1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Jean-Christophe Filliâtre out of V6.3 file constants.ml as part of the rebuilding of Coq around a purely functional abstract type-checker, Nov 1999 *) (* This module implements kernel-level discharching of local declarations over global constants and inductive types *) open Util open Names open Term open Constr open Declarations open Univ open Context module NamedDecl = Context.Named.Declaration module RelDecl = Context.Rel.Declaration (*s Cooking the constants. *) type my_global_reference = | ConstRef of Constant.t | IndRef of inductive | ConstructRef of constructor module RefHash = struct type t = my_global_reference let equal gr1 gr2 = match gr1, gr2 with | ConstRef c1, ConstRef c2 -> Constant.SyntacticOrd.equal c1 c2 | IndRef i1, IndRef i2 -> eq_syntactic_ind i1 i2 | ConstructRef c1, ConstructRef c2 -> eq_syntactic_constructor c1 c2 | _ -> false open Hashset.Combine let hash = function | ConstRef c -> combinesmall 1 (Constant.SyntacticOrd.hash c) | IndRef i -> combinesmall 2 (ind_syntactic_hash i) | ConstructRef c -> combinesmall 3 (constructor_syntactic_hash c) end module RefTable = Hashtbl.Make(RefHash) let instantiate_my_gr gr u = match gr with | ConstRef c -> mkConstU (c, u) | IndRef i -> mkIndU (i, u) | ConstructRef c -> mkConstructU (c, u) let share cache r (cstl,knl) = try RefTable.find cache r with Not_found -> let (u,l) = match r with | IndRef (kn,_i) -> Mindmap.find kn knl | ConstructRef ((kn,_i),_j) -> Mindmap.find kn knl | ConstRef cst -> Cmap.find cst cstl in let c = (u, Array.map mkVar l) in RefTable.add cache r c; c let share_univs cache r u l = let (u', args) = share cache r l in mkApp (instantiate_my_gr r (Instance.append u' u), args) let update_case_info cache ci modlist = try let (_u,l) = share cache (IndRef ci.ci_ind) modlist in { ci with ci_npar = ci.ci_npar + Array.length l } with Not_found -> ci let is_empty_modlist (cm, mm) = Cmap.is_empty cm && Mindmap.is_empty mm let expmod_constr cache modlist c = let share_univs = share_univs cache in let update_case_info = update_case_info cache in let rec substrec c = match kind c with | Case (ci,p,t,br) -> Constr.map substrec (mkCase (update_case_info ci modlist,p,t,br)) | Ind (ind,u) -> (try share_univs (IndRef ind) u modlist with | Not_found -> Constr.map substrec c) | Construct (cstr,u) -> (try share_univs (ConstructRef cstr) u modlist with | Not_found -> Constr.map substrec c) | Const (cst,u) -> (try share_univs (ConstRef cst) u modlist with | Not_found -> Constr.map substrec c) | Proj (p, c') -> let map cst npars = let _, newpars = Mindmap.find cst (snd modlist) in (cst, npars + Array.length newpars) in let p' = try Projection.map_npars map p with Not_found -> p in let c'' = substrec c' in if p == p' && c' == c'' then c else mkProj (p', c'') | _ -> Constr.map substrec c in if is_empty_modlist modlist then c else substrec c (** Transforms a named context into a rel context. Also returns the list of variables [id1 ... idn] that need to be replaced by [Rel 1 ... Rel n] to abstract a term that lived in that context. *) let abstract_context hyps = let fold decl (ctx, subst) = let id, decl = match decl with | NamedDecl.LocalDef (id, b, t) -> let b = Vars.subst_vars subst b in let t = Vars.subst_vars subst t in id, RelDecl.LocalDef (map_annot Name.mk_name id, b, t) | NamedDecl.LocalAssum (id, t) -> let t = Vars.subst_vars subst t in id, RelDecl.LocalAssum (map_annot Name.mk_name id, t) in (decl :: ctx, id.binder_name :: subst) in Context.Named.fold_outside fold hyps ~init:([], []) let abstract_constant_type t (hyps, subst) = let t = Vars.subst_vars subst t in List.fold_left (fun c d -> mkProd_wo_LetIn d c) t hyps let abstract_constant_body c (hyps, subst) = let c = Vars.subst_vars subst c in it_mkLambda_or_LetIn c hyps type recipe = { from : Opaqueproof.opaque constant_body; info : Opaqueproof.cooking_info } type inline = bool type 'opaque result = { cook_body : (constr Mod_subst.substituted, 'opaque) constant_def; cook_type : types; cook_universes : universes; cook_relevance : Sorts.relevance; cook_inline : inline; cook_context : Id.Set.t option; } let expmod_constr_subst cache modlist subst c = let subst = Univ.make_instance_subst subst in let c = expmod_constr cache modlist c in Vars.subst_univs_level_constr subst c let discharge_abstract_universe_context subst abs_ctx auctx = (** Given a named instance [subst := u₀ ... uₙ₋₁] together with an abstract context [auctx0 := 0 ... n - 1 |= C{0, ..., n - 1}] of the same length, and another abstract context relative to the former context [auctx := 0 ... m - 1 |= C'{u₀, ..., uₙ₋₁, 0, ..., m - 1}], construct the lifted abstract universe context [0 ... n - 1 n ... n + m - 1 |= C{0, ... n - 1} ∪ C'{0, ..., n - 1, n, ..., n + m - 1} ] together with the instance [u₀ ... uₙ₋₁ Var(0) ... Var (m - 1)]. *) if (Univ.Instance.is_empty subst) then (** Still need to take the union for the constraints between globals *) subst, (AUContext.union abs_ctx auctx) else let open Univ in let ainst = make_abstract_instance auctx in let subst = Instance.append subst ainst in let substf = make_instance_subst subst in let auctx = Univ.subst_univs_level_abstract_universe_context substf auctx in subst, (AUContext.union abs_ctx auctx) let lift_univs cb subst auctx0 = match cb.const_universes with | Monomorphic ctx -> assert (AUContext.is_empty auctx0); subst, (Monomorphic ctx) | Polymorphic auctx -> let subst, auctx = discharge_abstract_universe_context subst auctx0 auctx in subst, (Polymorphic auctx) let cook_constr { Opaqueproof.modlist ; abstract } (c, priv) = let cache = RefTable.create 13 in let abstract, usubst, abs_ctx = abstract in let usubst, priv = match priv with | Opaqueproof.PrivateMonomorphic () -> let () = assert (AUContext.is_empty abs_ctx) in let () = assert (Instance.is_empty usubst) in usubst, priv | Opaqueproof.PrivatePolymorphic (univs, ctx) -> let ainst = Instance.of_array (Array.init univs Level.var) in let usubst = Instance.append usubst ainst in let ctx = on_snd (Univ.subst_univs_level_constraints (Univ.make_instance_subst usubst)) ctx in let univs = univs + AUContext.size abs_ctx in usubst, Opaqueproof.PrivatePolymorphic (univs, ctx) in let expmod = expmod_constr_subst cache modlist usubst in let hyps = Context.Named.map expmod abstract in let hyps = abstract_context hyps in let c = abstract_constant_body (expmod c) hyps in (c, priv) let cook_constr infos c = let fold info c = cook_constr info c in List.fold_right fold infos c let cook_constant { from = cb; info } = let { Opaqueproof.modlist; abstract } = info in let cache = RefTable.create 13 in let abstract, usubst, abs_ctx = abstract in let usubst, univs = lift_univs cb usubst abs_ctx in let expmod = expmod_constr_subst cache modlist usubst in let hyps0 = Context.Named.map expmod abstract in let hyps = abstract_context hyps0 in let map c = abstract_constant_body (expmod c) hyps in let body = match cb.const_body with | Undef _ as x -> x | Def cs -> Def (Mod_subst.from_val (map (Mod_subst.force_constr cs))) | OpaqueDef o -> OpaqueDef (Opaqueproof.discharge_opaque info o) | Primitive _ -> CErrors.anomaly (Pp.str "Primitives cannot be cooked") in let const_hyps = Id.Set.diff (Context.Named.to_vars cb.const_hyps) (Context.Named.to_vars hyps0) in let typ = abstract_constant_type (expmod cb.const_type) hyps in { cook_body = body; cook_type = typ; cook_universes = univs; cook_relevance = cb.const_relevance; cook_inline = cb.const_inline_code; cook_context = Some const_hyps; } (* let cook_constant_key = CProfile.declare_profile "cook_constant" *) (* let cook_constant = CProfile.profile2 cook_constant_key cook_constant *) (********************************) (* Discharging mutual inductive *) (* Replace Var(y1)..Var(yq):C1..Cq |- Ij:Bj Var(y1)..Var(yq):C1..Cq; I1..Ip:B1..Bp |- ci : Ti by |- Ij: (y1..yq:C1..Cq)Bj I1..Ip:(B1 y1..yq)..(Bp y1..yq) |- ci : (y1..yq:C1..Cq)Ti[Ij:=(Ij y1..yq)] *) let it_mkNamedProd_wo_LetIn b d = List.fold_left (fun c d -> mkNamedProd_wo_LetIn d c) b d let abstract_inductive decls nparamdecls inds = let open Entries in let ntyp = List.length inds in let ndecls = Context.Named.length decls in let args = Context.Named.to_instance mkVar (List.rev decls) in let args = Array.of_list args in let subs = List.init ntyp (fun k -> lift ndecls (mkApp(mkRel (k+1),args))) in let inds' = List.map (function (tname,arity,template,cnames,lc) -> let lc' = List.map (Vars.substl subs) lc in let lc'' = List.map (fun b -> it_mkNamedProd_wo_LetIn b decls) lc' in let arity' = it_mkNamedProd_wo_LetIn arity decls in (tname,arity',template,cnames,lc'')) inds in let nparamdecls' = nparamdecls + Array.length args in (* To be sure to be the same as before, should probably be moved to cook_inductive *) let params' = let (_,arity,_,_,_) = List.hd inds' in let (params,_) = decompose_prod_n_assum nparamdecls' arity in params in let ind'' = List.map (fun (a,arity,template,c,lc) -> let _, short_arity = decompose_prod_n_assum nparamdecls' arity in let shortlc = List.map (fun c -> snd (decompose_prod_n_assum nparamdecls' c)) lc in { mind_entry_typename = a; mind_entry_arity = short_arity; mind_entry_template = template; mind_entry_consnames = c; mind_entry_lc = shortlc }) inds' in (params',ind'') let refresh_polymorphic_type_of_inductive (_,mip) = match mip.mind_arity with | RegularArity s -> s.mind_user_arity, false | TemplateArity ar -> let ctx = List.rev mip.mind_arity_ctxt in mkArity (List.rev ctx, Sorts.sort_of_univ ar.template_level), true let dummy_variance = let open Entries in function | Monomorphic_entry _ -> assert false | Polymorphic_entry (_,uctx) -> Array.make (Univ.UContext.size uctx) Univ.Variance.Irrelevant let cook_inductive { Opaqueproof.modlist; abstract } mib = let open Entries in let (section_decls, subst, abs_uctx) = abstract in let nparamdecls = Context.Rel.length mib.mind_params_ctxt in let subst, ind_univs = match mib.mind_universes with | Monomorphic ctx -> Univ.empty_level_subst, Monomorphic_entry ctx | Polymorphic auctx -> let subst, auctx = discharge_abstract_universe_context subst abs_uctx auctx in let subst = Univ.make_instance_subst subst in let nas = Univ.AUContext.names auctx in let auctx = Univ.AUContext.repr auctx in subst, Polymorphic_entry (nas, auctx) in let variance = match mib.mind_variance with | None -> None | Some _ -> Some (dummy_variance ind_univs) in let cache = RefTable.create 13 in let discharge c = Vars.subst_univs_level_constr subst (expmod_constr cache modlist c) in let inds = Array.map_to_list (fun mip -> let ty, template = refresh_polymorphic_type_of_inductive (mib,mip) in let arity = discharge ty in let lc = Array.map discharge mip.mind_user_lc in (mip.mind_typename, arity, template, Array.to_list mip.mind_consnames, Array.to_list lc)) mib.mind_packets in let section_decls' = Context.Named.map discharge section_decls in let (params',inds') = abstract_inductive section_decls' nparamdecls inds in let record = match mib.mind_record with | PrimRecord info -> Some (Some (Array.map (fun (x,_,_,_) -> x) info)) | FakeRecord -> Some None | NotRecord -> None in { mind_entry_record = record; mind_entry_finite = mib.mind_finite; mind_entry_params = params'; mind_entry_inds = inds'; mind_entry_private = mib.mind_private; mind_entry_variance = variance; mind_entry_universes = ind_univs } let expmod_constr modlist c = expmod_constr (RefTable.create 13) modlist c