1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Author: Benjamin Grégoire as part of the bytecode-based virtual reduction machine, Oct 2004 *) (* Extension: Arnaud Spiwack (support for native arithmetic), May 2005 *) open Names open Constr open Vmvalues open Cbytecodes open Copcodes open Mod_subst open CPrimitives type emitcodes = String.t external tcode_of_code : Bytes.t -> Vmvalues.tcode = "coq_tcode_of_code" (* Relocation information *) type reloc_info = | Reloc_annot of annot_switch | Reloc_const of structured_constant | Reloc_getglobal of Names.Constant.t | Reloc_proj_name of Projection.Repr.t let eq_reloc_info r1 r2 = match r1, r2 with | Reloc_annot sw1, Reloc_annot sw2 -> eq_annot_switch sw1 sw2 | Reloc_annot _, _ -> false | Reloc_const c1, Reloc_const c2 -> eq_structured_constant c1 c2 | Reloc_const _, _ -> false | Reloc_getglobal c1, Reloc_getglobal c2 -> Constant.equal c1 c2 | Reloc_getglobal _, _ -> false | Reloc_proj_name p1, Reloc_proj_name p2 -> Projection.Repr.equal p1 p2 | Reloc_proj_name _, _ -> false let hash_reloc_info r = let open Hashset.Combine in match r with | Reloc_annot sw -> combinesmall 1 (hash_annot_switch sw) | Reloc_const c -> combinesmall 2 (hash_structured_constant c) | Reloc_getglobal c -> combinesmall 3 (Constant.hash c) | Reloc_proj_name p -> combinesmall 4 (Projection.Repr.hash p) module RelocTable = Hashtbl.Make(struct type t = reloc_info let equal = eq_reloc_info let hash = hash_reloc_info end) (** We use arrays for on-disk representation. On 32-bit machines, this means we can only have a maximum amount of about 4.10^6 relocations, which seems quite a lot, but potentially reachable if e.g. compiling big proofs. This would prevent VM computing with these terms on 32-bit architectures. Maybe we should use a more robust data structure? *) type patches = { reloc_infos : (reloc_info * int array) array; } let patch_char4 buff pos c1 c2 c3 c4 = Bytes.unsafe_set buff pos c1; Bytes.unsafe_set buff (pos + 1) c2; Bytes.unsafe_set buff (pos + 2) c3; Bytes.unsafe_set buff (pos + 3) c4 let patch1 buff pos n = patch_char4 buff pos (Char.unsafe_chr n) (Char.unsafe_chr (n asr 8)) (Char.unsafe_chr (n asr 16)) (Char.unsafe_chr (n asr 24)) let patch_int buff reloc = (* copy code *before* patching because of nested evaluations: the code we are patching might be called (and thus "concurrently" patched) and results in wrong results. Side-effects... *) let buff = Bytes.of_string buff in let iter (reloc, npos) = Array.iter (fun pos -> patch1 buff pos reloc) npos in let () = CArray.iter iter reloc in buff let patch buff pl f = (** Order seems important here? *) let reloc = CArray.map (fun (r, pos) -> (f r, pos)) pl.reloc_infos in let buff = patch_int buff reloc in tcode_of_code buff (* Buffering of bytecode *) type label_definition = Label_defined of int | Label_undefined of (int * int) list type env = { mutable out_buffer : Bytes.t; mutable out_position : int; mutable label_table : label_definition array; (* le ieme element de la table = Label_defined n signifie que l'on a deja rencontrer le label i et qu'il est a l'offset n. = Label_undefined l signifie que l'on a pas encore rencontrer ce label, le premier entier indique ou est l'entier a patcher dans la string, le deuxieme son origine *) reloc_info : int list RelocTable.t; } let out_word env b1 b2 b3 b4 = let p = env.out_position in if p >= Bytes.length env.out_buffer then begin let len = Bytes.length env.out_buffer in let new_len = if len <= Sys.max_string_length / 2 then 2 * len else if len = Sys.max_string_length then invalid_arg "String.create" (* Pas la bonne exception .... *) else Sys.max_string_length in let new_buffer = Bytes.create new_len in Bytes.blit env.out_buffer 0 new_buffer 0 len; env.out_buffer <- new_buffer end; patch_char4 env.out_buffer p (Char.unsafe_chr b1) (Char.unsafe_chr b2) (Char.unsafe_chr b3) (Char.unsafe_chr b4); env.out_position <- p + 4 let out env opcode = out_word env opcode 0 0 0 let is_immed i = Uint63.le (Uint63.of_int i) Uint63.maxuint31 let out_int env n = out_word env n (n asr 8) (n asr 16) (n asr 24) (* Handling of local labels and backpatching *) let extend_label_table env needed = let new_size = ref(Array.length env.label_table) in while needed >= !new_size do new_size := 2 * !new_size done; let new_table = Array.make !new_size (Label_undefined []) in Array.blit env.label_table 0 new_table 0 (Array.length env.label_table); env.label_table <- new_table let backpatch env (pos, orig) = let displ = (env.out_position - orig) asr 2 in Bytes.set env.out_buffer pos @@ Char.unsafe_chr displ; Bytes.set env.out_buffer (pos+1) @@ Char.unsafe_chr (displ asr 8); Bytes.set env.out_buffer (pos+2) @@ Char.unsafe_chr (displ asr 16); Bytes.set env.out_buffer (pos+3) @@ Char.unsafe_chr (displ asr 24) let define_label env lbl = if lbl >= Array.length env.label_table then extend_label_table env lbl; match (env.label_table).(lbl) with Label_defined _ -> raise(Failure "CEmitcode.define_label") | Label_undefined patchlist -> List.iter (fun p -> backpatch env p) patchlist; (env.label_table).(lbl) <- Label_defined env.out_position let out_label_with_orig env orig lbl = if lbl >= Array.length env.label_table then extend_label_table env lbl; match (env.label_table).(lbl) with Label_defined def -> out_int env ((def - orig) asr 2) | Label_undefined patchlist -> (* spiwack: patchlist is supposed to be non-empty all the time thus I commented that out. If there is no problem I suggest removing it for next release (cur: 8.1) *) (*if patchlist = [] then *) (env.label_table).(lbl) <- Label_undefined((env.out_position, orig) :: patchlist); out_int env 0 let out_label env l = out_label_with_orig env env.out_position l (* Relocation information *) let enter env info = let pos = env.out_position in let old = try RelocTable.find env.reloc_info info with Not_found -> [] in RelocTable.replace env.reloc_info info (pos :: old) let slot_for_const env c = enter env (Reloc_const c); out_int env 0 let slot_for_annot env a = enter env (Reloc_annot a); out_int env 0 let slot_for_getglobal env p = enter env (Reloc_getglobal p); out_int env 0 let slot_for_proj_name env p = enter env (Reloc_proj_name p); out_int env 0 (* Emission of one instruction *) let nocheck_prim_op = function | Int63add -> opADDINT63 | Int63sub -> opSUBINT63 | Int63lt -> opLTINT63 | Int63le -> opLEINT63 | _ -> assert false let check_prim_op = function | Int63head0 -> opCHECKHEAD0INT63 | Int63tail0 -> opCHECKTAIL0INT63 | Int63add -> opCHECKADDINT63 | Int63sub -> opCHECKSUBINT63 | Int63mul -> opCHECKMULINT63 | Int63div -> opCHECKDIVINT63 | Int63mod -> opCHECKMODINT63 | Int63lsr -> opCHECKLSRINT63 | Int63lsl -> opCHECKLSLINT63 | Int63land -> opCHECKLANDINT63 | Int63lor -> opCHECKLORINT63 | Int63lxor -> opCHECKLXORINT63 | Int63addc -> opCHECKADDCINT63 | Int63subc -> opCHECKSUBCINT63 | Int63addCarryC -> opCHECKADDCARRYCINT63 | Int63subCarryC -> opCHECKSUBCARRYCINT63 | Int63mulc -> opCHECKMULCINT63 | Int63diveucl -> opCHECKDIVEUCLINT63 | Int63div21 -> opCHECKDIV21INT63 | Int63addMulDiv -> opCHECKADDMULDIVINT63 | Int63eq -> opCHECKEQINT63 | Int63lt -> opCHECKLTINT63 | Int63le -> opCHECKLEINT63 | Int63compare -> opCHECKCOMPAREINT63 let emit_instr env = function | Klabel lbl -> define_label env lbl | Kacc n -> if n < 8 then out env(opACC0 + n) else (out env opACC; out_int env n) | Kenvacc n -> if n >= 1 && n <= 4 then out env(opENVACC1 + n - 1) else (out env opENVACC; out_int env n) | Koffsetclosure ofs -> if Int.equal ofs (-2) || Int.equal ofs 0 || Int.equal ofs 2 then out env (opOFFSETCLOSURE0 + ofs / 2) else (out env opOFFSETCLOSURE; out_int env ofs) | Kpush -> out env opPUSH | Kpop n -> out env opPOP; out_int env n | Kpush_retaddr lbl -> out env opPUSH_RETADDR; out_label env lbl | Kapply n -> if n <= 4 then out env(opAPPLY1 + n - 1) else (out env opAPPLY; out_int env n) | Kappterm(n, sz) -> if n < 4 then (out env(opAPPTERM1 + n - 1); out_int env sz) else (out env opAPPTERM; out_int env n; out_int env sz) | Kreturn n -> out env opRETURN; out_int env n | Kjump -> out env opRETURN; out_int env 0 | Krestart -> out env opRESTART | Kgrab n -> out env opGRAB; out_int env n | Kgrabrec(rec_arg) -> out env opGRABREC; out_int env rec_arg | Kclosure(lbl, n) -> out env opCLOSURE; out_int env n; out_label env lbl | Kclosurerec(nfv,init,lbl_types,lbl_bodies) -> out env opCLOSUREREC;out_int env (Array.length lbl_bodies); out_int env nfv; out_int env init; let org = env.out_position in Array.iter (out_label_with_orig env org) lbl_types; let org = env.out_position in Array.iter (out_label_with_orig env org) lbl_bodies | Kclosurecofix(nfv,init,lbl_types,lbl_bodies) -> out env opCLOSURECOFIX;out_int env (Array.length lbl_bodies); out_int env nfv; out_int env init; let org = env.out_position in Array.iter (out_label_with_orig env org) lbl_types; let org = env.out_position in Array.iter (out_label_with_orig env org) lbl_bodies | Kgetglobal q -> out env opGETGLOBAL; slot_for_getglobal env q | Kconst (Const_b0 i) when is_immed i -> if i >= 0 && i <= 3 then out env (opCONST0 + i) else (out env opCONSTINT; out_int env i) | Kconst c -> out env opGETGLOBAL; slot_for_const env c | Kmakeblock(n, t) -> if Int.equal n 0 then invalid_arg "emit_instr : block size = 0" else if n < 4 then (out env(opMAKEBLOCK1 + n - 1); out_int env t) else (out env opMAKEBLOCK; out_int env n; out_int env t) | Kmakeprod -> out env opMAKEPROD | Kmakeswitchblock(typlbl,swlbl,annot,sz) -> out env opMAKESWITCHBLOCK; out_label env typlbl; out_label env swlbl; slot_for_annot env annot;out_int env sz | Kswitch (tbl_const, tbl_block) -> let lenb = Array.length tbl_block in let lenc = Array.length tbl_const in assert (lenb < 0x100 && lenc < 0x1000000); out env opSWITCH; out_word env lenc (lenc asr 8) (lenc asr 16) (lenb); (* out_int env (Array.length tbl_const + (Array.length tbl_block lsl 23)); *) let org = env.out_position in Array.iter (out_label_with_orig env org) tbl_const; Array.iter (out_label_with_orig env org) tbl_block | Kpushfields n -> out env opPUSHFIELDS;out_int env n | Kfield n -> if n <= 1 then out env (opGETFIELD0+n) else (out env opGETFIELD;out_int env n) | Ksetfield n -> if n <= 1 then out env (opSETFIELD0+n) else (out env opSETFIELD;out_int env n) | Ksequence _ -> invalid_arg "Cemitcodes.emit_instr" | Kproj p -> out env opPROJ; out_int env (Projection.Repr.arg p); slot_for_proj_name env p | Kensurestackcapacity size -> out env opENSURESTACKCAPACITY; out_int env size | Kbranch lbl -> out env opBRANCH; out_label env lbl | Kprim (op,None) -> out env (nocheck_prim_op op) | Kprim(op,Some (q,_u)) -> out env (check_prim_op op); slot_for_getglobal env q | Kareint 1 -> out env opISINT | Kareint 2 -> out env opAREINT2; | Kstop -> out env opSTOP | Kareint _ -> assert false (* Emission of a current list and remaining lists of instructions. Include some peephole optimization. *) let rec emit env insns remaining = match insns with | [] -> (match remaining with [] -> () | (first::rest) -> emit env first rest) (* Peephole optimizations *) | Kpush :: Kacc n :: c -> if n < 8 then out env(opPUSHACC0 + n) else (out env opPUSHACC; out_int env n); emit env c remaining | Kpush :: Kenvacc n :: c -> if n >= 1 && n <= 4 then out env(opPUSHENVACC1 + n - 1) else (out env opPUSHENVACC; out_int env n); emit env c remaining | Kpush :: Koffsetclosure ofs :: c -> if Int.equal ofs (-2) || Int.equal ofs 0 || Int.equal ofs 2 then out env(opPUSHOFFSETCLOSURE0 + ofs / 2) else (out env opPUSHOFFSETCLOSURE; out_int env ofs); emit env c remaining | Kpush :: Kgetglobal id :: c -> out env opPUSHGETGLOBAL; slot_for_getglobal env id; emit env c remaining | Kpush :: Kconst (Const_b0 i) :: c when is_immed i -> if i >= 0 && i <= 3 then out env (opPUSHCONST0 + i) else (out env opPUSHCONSTINT; out_int env i); emit env c remaining | Kpush :: Kconst const :: c -> out env opPUSHGETGLOBAL; slot_for_const env const; emit env c remaining | Kpop n :: Kjump :: c -> out env opRETURN; out_int env n; emit env c remaining | Ksequence(c1,c2)::c -> emit env c1 (c2::c::remaining) (* Default case *) | instr :: c -> emit_instr env instr; emit env c remaining (* Initialization *) type to_patch = emitcodes * patches * fv (* Substitution *) let subst_strcst s sc = match sc with | Const_sort _ | Const_b0 _ | Const_univ_level _ | Const_val _ | Const_uint _ -> sc | Const_ind ind -> let kn,i = ind in Const_ind (subst_mind s kn, i) let subst_reloc s ri = match ri with | Reloc_annot a -> let (kn,i) = a.ci.ci_ind in let ci = {a.ci with ci_ind = (subst_mind s kn,i)} in Reloc_annot {a with ci = ci} | Reloc_const sc -> Reloc_const (subst_strcst s sc) | Reloc_getglobal kn -> Reloc_getglobal (subst_constant s kn) | Reloc_proj_name p -> Reloc_proj_name (subst_proj_repr s p) let subst_patches subst p = let infos = CArray.map (fun (r, pos) -> (subst_reloc subst r, pos)) p.reloc_infos in { reloc_infos = infos; } let subst_to_patch s (code,pl,fv) = code, subst_patches s pl, fv type body_code = | BCdefined of to_patch | BCalias of Names.Constant.t | BCconstant type to_patch_substituted = | PBCdefined of to_patch substituted | PBCalias of Names.Constant.t substituted | PBCconstant let from_val = function | BCdefined tp -> PBCdefined (from_val tp) | BCalias cu -> PBCalias (from_val cu) | BCconstant -> PBCconstant let force = function | PBCdefined tp -> BCdefined (force subst_to_patch tp) | PBCalias cu -> BCalias (force subst_constant cu) | PBCconstant -> BCconstant let subst_to_patch_subst s = function | PBCdefined tp -> PBCdefined (subst_substituted s tp) | PBCalias cu -> PBCalias (subst_substituted s cu) | PBCconstant -> PBCconstant let repr_body_code = function | PBCdefined tp -> let (s, tp) = repr_substituted tp in (s, BCdefined tp) | PBCalias cu -> let (s, cu) = repr_substituted cu in (s, BCalias cu) | PBCconstant -> (None, BCconstant) let to_memory (init_code, fun_code, fv) = let env = { out_buffer = Bytes.create 1024; out_position = 0; label_table = Array.make 16 (Label_undefined []); reloc_info = RelocTable.create 91; } in emit env init_code []; emit env fun_code []; (** Later uses of this string are all purely functional *) let code = Bytes.sub_string env.out_buffer 0 env.out_position in let code = CString.hcons code in let fold reloc npos accu = (reloc, Array.of_list npos) :: accu in let reloc = RelocTable.fold fold env.reloc_info [] in let reloc = { reloc_infos = CArray.of_list reloc } in Array.iter (fun lbl -> (match lbl with Label_defined _ -> assert true | Label_undefined patchlist -> assert (patchlist = []))) env.label_table; (code, reloc, fv)