1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* File initially created by Gérard Huet and Thierry Coquand in 1984 *)
(* Extension to inductive constructions by Christine Paulin for Coq V5.6 *)
(* Extension to mutual inductive constructions by Christine Paulin for
   Coq V5.10.2 *)
(* Extension to co-inductive constructions by Eduardo Gimenez *)
(* Optimization of substitution functions by Chet Murthy *)
(* Optimization of lifting functions by Bruno Barras, Mar 1997 *)
(* Hash-consing by Bruno Barras in Feb 1998 *)
(* Restructuration of Coq of the type-checking kernel by Jean-Christophe 
   Filliâtre, 1999 *)
(* Abstraction of the syntax of terms and iterators by Hugo Herbelin, 2000 *)
(* Cleaning and lightening of the kernel by Bruno Barras, Nov 2001 *)

(* This file defines the internal syntax of the Calculus of
   Inductive Constructions (CIC) terms together with constructors,
   destructors, iterators and basic functions *)

open Util
open Names
open Univ
open Context

type existential_key = Evar.t
type metavariable = int

(* This defines the strategy to use for verifiying a Cast *)
(* Warning: REVERTcast is not exported to vo-files; as of r14492, it has to *)
(* come after the vo-exported cast_kind so as to be compatible with coqchk *)
type cast_kind = VMcast | NATIVEcast | DEFAULTcast | REVERTcast

(* This defines Cases annotations *)
type case_style = LetStyle | IfStyle | LetPatternStyle | MatchStyle | RegularStyle
type case_printing =
  { ind_tags : bool list; (** tell whether letin or lambda in the arity of the inductive type *)
    cstr_tags : bool list array; (* whether each pattern var of each constructor is a let-in (true) or not (false) *)
    style     : case_style }

(* INVARIANT:
 * - Array.length ci_cstr_ndecls = Array.length ci_cstr_nargs
 * - forall (i : 0 .. pred (Array.length ci_cstr_ndecls)),
 *          ci_cstr_ndecls.(i) >= ci_cstr_nargs.(i)
 *)
type case_info =
  { ci_ind        : inductive;      (* inductive type to which belongs the value that is being matched *)
    ci_npar       : int;            (* number of parameters of the above inductive type *)
    ci_cstr_ndecls : int array;     (* For each constructor, the corresponding integer determines
                                       the number of values that can be bound in a match-construct.
                                       NOTE: parameters of the inductive type are therefore excluded from the count *)
    ci_cstr_nargs : int array;      (* for each constructor, the corresponding integers determines
                                       the number of values that can be applied to the constructor,
                                       in addition to the parameters of the related inductive type
                                       NOTE: "lets" are therefore excluded from the count
                                       NOTE: parameters of the inductive type are also excluded from the count *)
    ci_relevance : Sorts.relevance;
    ci_pp_info    : case_printing   (* not interpreted by the kernel *)
  }

(********************************************************************)
(*       Constructions as implemented                               *)
(********************************************************************)

(* [constr array] is an instance matching definitional [named_context] in
   the same order (i.e. last argument first) *)
type 'constr pexistential = existential_key * 'constr array
type ('constr, 'types) prec_declaration =
    Name.t binder_annot array * 'types array * 'constr array
type ('constr, 'types) pfixpoint =
    (int array * int) * ('constr, 'types) prec_declaration
type ('constr, 'types) pcofixpoint =
    int * ('constr, 'types) prec_declaration
type 'a puniverses = 'a Univ.puniverses
type pconstant = Constant.t puniverses
type pinductive = inductive puniverses
type pconstructor = constructor puniverses

(* [Var] is used for named variables and [Rel] for variables as
   de Bruijn indices. *)
type ('constr, 'types, 'sort, 'univs) kind_of_term =
  | Rel       of int
  | Var       of Id.t
  | Meta      of metavariable
  | Evar      of 'constr pexistential
  | Sort      of 'sort
  | Cast      of 'constr * cast_kind * 'types
  | Prod      of Name.t binder_annot * 'types * 'types
  | Lambda    of Name.t binder_annot * 'types * 'constr
  | LetIn     of Name.t binder_annot * 'constr * 'types * 'constr
  | App       of 'constr * 'constr array
  | Const     of (Constant.t * 'univs)
  | Ind       of (inductive * 'univs)
  | Construct of (constructor * 'univs)
  | Case      of case_info * 'constr * 'constr * 'constr array
  | Fix       of ('constr, 'types) pfixpoint
  | CoFix     of ('constr, 'types) pcofixpoint
  | Proj      of Projection.t * 'constr
  | Int       of Uint63.t
(* constr is the fixpoint of the previous type. Requires option
   -rectypes of the Caml compiler to be set *)
type t = (t, t, Sorts.t, Instance.t) kind_of_term
type constr = t

type existential = existential_key * constr array

type types = constr

type rec_declaration = (constr, types) prec_declaration
type fixpoint = (constr, types) pfixpoint
type cofixpoint = (constr, types) pcofixpoint

(*********************)
(* Term constructors *)
(*********************)

(* Constructs a de Bruijn index with number n *)
let rels =
  [|Rel  1;Rel  2;Rel  3;Rel  4;Rel  5;Rel  6;Rel  7; Rel  8;
    Rel  9;Rel 10;Rel 11;Rel 12;Rel 13;Rel 14;Rel 15; Rel 16|]

let mkRel n = if 0<n && n<=16 then rels.(n-1) else Rel n

(* Construct a type *)
let mkSProp  = Sort Sorts.sprop
let mkProp   = Sort Sorts.prop
let mkSet    = Sort Sorts.set
let mkType u = Sort (Sorts.sort_of_univ u)
let mkSort   = function
  | Sorts.SProp -> mkSProp
  | Sorts.Prop -> mkProp (* Easy sharing *)
  | Sorts.Set -> mkSet
  | Sorts.Type _ as s -> Sort s

(* Constructs the term t1::t2, i.e. the term t1 casted with the type t2 *)
(* (that means t2 is declared as the type of t1) *)
let mkCast (t1,k2,t2) =
  match t1 with
  | Cast (c,k1, _) when (k1 == VMcast || k1 == NATIVEcast) && k1 == k2 -> Cast (c,k1,t2)
  | _ -> Cast (t1,k2,t2)

(* Constructs the product (x:t1)t2 *)
let mkProd (x,t1,t2) = Prod (x,t1,t2)

(* Constructs the abstraction [x:t1]t2 *)
let mkLambda (x,t1,t2) = Lambda (x,t1,t2)

(* Constructs [x=c_1:t]c_2 *)
let mkLetIn (x,c1,t,c2) = LetIn (x,c1,t,c2)

(* If lt = [t1; ...; tn], constructs the application (t1 ... tn) *)
(* We ensure applicative terms have at least one argument and the
   function is not itself an applicative term *)
let mkApp (f, a) =
  if Int.equal (Array.length a) 0 then f else
    match f with
      | App (g, cl) -> App (g, Array.append cl a)
      | _ -> App (f, a)

let map_puniverses f (x,u) = (f x, u)
let in_punivs a = (a, Univ.Instance.empty)

(* Constructs a constant *)
let mkConst c = Const (in_punivs c)
let mkConstU c = Const c

(* Constructs an applied projection *)
let mkProj (p,c) = Proj (p,c)

(* Constructs an existential variable *)
let mkEvar e = Evar e

(* Constructs the ith (co)inductive type of the block named kn *)
let mkInd m = Ind (in_punivs m)
let mkIndU m = Ind m

(* Constructs the jth constructor of the ith (co)inductive type of the
   block named kn. *)
let mkConstruct c = Construct (in_punivs c)
let mkConstructU c = Construct c
let mkConstructUi ((ind,u),i) = Construct ((ind,i),u)

(* Constructs the term <p>Case c of c1 | c2 .. | cn end *)
let mkCase (ci, p, c, ac) = Case (ci, p, c, ac)

(* If recindxs = [|i1,...in|]
      funnames = [|f1,...fn|]
      typarray = [|t1,...tn|]
      bodies   = [|b1,...bn|]
   then

      mkFix ((recindxs,i),(funnames,typarray,bodies))

   constructs the ith function of the block

    Fixpoint f1 [ctx1] : t1 := b1
    with     f2 [ctx2] : t2 := b2
    ...
    with     fn [ctxn] : tn := bn.

   where the length of the jth context is ij.
*)

let mkFix fix = Fix fix

(* If funnames = [|f1,...fn|]
      typarray = [|t1,...tn|]
      bodies   = [|b1,...bn|]
   then

      mkCoFix (i,(funnames,typsarray,bodies))

   constructs the ith function of the block

    CoFixpoint f1 : t1 := b1
    with       f2 : t2 := b2
    ...
    with       fn : tn := bn.
*)
let mkCoFix cofix= CoFix cofix

(* Constructs an existential variable named "?n" *)
let mkMeta  n =  Meta n

(* Constructs a Variable named id *)
let mkVar id = Var id

let mkRef (gr,u) = let open GlobRef in match gr with
  | ConstRef c -> mkConstU (c,u)
  | IndRef ind -> mkIndU (ind,u)
  | ConstructRef c -> mkConstructU (c,u)
  | VarRef x -> mkVar x

(* Constructs a primitive integer *)
let mkInt i = Int i

(************************************************************************)
(*    kind_of_term = constructions as seen by the user                 *)
(************************************************************************)

(* User view of [constr]. For [App], it is ensured there is at
   least one argument and the function is not itself an applicative
   term *)

let kind c = c

let rec kind_nocast_gen kind c =
  match kind c with
  | Cast (c, _, _) -> kind_nocast_gen kind c
  | App (h, outer) as k ->
    (match kind_nocast_gen kind h with
     | App (h, inner) -> App (h, Array.append inner outer)
     | _ -> k)
  | k -> k

let kind_nocast c = kind_nocast_gen kind c

(* The other way around. We treat specifically smart constructors *)
let of_kind = function
| App (f, a) -> mkApp (f, a)
| Cast (c, knd, t) -> mkCast (c, knd, t)
| k -> k

(**********************************************************************)
(*          Non primitive term destructors                            *)
(**********************************************************************)

(* Destructor operations : partial functions
   Raise [DestKO] if the const has not the expected form *)

exception DestKO

let isMeta c = match kind c with Meta _ -> true | _ -> false

(* Destructs a type *)
let isSort c = match kind c with
  | Sort _ -> true
  | _ -> false

let rec isprop c = match kind c with
  | Sort (Sorts.Prop | Sorts.Set) -> true
  | Cast (c,_,_) -> isprop c
  | _ -> false

let rec is_Prop c = match kind c with
  | Sort Sorts.Prop -> true
  | Cast (c,_,_) -> is_Prop c
  | _ -> false

let rec is_Set c = match kind c with
  | Sort Sorts.Set -> true
  | Cast (c,_,_) -> is_Set c
  | _ -> false

let rec is_Type c = match kind c with
  | Sort (Sorts.Type _) -> true
  | Cast (c,_,_) -> is_Type c
  | _ -> false

let is_small = Sorts.is_small
let iskind c = isprop c || is_Type c

(* Tests if an evar *)
let isEvar c = match kind c with Evar _ -> true | _ -> false
let isEvar_or_Meta c = match kind c with
  | Evar _ | Meta _ -> true
  | _ -> false

let isCast c = match kind c with Cast _ -> true | _ -> false
(* Tests if a de Bruijn index *)
let isRel c = match kind c with Rel _ -> true | _ -> false
let isRelN n c =
  match kind c with Rel n' -> Int.equal n n' | _ -> false
(* Tests if a variable *)
let isVar c = match kind c with Var _ -> true | _ -> false
let isVarId id c = match kind c with Var id' -> Id.equal id id' | _ -> false
(* Tests if an inductive *)
let isInd c = match kind c with Ind _ -> true | _ -> false
let isProd c = match kind c with | Prod _ -> true | _ -> false
let isLambda c = match kind c with | Lambda _ -> true | _ -> false
let isLetIn c =  match kind c with LetIn _ -> true | _ -> false
let isApp c = match kind c with App _ -> true | _ -> false
let isConst c = match kind c with Const _ -> true | _ -> false
let isConstruct c = match kind c with Construct _ -> true | _ -> false
let isCase c =  match kind c with Case _ -> true | _ -> false
let isProj c =  match kind c with Proj _ -> true | _ -> false
let isFix c =  match kind c with Fix _ -> true | _ -> false
let isCoFix c =  match kind c with CoFix _ -> true | _ -> false

(* Destructs a de Bruijn index *)
let destRel c = match kind c with
  | Rel n -> n
  | _ -> raise DestKO

(* Destructs an existential variable *)
let destMeta c = match kind c with
  | Meta n -> n
  | _ -> raise DestKO

(* Destructs a variable *)
let destVar c = match kind c with
  | Var id -> id
  | _ -> raise DestKO

let destSort c = match kind c with
  | Sort s -> s
  | _ -> raise DestKO

(* Destructs a casted term *)
let destCast c = match kind c with
  | Cast (t1,k,t2) -> (t1,k,t2)
  | _ -> raise DestKO

(* Destructs the product (x:t1)t2 *)
let destProd c = match kind c with
  | Prod (x,t1,t2) -> (x,t1,t2)
  | _ -> raise DestKO

(* Destructs the abstraction [x:t1]t2 *)
let destLambda c = match kind c with
  | Lambda (x,t1,t2) -> (x,t1,t2)
  | _ -> raise DestKO

(* Destructs the let [x:=b:t1]t2 *)
let destLetIn c = match kind c with
  | LetIn (x,b,t1,t2) -> (x,b,t1,t2)
  | _ -> raise DestKO

(* Destructs an application *)
let destApp c = match kind c with
  | App (f,a) -> (f, a)
  | _ -> raise DestKO

(* Destructs a constant *)
let destConst c = match kind c with
  | Const kn -> kn
  | _ -> raise DestKO

(* Destructs an existential variable *)
let destEvar c = match kind c with
  | Evar (_kn, _a as r) -> r
  | _ -> raise DestKO

(* Destructs a (co)inductive type named kn *)
let destInd c = match kind c with
  | Ind (_kn, _a as r) -> r
  | _ -> raise DestKO

(* Destructs a constructor *)
let destConstruct c = match kind c with
  | Construct (_kn, _a as r) -> r
  | _ -> raise DestKO

(* Destructs a term <p>Case c of lc1 | lc2 .. | lcn end *)
let destCase c = match kind c with
  | Case (ci,p,c,v) -> (ci,p,c,v)
  | _ -> raise DestKO

let destProj c = match kind c with
  | Proj (p, c) -> (p, c)
  | _ -> raise DestKO

let destFix c = match kind c with
  | Fix fix -> fix
  | _ -> raise DestKO

let destCoFix c = match kind c with
  | CoFix cofix -> cofix
  | _ -> raise DestKO

let destRef c = let open GlobRef in match kind c with
  | Var x -> VarRef x, Univ.Instance.empty
  | Const (c,u) -> ConstRef c, u
  | Ind (ind,u) -> IndRef ind, u
  | Construct (c,u) -> ConstructRef c, u
  | _ -> raise DestKO

(******************************************************************)
(* Flattening and unflattening of embedded applications and casts *)
(******************************************************************)

let decompose_app c =
  match kind c with
    | App (f,cl) -> (f, Array.to_list cl)
    | _ -> (c,[])

let decompose_appvect c =
  match kind c with
    | App (f,cl) -> (f, cl)
    | _ -> (c,[||])

(****************************************************************************)
(*              Functions to recur through subterms                         *)
(****************************************************************************)

(* [fold f acc c] folds [f] on the immediate subterms of [c]
   starting from [acc] and proceeding from left to right according to
   the usual representation of the constructions; it is not recursive *)

let fold f acc c = match kind c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _ | Int _) -> acc
  | Cast (c,_,t) -> f (f acc c) t
  | Prod (_,t,c) -> f (f acc t) c
  | Lambda (_,t,c) -> f (f acc t) c
  | LetIn (_,b,t,c) -> f (f (f acc b) t) c
  | App (c,l) -> Array.fold_left f (f acc c) l
  | Proj (_p,c) -> f acc c
  | Evar (_,l) -> Array.fold_left f acc l
  | Case (_,p,c,bl) -> Array.fold_left f (f (f acc p) c) bl
  | Fix (_,(_lna,tl,bl)) ->
    Array.fold_left2 (fun acc t b -> f (f acc t) b) acc tl bl
  | CoFix (_,(_lna,tl,bl)) ->
    Array.fold_left2 (fun acc t b -> f (f acc t) b) acc tl bl

(* [iter f c] iters [f] on the immediate subterms of [c]; it is
   not recursive and the order with which subterms are processed is
   not specified *)

let iter f c = match kind c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _ | Int _) -> ()
  | Cast (c,_,t) -> f c; f t
  | Prod (_,t,c) -> f t; f c
  | Lambda (_,t,c) -> f t; f c
  | LetIn (_,b,t,c) -> f b; f t; f c
  | App (c,l) -> f c; Array.iter f l
  | Proj (_p,c) -> f c
  | Evar (_,l) -> Array.iter f l
  | Case (_,p,c,bl) -> f p; f c; Array.iter f bl
  | Fix (_,(_,tl,bl)) -> Array.iter f tl; Array.iter f bl
  | CoFix (_,(_,tl,bl)) -> Array.iter f tl; Array.iter f bl

(* [iter_with_binders g f n c] iters [f n] on the immediate
   subterms of [c]; it carries an extra data [n] (typically a lift
   index) which is processed by [g] (which typically add 1 to [n]) at
   each binder traversal; it is not recursive and the order with which
   subterms are processed is not specified *)

let iter_with_binders g f n c = match kind c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _ | Int _) -> ()
  | Cast (c,_,t) -> f n c; f n t
  | Prod (_,t,c) -> f n t; f (g n) c
  | Lambda (_,t,c) -> f n t; f (g n) c
  | LetIn (_,b,t,c) -> f n b; f n t; f (g n) c
  | App (c,l) -> f n c; Array.Fun1.iter f n l
  | Evar (_,l) -> Array.Fun1.iter f n l
  | Case (_,p,c,bl) -> f n p; f n c; Array.Fun1.iter f n bl
  | Proj (_p,c) -> f n c
  | Fix (_,(_,tl,bl)) ->
      Array.Fun1.iter f n tl;
      Array.Fun1.iter f (iterate g (Array.length tl) n) bl
  | CoFix (_,(_,tl,bl)) ->
      Array.Fun1.iter f n tl;
      Array.Fun1.iter f (iterate g (Array.length tl) n) bl

(* [fold_constr_with_binders g f n acc c] folds [f n] on the immediate
   subterms of [c] starting from [acc] and proceeding from left to
   right according to the usual representation of the constructions as
   [fold_constr] but it carries an extra data [n] (typically a lift
   index) which is processed by [g] (which typically add 1 to [n]) at
   each binder traversal; it is not recursive *)

let fold_constr_with_binders g f n acc c =
  match kind c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _ | Int _) -> acc
  | Cast (c,_, t) -> f n (f n acc c) t
  | Prod (_na,t,c) -> f (g  n) (f n acc t) c
  | Lambda (_na,t,c) -> f (g  n) (f n acc t) c
  | LetIn (_na,b,t,c) -> f (g  n) (f n (f n acc b) t) c
  | App (c,l) -> Array.fold_left (f n) (f n acc c) l
  | Proj (_p,c) -> f n acc c
  | Evar (_,l) -> Array.fold_left (f n) acc l
  | Case (_,p,c,bl) -> Array.fold_left (f n) (f n (f n acc p) c) bl
  | Fix (_,(_,tl,bl)) ->
      let n' = iterate g (Array.length tl) n in
      let fd = Array.map2 (fun t b -> (t,b)) tl bl in
      Array.fold_left (fun acc (t,b) -> f n' (f n acc t) b) acc fd
  | CoFix (_,(_,tl,bl)) ->
      let n' = iterate g (Array.length tl) n in
      let fd = Array.map2 (fun t b -> (t,b)) tl bl in
      Array.fold_left (fun acc (t,b) -> f n' (f n acc t) b) acc fd

(* [map f c] maps [f] on the immediate subterms of [c]; it is
   not recursive and the order with which subterms are processed is
   not specified *)

let rec map_under_context f n d =
  if n = 0 then f d else
  match kind d with
  | LetIn (na,b,t,c) ->
    let b' = f b in
    let t' = f t in
    let c' = map_under_context f (n-1) c in
    if b' == b && t' == t && c' == c then d
    else mkLetIn (na,b',t',c')
  | Lambda (na,t,b) ->
    let t' = f t in
    let b' = map_under_context f (n-1) b in
    if t' == t && b' == b then d
    else mkLambda (na,t',b')
  | _ -> CErrors.anomaly (Pp.str "Ill-formed context")

let map_branches f ci bl =
  let nl = Array.map List.length ci.ci_pp_info.cstr_tags in
  let bl' = Array.map2 (map_under_context f) nl bl in
  if Array.for_all2 (==) bl' bl then bl else bl'

let map_return_predicate f ci p =
  map_under_context f (List.length ci.ci_pp_info.ind_tags) p

let rec map_under_context_with_binders g f l n d =
  if n = 0 then f l d else
  match kind d with
  | LetIn (na,b,t,c) ->
      let b' = f l b in
      let t' = f l t in
      let c' = map_under_context_with_binders g f (g l) (n-1) c in
      if b' == b && t' == t && c' == c then d
      else mkLetIn (na,b',t',c')
  | Lambda (na,t,b) ->
      let t' = f l t in
      let b' = map_under_context_with_binders g f (g l) (n-1) b in
      if t' == t && b' == b then d
      else mkLambda (na,t',b')
  | _ -> CErrors.anomaly (Pp.str "Ill-formed context")

let map_branches_with_binders g f l ci bl =
  let tags = Array.map List.length ci.ci_pp_info.cstr_tags in
  let bl' = Array.map2 (map_under_context_with_binders g f l) tags bl in
  if Array.for_all2 (==) bl' bl then bl else bl'

let map_return_predicate_with_binders g f l ci p =
  map_under_context_with_binders g f l (List.length ci.ci_pp_info.ind_tags) p

let rec map_under_context_with_full_binders g f l n d =
  if n = 0 then f l d else
    match kind d with
    | LetIn (na,b,t,c) ->
       let b' = f l b in
       let t' = f l t in
       let c' = map_under_context_with_full_binders g f (g (Context.Rel.Declaration.LocalDef (na,b,t)) l) (n-1) c in
       if b' == b && t' == t && c' == c then d
       else mkLetIn (na,b',t',c')
    | Lambda (na,t,b) ->
       let t' = f l t in
       let b' = map_under_context_with_full_binders g f (g (Context.Rel.Declaration.LocalAssum (na,t)) l) (n-1) b in
       if t' == t && b' == b then d
       else mkLambda (na,t',b')
    | _ -> CErrors.anomaly (Pp.str "Ill-formed context")

let map_branches_with_full_binders g f l ci bl =
  let tags = Array.map List.length ci.ci_pp_info.cstr_tags in
  let bl' = Array.map2 (map_under_context_with_full_binders g f l) tags bl in
  if Array.for_all2 (==) bl' bl then bl else bl'

let map_return_predicate_with_full_binders g f l ci p =
  map_under_context_with_full_binders g f l (List.length ci.ci_pp_info.ind_tags) p

let map_gen userview f c = match kind c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _ | Int _) -> c
  | Cast (b,k,t) ->
      let b' = f b in
      let t' = f t in
      if b'==b && t' == t then c
      else mkCast (b', k, t')
  | Prod (na,t,b) ->
      let b' = f b in
      let t' = f t in
      if b'==b && t' == t then c
      else mkProd (na, t', b')
  | Lambda (na,t,b) ->
      let b' = f b in
      let t' = f t in
      if b'==b && t' == t then c
      else mkLambda (na, t', b')
  | LetIn (na,b,t,k) ->
      let b' = f b in
      let t' = f t in
      let k' = f k in
      if b'==b && t' == t && k'==k then c
      else mkLetIn (na, b', t', k')
  | App (b,l) ->
      let b' = f b in
      let l' = Array.Smart.map f l in
      if b'==b && l'==l then c
      else mkApp (b', l')
  | Proj (p,t) ->
      let t' = f t in
      if t' == t then c
      else mkProj (p, t')
  | Evar (e,l) ->
      let l' = Array.Smart.map f l in
      if l'==l then c
      else mkEvar (e, l')
  | Case (ci,p,b,bl) when userview ->
      let b' = f b in
      let p' = map_return_predicate f ci p in
      let bl' = map_branches f ci bl in
      if b'==b && p'==p && bl'==bl then c
      else mkCase (ci, p', b', bl')
  | Case (ci,p,b,bl) ->
      let b' = f b in
      let p' = f p in
      let bl' = Array.Smart.map f bl in
      if b'==b && p'==p && bl'==bl then c
      else mkCase (ci, p', b', bl')
  | Fix (ln,(lna,tl,bl)) ->
      let tl' = Array.Smart.map f tl in
      let bl' = Array.Smart.map f bl in
      if tl'==tl && bl'==bl then c
      else mkFix (ln,(lna,tl',bl'))
  | CoFix(ln,(lna,tl,bl)) ->
      let tl' = Array.Smart.map f tl in
      let bl' = Array.Smart.map f bl in
      if tl'==tl && bl'==bl then c
      else mkCoFix (ln,(lna,tl',bl'))

let map_user_view = map_gen true
let map = map_gen false

(* Like {!map} but with an accumulator. *)

let fold_map f accu c = match kind c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _ | Int _) -> accu, c
  | Cast (b,k,t) ->
      let accu, b' = f accu b in
      let accu, t' = f accu t in
      if b'==b && t' == t then accu, c
      else accu, mkCast (b', k, t')
  | Prod (na,t,b) ->
      let accu, b' = f accu b in
      let accu, t' = f accu t in
      if b'==b && t' == t then accu, c
      else accu, mkProd (na, t', b')
  | Lambda (na,t,b) ->
      let accu, b' = f accu b in
      let accu, t' = f accu t in
      if b'==b && t' == t then accu, c
      else accu, mkLambda (na, t', b')
  | LetIn (na,b,t,k) ->
      let accu, b' = f accu b in
      let accu, t' = f accu t in
      let accu, k' = f accu k in
      if b'==b && t' == t && k'==k then accu, c
      else accu, mkLetIn (na, b', t', k')
  | App (b,l) ->
      let accu, b' = f accu b in
      let accu, l' = Array.Smart.fold_left_map f accu l in
      if b'==b && l'==l then accu, c
      else accu, mkApp (b', l')
  | Proj (p,t) ->
      let accu, t' = f accu t in
      if t' == t then accu, c
      else accu, mkProj (p, t')
  | Evar (e,l) ->
      let accu, l' = Array.Smart.fold_left_map f accu l in
      if l'==l then accu, c
      else accu, mkEvar (e, l')
  | Case (ci,p,b,bl) ->
      let accu, b' = f accu b in
      let accu, p' = f accu p in
      let accu, bl' = Array.Smart.fold_left_map f accu bl in
      if b'==b && p'==p && bl'==bl then accu, c
      else accu, mkCase (ci, p', b', bl')
  | Fix (ln,(lna,tl,bl)) ->
      let accu, tl' = Array.Smart.fold_left_map f accu tl in
      let accu, bl' = Array.Smart.fold_left_map f accu bl in
      if tl'==tl && bl'==bl then accu, c
      else accu, mkFix (ln,(lna,tl',bl'))
  | CoFix(ln,(lna,tl,bl)) ->
      let accu, tl' = Array.Smart.fold_left_map f accu tl in
      let accu, bl' = Array.Smart.fold_left_map f accu bl in
      if tl'==tl && bl'==bl then accu, c
      else accu, mkCoFix (ln,(lna,tl',bl'))

(* [map_with_binders g f n c] maps [f n] on the immediate
   subterms of [c]; it carries an extra data [n] (typically a lift
   index) which is processed by [g] (which typically add 1 to [n]) at
   each binder traversal; it is not recursive and the order with which
   subterms are processed is not specified *)

let map_with_binders g f l c0 = match kind c0 with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _ | Int _) -> c0
  | Cast (c, k, t) ->
    let c' = f l c in
    let t' = f l t in
    if c' == c && t' == t then c0
    else mkCast (c', k, t')
  | Prod (na, t, c) ->
    let t' = f l t in
    let c' = f (g l) c in
    if t' == t && c' == c then c0
    else mkProd (na, t', c')
  | Lambda (na, t, c) ->
    let t' = f l t in
    let c' = f (g l) c in
    if t' == t && c' == c then c0
    else mkLambda (na, t', c')
  | LetIn (na, b, t, c) ->
    let b' = f l b in
    let t' = f l t in
    let c' = f (g l) c in
    if b' == b && t' == t && c' == c then c0
    else mkLetIn (na, b', t', c')
  | App (c, al) ->
    let c' = f l c in
    let al' = Array.Fun1.Smart.map f l al in
    if c' == c && al' == al then c0
    else mkApp (c', al')
  | Proj (p, t) ->
    let t' = f l t in
    if t' == t then c0
    else mkProj (p, t')
  | Evar (e, al) ->
    let al' = Array.Fun1.Smart.map f l al in
    if al' == al then c0
    else mkEvar (e, al')
  | Case (ci, p, c, bl) ->
    let p' = f l p in
    let c' = f l c in
    let bl' = Array.Fun1.Smart.map f l bl in
    if p' == p && c' == c && bl' == bl then c0
    else mkCase (ci, p', c', bl')
  | Fix (ln, (lna, tl, bl)) ->
    let tl' = Array.Fun1.Smart.map f l tl in
    let l' = iterate g (Array.length tl) l in
    let bl' = Array.Fun1.Smart.map f l' bl in
    if tl' == tl && bl' == bl then c0
    else mkFix (ln,(lna,tl',bl'))
  | CoFix(ln,(lna,tl,bl)) ->
    let tl' = Array.Fun1.Smart.map f l tl in
    let l' = iterate g (Array.length tl) l in
    let bl' = Array.Fun1.Smart.map f l' bl in
    mkCoFix (ln,(lna,tl',bl'))

(*********************)
(*      Lifting      *)
(*********************)

(* The generic lifting function *)
let rec exliftn el c =
  let open Esubst in
  match kind c with
  | Rel i -> mkRel(reloc_rel i el)
  | _ -> map_with_binders el_lift exliftn el c

(* Lifting the binding depth across k bindings *)

let liftn n k c =
  let open Esubst in
  match el_liftn (pred k) (el_shft n el_id) with
    | ELID -> c
    | el -> exliftn el c

let lift n = liftn n 1

let fold_with_full_binders g f n acc c =
  let open Context.Rel.Declaration in
  match kind c with
  | Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _ | Construct _  | Int _ -> acc
  | Cast (c,_, t) -> f n (f n acc c) t
  | Prod (na,t,c) -> f (g (LocalAssum (na,t)) n) (f n acc t) c
  | Lambda (na,t,c) -> f (g (LocalAssum (na,t)) n) (f n acc t) c
  | LetIn (na,b,t,c) -> f (g (LocalDef (na,b,t)) n) (f n (f n acc b) t) c
  | App (c,l) -> Array.fold_left (f n) (f n acc c) l
  | Proj (_,c) -> f n acc c
  | Evar (_,l) -> Array.fold_left (f n) acc l
  | Case (_,p,c,bl) -> Array.fold_left (f n) (f n (f n acc p) c) bl
  | Fix (_,(lna,tl,bl)) ->
      let n' = CArray.fold_left2_i (fun i c n t -> g (LocalAssum (n,lift i t)) c) n lna tl in
      let fd = Array.map2 (fun t b -> (t,b)) tl bl in
      Array.fold_left (fun acc (t,b) -> f n' (f n acc t) b) acc fd
  | CoFix (_,(lna,tl,bl)) ->
      let n' = CArray.fold_left2_i (fun i c n t -> g (LocalAssum (n,lift i t)) c) n lna tl in
      let fd = Array.map2 (fun t b -> (t,b)) tl bl in
      Array.fold_left (fun acc (t,b) -> f n' (f n acc t) b) acc fd


type 'univs instance_compare_fn = GlobRef.t -> int ->
  'univs -> 'univs -> bool

type 'constr constr_compare_fn = int -> 'constr -> 'constr -> bool

(* [compare_head_gen_evar k1 k2 u s e eq leq c1 c2] compare [c1] and
   [c2] (using [k1] to expose the structure of [c1] and [k2] to expose
   the structure [c2]) using [eq] to compare the immediate subterms of
   [c1] of [c2] for conversion if needed, [leq] for cumulativity, [u]
   to compare universe instances, and [s] to compare sorts; Cast's,
   application associativity, binders name and Cases annotations are
   not taken into account. Note that as [kind1] and [kind2] are
   potentially different, we cannot use, in recursive case, the
   optimisation that physically equal arrays are equals (hence the
   calls to {!Array.equal_norefl}). *)

let compare_head_gen_leq_with kind1 kind2 leq_universes leq_sorts eq leq nargs t1 t2 =
  match kind_nocast_gen kind1 t1, kind_nocast_gen kind2 t2 with
  | Cast _, _ | _, Cast _ -> assert false (* kind_nocast *)
  | Rel n1, Rel n2 -> Int.equal n1 n2
  | Meta m1, Meta m2 -> Int.equal m1 m2
  | Var id1, Var id2 -> Id.equal id1 id2
  | Int i1, Int i2 -> Uint63.equal i1 i2
  | Sort s1, Sort s2 -> leq_sorts s1 s2
  | Prod (_,t1,c1), Prod (_,t2,c2) -> eq 0 t1 t2 && leq 0 c1 c2
  | Lambda (_,t1,c1), Lambda (_,t2,c2) -> eq 0 t1 t2 && eq 0 c1 c2
  | LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) -> eq 0 b1 b2 && eq 0 t1 t2 && leq nargs c1 c2
  (* Why do we suddenly make a special case for Cast here? *)
  | App (c1, l1), App (c2, l2) ->
    let len = Array.length l1 in
    Int.equal len (Array.length l2) &&
    leq (nargs+len) c1 c2 && Array.equal_norefl (eq 0) l1 l2
  | Proj (p1,c1), Proj (p2,c2) -> Projection.equal p1 p2 && eq 0 c1 c2
  | Evar (e1,l1), Evar (e2,l2) -> Evar.equal e1 e2 && Array.equal (eq 0) l1 l2
  | Const (c1,u1), Const (c2,u2) ->
    (* The args length currently isn't used but may as well pass it. *)
    Constant.equal c1 c2 && leq_universes (GlobRef.ConstRef c1) nargs u1 u2
  | Ind (c1,u1), Ind (c2,u2) -> eq_ind c1 c2 && leq_universes (GlobRef.IndRef c1) nargs u1 u2
  | Construct (c1,u1), Construct (c2,u2) ->
    eq_constructor c1 c2 && leq_universes (GlobRef.ConstructRef c1) nargs u1 u2
  | Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) ->
    eq 0 p1 p2 && eq 0 c1 c2 && Array.equal (eq 0) bl1 bl2
  | Fix ((ln1, i1),(_,tl1,bl1)), Fix ((ln2, i2),(_,tl2,bl2)) ->
    Int.equal i1 i2 && Array.equal Int.equal ln1 ln2
    && Array.equal_norefl (eq 0) tl1 tl2 && Array.equal_norefl (eq 0) bl1 bl2
  | CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) ->
    Int.equal ln1 ln2 && Array.equal_norefl (eq 0) tl1 tl2 && Array.equal_norefl (eq 0) bl1 bl2
  | (Rel _ | Meta _ | Var _ | Sort _ | Prod _ | Lambda _ | LetIn _ | App _
    | Proj _ | Evar _ | Const _ | Ind _ | Construct _ | Case _ | Fix _
    | CoFix _ | Int _), _ -> false

(* [compare_head_gen_leq u s eq leq c1 c2] compare [c1] and [c2] using [eq] to compare
   the immediate subterms of [c1] of [c2] for conversion if needed, [leq] for cumulativity,
   [u] to compare universe instances and [s] to compare sorts; Cast's,
   application associativity, binders name and Cases annotations are
   not taken into account *)

let compare_head_gen_leq leq_universes leq_sorts eq leq t1 t2 =
  compare_head_gen_leq_with kind kind leq_universes leq_sorts eq leq t1 t2

(* [compare_head_gen u s f c1 c2] compare [c1] and [c2] using [f] to
   compare the immediate subterms of [c1] of [c2] if needed, [u] to
   compare universe instances and [s] to compare sorts; Cast's,
   application associativity, binders name and Cases annotations are
   not taken into account.

   [compare_head_gen_with] is a variant taking kind-of-term functions,
   to expose subterms of [c1] and [c2], as arguments. *)

let compare_head_gen_with kind1 kind2 eq_universes eq_sorts eq t1 t2 =
  compare_head_gen_leq_with kind1 kind2 eq_universes eq_sorts eq eq t1 t2

let compare_head_gen eq_universes eq_sorts eq t1 t2 =
  compare_head_gen_leq eq_universes eq_sorts eq eq t1 t2

let compare_head = compare_head_gen (fun _ _ -> Univ.Instance.equal) Sorts.equal

(*******************************)
(*  alpha conversion functions *)
(*******************************)

(* alpha conversion : ignore print names and casts *)

let rec eq_constr nargs m n =
  (m == n) || compare_head_gen (fun _ _ -> Instance.equal) Sorts.equal eq_constr nargs m n

let equal n m = eq_constr 0 m n (* to avoid tracing a recursive fun *)

let eq_constr_univs univs m n =
  if m == n then true
  else 
    let eq_universes _ _ = UGraph.check_eq_instances univs in
    let eq_sorts s1 s2 = s1 == s2 || UGraph.check_eq univs (Sorts.univ_of_sort s1) (Sorts.univ_of_sort s2) in
    let rec eq_constr' nargs m n =
      m == n ||        compare_head_gen eq_universes eq_sorts eq_constr' nargs m n
    in compare_head_gen eq_universes eq_sorts eq_constr' 0 m n

let leq_constr_univs univs m n =
  if m == n then true
  else 
    let eq_universes _ _ = UGraph.check_eq_instances univs in
    let eq_sorts s1 s2 = s1 == s2 || 
      UGraph.check_eq univs (Sorts.univ_of_sort s1) (Sorts.univ_of_sort s2) in
    let leq_sorts s1 s2 = s1 == s2 || 
      UGraph.check_leq univs (Sorts.univ_of_sort s1) (Sorts.univ_of_sort s2) in
    let rec eq_constr' nargs m n =
      m == n || compare_head_gen eq_universes eq_sorts eq_constr' nargs m n
    in
    let rec compare_leq nargs m n =
      compare_head_gen_leq eq_universes leq_sorts eq_constr' leq_constr' nargs m n
    and leq_constr' nargs m n = m == n || compare_leq nargs m n in
    compare_leq 0 m n

let eq_constr_univs_infer univs m n =
  if m == n then true, Constraint.empty
  else 
    let cstrs = ref Constraint.empty in
    let eq_universes _ _ = UGraph.check_eq_instances univs in
    let eq_sorts s1 s2 = 
      if Sorts.equal s1 s2 then true
      else
        let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in
        if UGraph.check_eq univs u1 u2 then true
        else
          (cstrs := Univ.enforce_eq u1 u2 !cstrs;
           true)
    in
    let rec eq_constr' nargs m n =
      m == n || compare_head_gen eq_universes eq_sorts eq_constr' nargs m n
    in
    let res = compare_head_gen eq_universes eq_sorts eq_constr' 0 m n in
    res, !cstrs

let leq_constr_univs_infer univs m n =
  if m == n then true, Constraint.empty
  else 
    let cstrs = ref Constraint.empty in
    let eq_universes _ _ l l' = UGraph.check_eq_instances univs l l' in
    let eq_sorts s1 s2 = 
      if Sorts.equal s1 s2 then true
      else
        let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in
        if UGraph.check_eq univs u1 u2 then true
        else (cstrs := Univ.enforce_eq u1 u2 !cstrs;
              true)
    in
    let leq_sorts s1 s2 = 
      if Sorts.equal s1 s2 then true
      else 
        let u1 = Sorts.univ_of_sort s1 and u2 = Sorts.univ_of_sort s2 in
        if UGraph.check_leq univs u1 u2 then true
        else
          (try let c, _ = UGraph.enforce_leq_alg u1 u2 univs in
            cstrs := Univ.Constraint.union c !cstrs;
            true
          with Univ.UniverseInconsistency _ -> false)
    in
    let rec eq_constr' nargs m n =
      m == n || compare_head_gen eq_universes eq_sorts eq_constr' nargs m n
    in
    let rec compare_leq nargs m n =
      compare_head_gen_leq eq_universes leq_sorts eq_constr' leq_constr' nargs m n
    and leq_constr' nargs m n = m == n || compare_leq nargs m n in
    let res = compare_leq 0 m n in
    res, !cstrs

let rec eq_constr_nounivs m n =
  (m == n) || compare_head_gen (fun _ _ _ _ -> true) (fun _ _ -> true) (fun _ -> eq_constr_nounivs) 0 m n

let constr_ord_int f t1 t2 =
  let (=?) f g i1 i2 j1 j2=
    let c = f i1 i2 in
    if Int.equal c 0 then g j1 j2 else c in
  let (==?) fg h i1 i2 j1 j2 k1 k2=
    let c=fg i1 i2 j1 j2 in
    if Int.equal c 0 then h k1 k2 else c in
  let fix_cmp (a1, i1) (a2, i2) =
    ((Array.compare Int.compare) =? Int.compare) a1 a2 i1 i2
  in
  match kind t1, kind t2 with
    | Cast (c1,_,_), _ -> f c1 t2
    | _, Cast (c2,_,_) -> f t1 c2
    (* Why this special case? *)
    | App (Cast(c1,_,_),l1), _ -> f (mkApp (c1,l1)) t2
    | _, App (Cast(c2, _,_),l2) -> f t1 (mkApp (c2,l2))
    | Rel n1, Rel n2 -> Int.compare n1 n2
    | Rel _, _ -> -1 | _, Rel _ -> 1
    | Var id1, Var id2 -> Id.compare id1 id2
    | Var _, _ -> -1 | _, Var _ -> 1
    | Meta m1, Meta m2 -> Int.compare m1 m2
    | Meta _, _ -> -1 | _, Meta _ -> 1
    | Evar (e1,l1), Evar (e2,l2) ->
        (Evar.compare =? (Array.compare f)) e1 e2 l1 l2
    | Evar _, _ -> -1 | _, Evar _ -> 1
    | Sort s1, Sort s2 -> Sorts.compare s1 s2
    | Sort _, _ -> -1 | _, Sort _ -> 1
    | Prod (_,t1,c1), Prod (_,t2,c2)
    | Lambda (_,t1,c1), Lambda (_,t2,c2) ->
        (f =? f) t1 t2 c1 c2
    | Prod _, _ -> -1 | _, Prod _ -> 1
    | Lambda _, _ -> -1 | _, Lambda _ -> 1
    | LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) ->
        ((f =? f) ==? f) b1 b2 t1 t2 c1 c2
    | LetIn _, _ -> -1 | _, LetIn _ -> 1
    | App (c1,l1), App (c2,l2) -> (f =? (Array.compare f)) c1 c2 l1 l2
    | App _, _ -> -1 | _, App _ -> 1
    | Const (c1,_u1), Const (c2,_u2) -> Constant.CanOrd.compare c1 c2
    | Const _, _ -> -1 | _, Const _ -> 1
    | Ind (ind1, _u1), Ind (ind2, _u2) -> ind_ord ind1 ind2
    | Ind _, _ -> -1 | _, Ind _ -> 1
    | Construct (ct1,_u1), Construct (ct2,_u2) -> constructor_ord ct1 ct2
    | Construct _, _ -> -1 | _, Construct _ -> 1
    | Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) ->
        ((f =? f) ==? (Array.compare f)) p1 p2 c1 c2 bl1 bl2
    | Case _, _ -> -1 | _, Case _ -> 1
    | Fix (ln1,(_,tl1,bl1)), Fix (ln2,(_,tl2,bl2)) ->
        ((fix_cmp =? (Array.compare f)) ==? (Array.compare f))
        ln1 ln2 tl1 tl2 bl1 bl2
    | Fix _, _ -> -1 | _, Fix _ -> 1
    | CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) ->
        ((Int.compare =? (Array.compare f)) ==? (Array.compare f))
        ln1 ln2 tl1 tl2 bl1 bl2
    | CoFix _, _ -> -1 | _, CoFix _ -> 1
    | Proj (p1,c1), Proj (p2,c2) -> (Projection.compare =? f) p1 p2 c1 c2
    | Proj _, _ -> -1 | _, Proj _ -> 1
    | Int i1, Int i2 -> Uint63.compare i1 i2

let rec compare m n=
  constr_ord_int compare m n

(*******************)
(*  hash-consing   *)
(*******************)

(* Hash-consing of [constr] does not use the module [Hashcons] because
   [Hashcons] is not efficient on deep tree-like data
   structures. Indeed, [Hashcons] is based the (very efficient)
   generic hash function [Hashtbl.hash], which computes the hash key
   through a depth bounded traversal of the data structure to be
   hashed. As a consequence, for a deep [constr] like the natural
   number 1000 (S (S (... (S O)))), the same hash is assigned to all
   the sub [constr]s greater than the maximal depth handled by
   [Hashtbl.hash]. This entails a huge number of collisions in the
   hash table and leads to cubic hash-consing in this worst-case.

   In order to compute a hash key that is independent of the data
   structure depth while being constant-time, an incremental hashing
   function must be devised. A standard implementation creates a cache
   of the hashing function by decorating each node of the hash-consed
   data structure with its hash key. In that case, the hash function
   can deduce the hash key of a toplevel data structure by a local
   computation based on the cache held on its substructures.
   Unfortunately, this simple implementation introduces a space
   overhead that is damageable for the hash-consing of small [constr]s
   (the most common case). One can think of an heterogeneous
   distribution of caches on smartly chosen nodes, but this is forbidden
   by the use of generic equality in Coq source code. (Indeed, this forces
   each [constr] to have a unique canonical representation.)

   Given that hash-consing proceeds inductively, we can nonetheless
   computes the hash key incrementally during hash-consing by changing
   a little the signature of the hash-consing function: it now returns
   both the hash-consed term and its hash key. This simple solution is
   implemented in the following code: it does not introduce a space
   overhead in [constr], that's why the efficiency is unchanged for
   small [constr]s. Besides, it does handle deep [constr]s without
   introducing an unreasonable number of collisions in the hash table.
   Some benchmarks make us think that this implementation of
   hash-consing is linear in the size of the hash-consed data
   structure for our daily use of Coq.
*)

let array_eqeq t1 t2 =
  t1 == t2 ||
  (Int.equal (Array.length t1) (Array.length t2) &&
   let rec aux i =
     (Int.equal i (Array.length t1)) || (t1.(i) == t2.(i) && aux (i + 1))
   in aux 0)

let hasheq t1 t2 =
  match t1, t2 with
    | Rel n1, Rel n2 -> n1 == n2
    | Meta m1, Meta m2 -> m1 == m2
    | Var id1, Var id2 -> id1 == id2
    | Sort s1, Sort s2 -> s1 == s2
    | Cast (c1,k1,t1), Cast (c2,k2,t2) -> c1 == c2 && k1 == k2 && t1 == t2
    | Prod (n1,t1,c1), Prod (n2,t2,c2) -> n1 == n2 && t1 == t2 && c1 == c2
    | Lambda (n1,t1,c1), Lambda (n2,t2,c2) -> n1 == n2 && t1 == t2 && c1 == c2
    | LetIn (n1,b1,t1,c1), LetIn (n2,b2,t2,c2) ->
      n1 == n2 && b1 == b2 && t1 == t2 && c1 == c2
    | App (c1,l1), App (c2,l2) -> c1 == c2 && array_eqeq l1 l2
    | Proj (p1,c1), Proj(p2,c2) -> p1 == p2 && c1 == c2
    | Evar (e1,l1), Evar (e2,l2) -> e1 == e2 && array_eqeq l1 l2
    | Const (c1,u1), Const (c2,u2) -> c1 == c2 && u1 == u2
    | Ind (ind1,u1), Ind (ind2,u2) -> ind1 == ind2 && u1 == u2
    | Construct (cstr1,u1), Construct (cstr2,u2) -> cstr1 == cstr2 && u1 == u2
    | Case (ci1,p1,c1,bl1), Case (ci2,p2,c2,bl2) ->
      ci1 == ci2 && p1 == p2 && c1 == c2 && array_eqeq bl1 bl2
    | Fix ((ln1, i1),(lna1,tl1,bl1)), Fix ((ln2, i2),(lna2,tl2,bl2)) ->
      Int.equal i1 i2
      && Array.equal Int.equal ln1 ln2
      && array_eqeq lna1 lna2
      && array_eqeq tl1 tl2
      && array_eqeq bl1 bl2
    | CoFix(ln1,(lna1,tl1,bl1)), CoFix(ln2,(lna2,tl2,bl2)) ->
      Int.equal ln1 ln2
      && array_eqeq lna1 lna2
      && array_eqeq tl1 tl2
      && array_eqeq bl1 bl2
    | Int i1, Int i2 -> i1 == i2
    | (Rel _ | Meta _ | Var _ | Sort _ | Cast _ | Prod _ | Lambda _ | LetIn _
      | App _ | Proj _ | Evar _ | Const _ | Ind _ | Construct _ | Case _
      | Fix _ | CoFix _ | Int _), _ -> false

(** Note that the following Make has the side effect of creating
    once and for all the table we'll use for hash-consing all constr *)

module HashsetTerm =
  Hashset.Make(struct type t = constr let eq = hasheq end)

module HashsetTermArray =
  Hashset.Make(struct type t = constr array let eq = array_eqeq end)

let term_table = HashsetTerm.create 19991
(* The associative table to hashcons terms. *)

let term_array_table = HashsetTermArray.create 4999
(* The associative table to hashcons term arrays. *)

open Hashset.Combine

let hash_cast_kind = function
| VMcast -> 0
| NATIVEcast -> 1
| DEFAULTcast -> 2
| REVERTcast -> 3

let sh_instance = Univ.Instance.share

(* [hashcons hash_consing_functions constr] computes an hash-consed
   representation for [constr] using [hash_consing_functions] on
   leaves. *)
let hashcons (sh_sort,sh_ci,sh_construct,sh_ind,sh_con,sh_na,sh_id) =
  let rec hash_term t =
    match t with
      | Var i ->
        (Var (sh_id i), combinesmall 1 (Id.hash i))
      | Sort s ->
        (Sort (sh_sort s), combinesmall 2 (Sorts.hash s))
      | Cast (c, k, t) ->
        let c, hc = sh_rec c in
        let t, ht = sh_rec t in
        (Cast (c, k, t), combinesmall 3 (combine3 hc (hash_cast_kind k) ht))
      | Prod (na,t,c) ->
        let t, ht = sh_rec t
        and c, hc = sh_rec c in
        (Prod (sh_na na, t, c), combinesmall 4 (combine3 (hash_annot Name.hash na) ht hc))
      | Lambda (na,t,c) ->
        let t, ht = sh_rec t
        and c, hc = sh_rec c in
        (Lambda (sh_na na, t, c), combinesmall 5 (combine3 (hash_annot Name.hash na) ht hc))
      | LetIn (na,b,t,c) ->
        let b, hb = sh_rec b in
        let t, ht = sh_rec t in
        let c, hc = sh_rec c in
        (LetIn (sh_na na, b, t, c), combinesmall 6 (combine4 (hash_annot Name.hash na) hb ht hc))
      | App (c,l) ->
        let c, hc = sh_rec c in
        let l, hl = hash_term_array l in
        (App (c,l), combinesmall 7 (combine hl hc))
      | Evar (e,l) ->
        let l, hl = hash_term_array l in
        (Evar (e,l), combinesmall 8 (combine (Evar.hash e) hl))
      | Const (c,u) ->
        let c' = sh_con c in
        let u', hu = sh_instance u in
        (Const (c', u'), combinesmall 9 (combine (Constant.SyntacticOrd.hash c) hu))
      | Ind (ind,u) ->
        let u', hu = sh_instance u in
        (Ind (sh_ind ind, u'), 
         combinesmall 10 (combine (ind_syntactic_hash ind) hu))
      | Construct (c,u) ->
        let u', hu = sh_instance u in
        (Construct (sh_construct c, u'),
         combinesmall 11 (combine (constructor_syntactic_hash c) hu))
      | Case (ci,p,c,bl) ->
        let p, hp = sh_rec p
        and c, hc = sh_rec c in
        let bl,hbl = hash_term_array bl in
        let hbl = combine (combine hc hp) hbl in
        (Case (sh_ci ci, p, c, bl), combinesmall 12 hbl)
      | Fix (ln,(lna,tl,bl)) ->
        let bl,hbl = hash_term_array bl in
        let tl,htl = hash_term_array tl in
        let () = Array.iteri (fun i x -> Array.unsafe_set lna i (sh_na x)) lna in
        let fold accu na = combine (hash_annot Name.hash na) accu in
        let hna = Array.fold_left fold 0 lna in
        let h = combine3 hna hbl htl in
        (Fix (ln,(lna,tl,bl)), combinesmall 13 h)
      | CoFix(ln,(lna,tl,bl)) ->
        let bl,hbl = hash_term_array bl in
        let tl,htl = hash_term_array tl in
        let () = Array.iteri (fun i x -> Array.unsafe_set lna i (sh_na x)) lna in
        let fold accu na = combine (hash_annot Name.hash na) accu in
        let hna = Array.fold_left fold 0 lna in
        let h = combine3 hna hbl htl in
        (CoFix (ln,(lna,tl,bl)), combinesmall 14 h)
      | Meta n ->
        (t, combinesmall 15 n)
      | Rel n ->
        (t, combinesmall 16 n)
      | Proj (p,c) ->
        let c, hc = sh_rec c in
        let p' = Projection.hcons p in
          (Proj (p', c), combinesmall 17 (combine (Projection.SyntacticOrd.hash p') hc))
      | Int i ->
        let (h,l) = Uint63.to_int2 i in
        (t, combinesmall 18 (combine h l))

  and sh_rec t =
    let (y, h) = hash_term t in
    (* [h] must be positive. *)
    let h = h land 0x3FFFFFFF in
    (HashsetTerm.repr h y term_table, h)

  (* Note : During hash-cons of arrays, we modify them *in place* *)

  and hash_term_array t =
    let accu = ref 0 in
    for i = 0 to Array.length t - 1 do
      let x, h = sh_rec (Array.unsafe_get t i) in
      accu := combine !accu h;
      Array.unsafe_set t i x
    done;
    (* [h] must be positive. *)
    let h = !accu land 0x3FFFFFFF in
    (HashsetTermArray.repr h t term_array_table, h)

  in
  (* Make sure our statically allocated Rels (1 to 16) are considered
     as canonical, and hence hash-consed to themselves *)
  ignore (hash_term_array rels);

  fun t -> fst (sh_rec t)

(* Exported hashing fonction on constr, used mainly in plugins.
   Appears to have slight differences from [snd (hash_term t)] above ? *)

let rec hash t =
  match kind t with
    | Var i -> combinesmall 1 (Id.hash i)
    | Sort s -> combinesmall 2 (Sorts.hash s)
    | Cast (c, k, t) ->
      let hc = hash c in
      let ht = hash t in
      combinesmall 3 (combine3 hc (hash_cast_kind k) ht)
    | Prod (_, t, c) -> combinesmall 4 (combine (hash t) (hash c))
    | Lambda (_, t, c) -> combinesmall 5 (combine (hash t) (hash c))
    | LetIn (_, b, t, c) ->
      combinesmall 6 (combine3 (hash b) (hash t) (hash c))
    | App (Cast(c, _, _),l) -> hash (mkApp (c,l))
    | App (c,l) ->
      combinesmall 7 (combine (hash_term_array l) (hash c))
    | Evar (e,l) ->
      combinesmall 8 (combine (Evar.hash e) (hash_term_array l))
    | Const (c,u) ->
      combinesmall 9 (combine (Constant.hash c) (Instance.hash u))
    | Ind (ind,u) ->
      combinesmall 10 (combine (ind_hash ind) (Instance.hash u))
    | Construct (c,u) ->
      combinesmall 11 (combine (constructor_hash c) (Instance.hash u))
    | Case (_ , p, c, bl) ->
      combinesmall 12 (combine3 (hash c) (hash p) (hash_term_array bl))
    | Fix (_ln ,(_, tl, bl)) ->
      combinesmall 13 (combine (hash_term_array bl) (hash_term_array tl))
    | CoFix(_ln, (_, tl, bl)) ->
       combinesmall 14 (combine (hash_term_array bl) (hash_term_array tl))
    | Meta n -> combinesmall 15 n
    | Rel n -> combinesmall 16 n
    | Proj (p,c) ->
      combinesmall 17 (combine (Projection.hash p) (hash c))
    | Int i -> combinesmall 18 (Uint63.hash i)

and hash_term_array t =
  Array.fold_left (fun acc t -> combine (hash t) acc) 0 t

module CaseinfoHash =
struct
  type t = case_info
  type u = inductive -> inductive
  let hashcons hind ci = { ci with ci_ind = hind ci.ci_ind }
  let pp_info_equal info1 info2 =
    List.equal (==) info1.ind_tags info2.ind_tags &&
    Array.equal (List.equal (==)) info1.cstr_tags info2.cstr_tags &&
    info1.style == info2.style
  let eq ci ci' =
    ci.ci_ind == ci'.ci_ind &&
    ci.ci_relevance == ci'.ci_relevance &&
    Int.equal ci.ci_npar ci'.ci_npar &&
    Array.equal Int.equal ci.ci_cstr_ndecls ci'.ci_cstr_ndecls && (* we use [Array.equal] on purpose *)
    Array.equal Int.equal ci.ci_cstr_nargs ci'.ci_cstr_nargs && (* we use [Array.equal] on purpose *)
    pp_info_equal ci.ci_pp_info ci'.ci_pp_info  (* we use (=) on purpose *)
  open Hashset.Combine
  let hash_bool b = if b then 0 else 1
  let hash_bool_list = List.fold_left (fun n b -> combine n (hash_bool b))
  let hash_pp_info info =
    let h1 = match info.style with
    | LetStyle -> 0
    | IfStyle -> 1
    | LetPatternStyle -> 2
    | MatchStyle -> 3
    | RegularStyle -> 4 in
    let h2 = hash_bool_list 0 info.ind_tags in
    let h3 = Array.fold_left hash_bool_list 0 info.cstr_tags in
    combine3 h1 h2 h3
  let hash ci =
    let h1 = ind_hash ci.ci_ind in
    let h2 = Int.hash ci.ci_npar in
    let h3 = Array.fold_left combine 0 ci.ci_cstr_ndecls in
    let h4 = Array.fold_left combine 0 ci.ci_cstr_nargs in
    let h5 = hash_pp_info ci.ci_pp_info in
    combinesmall (Sorts.relevance_hash ci.ci_relevance) (combine5 h1 h2 h3 h4 h5)
end

module Hcaseinfo = Hashcons.Make(CaseinfoHash)

let case_info_hash = CaseinfoHash.hash

let hcons_caseinfo = Hashcons.simple_hcons Hcaseinfo.generate Hcaseinfo.hcons hcons_ind

module Hannotinfo = struct
    type t = Name.t binder_annot
    type u = Name.t -> Name.t
    let hash = hash_annot Name.hash
    let eq = eq_annot (fun na1 na2 -> na1 == na2)
    let hashcons h {binder_name=na;binder_relevance} =
      {binder_name=h na;binder_relevance}
  end
module Hannot = Hashcons.Make(Hannotinfo)

let hcons_annot = Hashcons.simple_hcons Hannot.generate Hannot.hcons Name.hcons

let hcons =
  hashcons
    (Sorts.hcons,
     hcons_caseinfo,
     hcons_construct,
     hcons_ind,
     hcons_con,
     hcons_annot,
     Id.hcons)

(* let hcons_types = hcons_constr *)

type rel_declaration = (constr, types) Context.Rel.Declaration.pt
type named_declaration = (constr, types) Context.Named.Declaration.pt
type compacted_declaration = (constr, types) Context.Compacted.Declaration.pt
type rel_context = rel_declaration list
type named_context = named_declaration list
type compacted_context = compacted_declaration list

(** Minimalistic constr printer, typically for debugging *)

let debug_print_fix pr_constr ((t,i),(lna,tl,bl)) =
  let open Pp in
  let fixl = Array.mapi (fun i na -> (na.binder_name,t.(i),tl.(i),bl.(i))) lna in
  hov 1
      (str"fix " ++ int i ++ spc() ++  str"{" ++
         v 0 (prlist_with_sep spc (fun (na,i,ty,bd) ->
           Name.print na ++ str"/" ++ int i ++ str":" ++ pr_constr ty ++
           cut() ++ str":=" ++ pr_constr bd) (Array.to_list fixl)) ++
         str"}")

let pr_puniverses p u =
  if Univ.Instance.is_empty u then p
  else Pp.(p ++ str"(*" ++ Univ.Instance.pr Univ.Level.pr u ++ str"*)")

let rec debug_print c =
  let open Pp in
  match kind c with
  | Rel n -> str "#"++int n
  | Meta n -> str "Meta(" ++ int n ++ str ")"
  | Var id -> Id.print id
  | Sort s -> Sorts.debug_print s
  | Cast (c,_, t) -> hov 1
      (str"(" ++ debug_print c ++ cut() ++
       str":" ++ debug_print t ++ str")")
  | Prod ({binder_name=Name id;_},t,c) -> hov 1
      (str"forall " ++ Id.print id ++ str":" ++ debug_print t ++ str"," ++
       spc() ++ debug_print c)
  | Prod ({binder_name=Anonymous;_},t,c) -> hov 0
      (str"(" ++ debug_print t ++ str " ->" ++ spc() ++
       debug_print c ++ str")")
  | Lambda (na,t,c) -> hov 1
      (str"fun " ++ Name.print na.binder_name ++ str":" ++
       debug_print t ++ str" =>" ++ spc() ++ debug_print c)
  | LetIn (na,b,t,c) -> hov 0
      (str"let " ++ Name.print na.binder_name ++ str":=" ++ debug_print b ++
       str":" ++ brk(1,2) ++ debug_print t ++ cut() ++
       debug_print c)
  | App (c,l) ->  hov 1
      (str"(" ++ debug_print c ++ spc() ++
       prlist_with_sep spc debug_print (Array.to_list l) ++ str")")
  | Evar (e,l) -> hov 1
      (str"Evar#" ++ int (Evar.repr e) ++ str"{" ++
       prlist_with_sep spc debug_print (Array.to_list l) ++str"}")
  | Const (c,u) -> str"Cst(" ++ pr_puniverses (Constant.debug_print c) u ++ str")"
  | Ind ((sp,i),u) -> str"Ind(" ++ pr_puniverses (MutInd.print sp ++ str"," ++ int i) u ++ str")"
  | Construct (((sp,i),j),u) ->
      str"Constr(" ++ pr_puniverses (MutInd.print sp ++ str"," ++ int i ++ str"," ++ int j) u ++ str")"
  | Proj (p,c) -> str"Proj(" ++ Constant.debug_print (Projection.constant p) ++ str"," ++ bool (Projection.unfolded p) ++ debug_print c ++ str")"
  | Case (_ci,p,c,bl) -> v 0
      (hv 0 (str"<"++debug_print p++str">"++ cut() ++ str"Case " ++
             debug_print c ++ str"of") ++ cut() ++
       prlist_with_sep (fun _ -> brk(1,2)) debug_print (Array.to_list bl) ++
      cut() ++ str"end")
  | Fix f -> debug_print_fix debug_print f
  | CoFix(i,(lna,tl,bl)) ->
      let fixl = Array.mapi (fun i na -> (na,tl.(i),bl.(i))) lna in
      hov 1
        (str"cofix " ++ int i ++ spc() ++  str"{" ++
         v 0 (prlist_with_sep spc (fun (na,ty,bd) ->
           Name.print na.binder_name ++ str":" ++ debug_print ty ++
           cut() ++ str":=" ++ debug_print bd) (Array.to_list fixl)) ++
         str"}")
  | Int i -> str"Int("++str (Uint63.to_string i) ++ str")"