assumed productive. *) check_universes : bool; (** If [false] universe constraints are not checked *) conv_oracle : Conv_oracle.oracle; (** Unfolding strategies for conversion *) share_reduction : bool; (** Use by-need reduction algorithm *) enable_VM : bool; (** If [false], all VM conversions fall back to interpreted ones *) enable_native_compiler : bool; (** If [false], all native conversions fall back to VM ones *) indices_matter: bool; (** The universe of an inductive type must be above that of its indices. *) check_template : bool; (* If [false] then we don't check that the universes template-polymorphic inductive parameterize on are necessarily local and unbounded from below. This potentially introduces inconsistencies. *) } (* some contraints are in constant_constraints, some other may be in * the OpaqueDef *) type 'opaque constant_body = { const_hyps : Constr.named_context; (** New: younger hyp at top *) const_body : (Constr.t Mod_subst.substituted, 'opaque) constant_def; const_type : types; const_relevance : Sorts.relevance; const_body_code : Cemitcodes.to_patch_substituted option; const_universes : universes; const_inline_code : bool; const_typing_flags : typing_flags; (** The typing options which were used for type-checking. *) } (** {6 Representation of mutual inductive types in the kernel } *) type recarg = | Norec | Mrec of inductive | Imbr of inductive type wf_paths = recarg Rtree.t (** {v Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1 ... with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn v} *) (** Record information: If the type is not a record, then NotRecord If the type is a non-primitive record, then FakeRecord If it is a primitive record, for every type in the block, we get: - The identifier for the binder name of the record in primitive projections. - The constants associated to each projection. - The projection types (under parameters). The kernel does not exploit the difference between [NotRecord] and [FakeRecord]. It is mostly used by extraction, and should be extruded from the kernel at some point. *) type record_info = | NotRecord | FakeRecord | PrimRecord of (Id.t * Label.t array * Sorts.relevance array * types array) array type regular_inductive_arity = { mind_user_arity : types; mind_sort : Sorts.t; } type inductive_arity = (regular_inductive_arity, template_arity) declaration_arity type one_inductive_body = { (** {8 Primitive datas } *) mind_typename : Id.t; (** Name of the type: [Ii] *) mind_arity_ctxt : Constr.rel_context; (** Arity context of [Ii] with parameters: [forall params, Ui] *) mind_arity : inductive_arity; (** Arity sort and original user arity *) mind_consnames : Id.t array; (** Names of the constructors: [cij] *) mind_user_lc : types array; (** Types of the constructors with parameters: [forall params, Tij], where the Ik are replaced by de Bruijn index in the context I1:forall params, U1 .. In:forall params, Un *) (** {8 Derived datas } *) mind_nrealargs : int; (** Number of expected real arguments of the type (no let, no params) *) mind_nrealdecls : int; (** Length of realargs context (with let, no params) *) mind_kelim : Sorts.family; (** Highest allowed elimination sort *) mind_nf_lc : (rel_context * types) array; (** Head normalized constructor types so that their conclusion exposes the inductive type *) mind_consnrealargs : int array; (** Number of expected proper arguments of the constructors (w/o params) *) mind_consnrealdecls : int array; (** Length of the signature of the constructors (with let, w/o params) *) mind_recargs : wf_paths; (** Signature of recursive arguments in the constructors *) mind_relevance : Sorts.relevance; (** {8 Datas for bytecode compilation } *) mind_nb_constant : int; (** number of constant constructor *) mind_nb_args : int; (** number of no constant constructor *) mind_reloc_tbl : Vmvalues.reloc_table; } type recursivity_kind = | Finite (** = inductive *) | CoFinite (** = coinductive *) | BiFinite (** = non-recursive, like in "Record" definitions *) type mutual_inductive_body = { mind_packets : one_inductive_body array; (** The component of the mutual inductive block *) mind_record : record_info; (** The record information *) mind_finite : recursivity_kind; (** Whether the type is inductive or coinductive *) mind_ntypes : int; (** Number of types in the block *) mind_hyps : Constr.named_context; (** Section hypotheses on which the block depends *) mind_nparams : int; (** Number of expected parameters including non-uniform ones (i.e. length of mind_params_ctxt w/o let-in) *) mind_nparams_rec : int; (** Number of recursively uniform (i.e. ordinary) parameters *) mind_params_ctxt : Constr.rel_context; (** The context of parameters (includes let-in declaration) *) mind_universes : universes; (** Information about monomorphic/polymorphic/cumulative inductives and their universes *) mind_variance : Univ.Variance.t array option; (** Variance info, [None] when non-cumulative. *) mind_private : bool option; (** allow pattern-matching: Some true ok, Some false blocked *) mind_typing_flags : typing_flags; (** typing flags at the time of the inductive creation *) } (** {6 Module declarations } *) (** Functor expressions are forced to be on top of other expressions *) type ('ty,'a) functorize = | NoFunctor of 'a | MoreFunctor of MBId.t * 'ty * ('ty,'a) functorize (** The fully-algebraic module expressions : names, applications, 'with ...'. They correspond to the user entries of non-interactive modules. They will be later expanded into module structures in [Mod_typing], and won't play any role into the kernel after that : they are kept only for short module printing and for extraction. *) type with_declaration = | WithMod of Id.t list * ModPath.t | WithDef of Id.t list * (constr * Univ.AUContext.t option) type module_alg_expr = | MEident of ModPath.t | MEapply of module_alg_expr * ModPath.t | MEwith of module_alg_expr * with_declaration (** A component of a module structure *) type structure_field_body = | SFBconst of Opaqueproof.opaque constant_body | SFBmind of mutual_inductive_body | SFBmodule of module_body | SFBmodtype of module_type_body (** A module structure is a list of labeled components. Note : we may encounter now (at most) twice the same label in a [structure_body], once for a module ([SFBmodule] or [SFBmodtype]) and once for an object ([SFBconst] or [SFBmind]) *) and structure_body = (Label.t * structure_field_body) list (** A module signature is a structure, with possibly functors on top of it *) and module_signature = (module_type_body,structure_body) functorize (** A module expression is an algebraic expression, possibly functorized. *) and module_expression = (module_type_body,module_alg_expr) functorize and module_implementation = | Abstract (** no accessible implementation *) | Algebraic of module_expression (** non-interactive algebraic expression *) | Struct of module_signature (** interactive body *) | FullStruct (** special case of [Struct] : the body is exactly [mod_type] *) and 'a generic_module_body = { mod_mp : ModPath.t; (** absolute path of the module *) mod_expr : 'a; (** implementation *) mod_type : module_signature; (** expanded type *) mod_type_alg : module_expression option; (** algebraic type *) mod_constraints : Univ.ContextSet.t; (** set of all universes constraints in the module *) mod_delta : Mod_subst.delta_resolver; (** quotiented set of equivalent constants and inductive names *) mod_retroknowledge : 'a module_retroknowledge } (** For a module, there are five possible situations: - [Declare Module M : T] then [mod_expr = Abstract; mod_type_alg = Some T] - [Module M := E] then [mod_expr = Algebraic E; mod_type_alg = None] - [Module M : T := E] then [mod_expr = Algebraic E; mod_type_alg = Some T] - [Module M. ... End M] then [mod_expr = FullStruct; mod_type_alg = None] - [Module M : T. ... End M] then [mod_expr = Struct; mod_type_alg = Some T] And of course, all these situations may be functors or not. *) and module_body = module_implementation generic_module_body (** A [module_type_body] is just a [module_body] with no implementation and also an empty [mod_retroknowledge]. Its [mod_type_alg] contains the algebraic definition of this module type, or [None] if it has been built interactively. *) and module_type_body = unit generic_module_body and _ module_retroknowledge = | ModBodyRK : Retroknowledge.action list -> module_implementation module_retroknowledge | ModTypeRK : unit module_retroknowledge (** Extra invariants : - No [MEwith] inside a [mod_expr] implementation : the 'with' syntax is only supported for module types - A module application is atomic, for instance ((M N) P) : * the head of [MEapply] can only be another [MEapply] or a [MEident] * the argument of [MEapply] is now directly forced to be a [ModPath.t]. *)