1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Author: Benjamin Grégoire as part of the bytecode-based virtual reduction machine, Oct 2004 *) (* Extension: Arnaud Spiwack (support for native arithmetic), May 2005 *) open Util open Names open Vmvalues open Cbytecodes open Cemitcodes open Clambda open Constr open Declarations open Environ (* Compilation of variables + computing free variables *) (* The virtual machine doesn't distinguish closures and their environment *) (* Representation of function environments : *) (* [clos_t | code | fv1 | fv2 | ... | fvn ] *) (* ^ *) (* The offset for accessing free variables is 1 (we must skip the code *) (* pointer). *) (* While compiling, free variables are stored in [in_env] in order *) (* opposite to machine representation, so we can add new free variables *) (* easily (i.e. without changing the position of previous variables) *) (* Function arguments are on the stack in the same order as the *) (* application : f arg1 ... argn *) (* - the stack is then : *) (* arg1 : ... argn : extra args : return addr : ... *) (* In the function body [arg1] is represented by de Bruijn [n], and *) (* [argn] by de Bruijn [1] *) (* Representation of environments of mutual fixpoints : *) (* [t1|C1| ... |tc|Cc| ... |t(nbr)|C(nbr)| fv1 | fv2 | .... | fvn | type] *) (* ^<----------offset---------> *) (* type = [Ct1 | .... | Ctn] *) (* Ci is the code pointer of the i-th body *) (* At runtime, a fixpoint environment (which is the same as the fixpoint *) (* itself) is a pointer to the field holding its code pointer. *) (* In each fixpoint body, de Bruijn [nbr] represents the first fixpoint *) (* and de Bruijn [1] the last one. *) (* Access to these variables is performed by the [Koffsetclosure n] *) (* instruction that shifts the environment pointer of [n] fields. *) (* This allows representing mutual fixpoints in just one block. *) (* [Ct1 | ... | Ctn] is an array holding code pointers of the fixpoint *) (* types. They are used in conversion tests (which requires that *) (* fixpoint types must be convertible). Their environment is the one of *) (* the last fixpoint : *) (* [t1|C1| ... |tc|Cc| ... |t(nbr)|C(nbr)| fv1 | fv2 | .... | fvn | type] *) (* ^ *) (* Representation of mutual cofix : *) (* a1 = [A_t | accumulate | [Cfx_t | fcofix1 ] ] *) (* ... *) (* anbr = [A_t | accumulate | [Cfx_t | fcofixnbr ] ] *) (* *) (* fcofix1 = [clos_t | code1 | a1 |...| anbr | fv1 |...| fvn | type] *) (* ^ *) (* ... *) (* fcofixnbr = [clos_t | codenbr | a1 |...| anbr | fv1 |...| fvn | type] *) (* ^ *) (* The [ai] blocks are functions that accumulate their arguments: *) (* ai arg1 argp ---> *) (* ai' = [A_t | accumulate | [Cfx_t | fcofixi] | arg1 | ... | argp ] *) (* If such a block is matched against, we have to force evaluation, *) (* function [fcofixi] is then applied to [ai'] [arg1] ... [argp] *) (* (note that [ai'] is a pointer to the closure, passed as argument) *) (* Once evaluation is completed [ai'] is updated with the result: *) (* ai' <-- *) (* [A_t | accumulate | [Cfxe_t |fcofixi|result] | arg1 | ... | argp ] *) (* This representation is nice because the application of the cofix is *) (* evaluated only once (it simulates a lazy evaluation) *) (* Moreover, when cofix don't have arguments, it is possible to create *) (* a cycle, e.g.: *) (* cofix one := cons 1 one *) (* a1 = [A_t | accumulate | [Cfx_t|fcofix1] ] *) (* fcofix1 = [clos_t | code | a1] *) (* The result of evaluating [a1] is [cons_t | 1 | a1]. *) (* When [a1] is updated : *) (* a1 = [A_t | accumulate | [Cfxe_t | fcofix1 | [cons_t | 1 | a1]] ] *) (* The cycle is created ... *) (* *) (* In Cfxe_t accumulators, we need to store [fcofixi] for testing *) (* conversion of cofixpoints (which is intentional). *) module Fv_elem = struct type t = fv_elem let compare e1 e2 = match e1, e2 with | FVnamed id1, FVnamed id2 -> Id.compare id1 id2 | FVnamed _, (FVrel _ | FVuniv_var _ | FVevar _) -> -1 | FVrel _, FVnamed _ -> 1 | FVrel r1, FVrel r2 -> Int.compare r1 r2 | FVrel _, (FVuniv_var _ | FVevar _) -> -1 | FVuniv_var i1, FVuniv_var i2 -> Int.compare i1 i2 | FVuniv_var _, (FVnamed _ | FVrel _) -> 1 | FVuniv_var _, FVevar _ -> -1 | FVevar _, (FVnamed _ | FVrel _ | FVuniv_var _) -> 1 | FVevar e1, FVevar e2 -> Evar.compare e1 e2 end module FvMap = Map.Make(Fv_elem) (*spiwack: both type have been moved from Cbytegen because I needed then for the retroknowledge *) type vm_env = { size : int; (* longueur de la liste [n] *) fv_rev : fv_elem list; (* [fvn; ... ;fv1] *) fv_fwd : int FvMap.t; (* reverse mapping *) } type comp_env = { arity : int; (* arity of the current function, 0 if none *) nb_uni_stack : int ; (* number of universes on the stack, *) (* universes are always at the bottom. *) nb_stack : int; (* number of variables on the stack *) in_stack : int list; (* position in the stack *) nb_rec : int; (* number of mutually recursive functions *) pos_rec : instruction list; (* instruction d'acces pour les variables *) (* de point fix ou de cofix *) offset : int; in_env : vm_env ref (* The free variables of the expression *) } module Config = struct let stack_threshold = 256 (* see byterun/coq_memory.h *) let stack_safety_margin = 15 end type argument = ArgLambda of lambda | ArgUniv of Univ.Level.t let empty_fv = { size= 0; fv_rev = []; fv_fwd = FvMap.empty } let push_fv d e = { size = e.size + 1; fv_rev = d :: e.fv_rev; fv_fwd = FvMap.add d e.size e.fv_fwd; } let fv r = !(r.in_env) let empty_comp_env ()= { arity = 0; nb_uni_stack = 0; nb_stack = 0; in_stack = []; nb_rec = 0; pos_rec = []; offset = 0; in_env = ref empty_fv } (* Maximal stack size reached during the current function body. Used to reallocate the stack if we lack space. *) let max_stack_size = ref 0 let set_max_stack_size stack_size = if stack_size > !max_stack_size then max_stack_size := stack_size let ensure_stack_capacity f x = let old = !max_stack_size in max_stack_size := 0; let code = f x in let used_safe = !max_stack_size + Config.stack_safety_margin in max_stack_size := old; if used_safe > Config.stack_threshold then Kensurestackcapacity used_safe :: code else code (*i Creation functions for comp_env *) let rec add_param n sz l = if Int.equal n 0 then l else add_param (n - 1) sz (n+sz::l) let comp_env_fun ?(univs=0) arity = { arity; nb_uni_stack = univs ; nb_stack = arity; in_stack = add_param arity 0 []; nb_rec = 0; pos_rec = []; offset = 1; in_env = ref empty_fv } let comp_env_fix_type rfv = { arity = 0; nb_uni_stack = 0; nb_stack = 0; in_stack = []; nb_rec = 0; pos_rec = []; offset = 1; in_env = rfv } let comp_env_fix ndef curr_pos arity rfv = let prec = ref [] in for i = ndef downto 1 do prec := Koffsetclosure (2 * (ndef - curr_pos - i)) :: !prec done; { arity; nb_uni_stack = 0; nb_stack = arity; in_stack = add_param arity 0 []; nb_rec = ndef; pos_rec = !prec; offset = 2 * (ndef - curr_pos - 1)+1; in_env = rfv } let comp_env_cofix_type ndef rfv = { arity = 0; nb_uni_stack = 0; nb_stack = 0; in_stack = []; nb_rec = 0; pos_rec = []; offset = 1+ndef; in_env = rfv } let comp_env_cofix ndef arity rfv = let prec = ref [] in for i = 1 to ndef do prec := Kenvacc i :: !prec done; { arity; nb_uni_stack = 0; nb_stack = arity; in_stack = add_param arity 0 []; nb_rec = ndef; pos_rec = !prec; offset = ndef+1; in_env = rfv } (* [push_param ] add function parameters on the stack *) let push_param n sz r = { r with nb_stack = r.nb_stack + n; in_stack = add_param n sz r.in_stack } (* [push_local sz r] add a new variable on the stack at position [sz] *) let push_local sz r = { r with nb_stack = r.nb_stack + 1; in_stack = (sz + 1) :: r.in_stack } (*i Compilation of variables *) let find_at fv env = FvMap.find fv env.fv_fwd let pos_named id r = let env = !(r.in_env) in let cid = FVnamed id in try Kenvacc(r.offset + find_at cid env) with Not_found -> let pos = env.size in r.in_env := push_fv cid env; Kenvacc (r.offset + pos) let pos_rel i r sz = if i <= r.nb_stack then Kacc(sz - (List.nth r.in_stack (i-1))) else let i = i - r.nb_stack in if i <= r.nb_rec then try List.nth r.pos_rec (i-1) with (Failure _|Invalid_argument _) -> assert false else let i = i - r.nb_rec in let db = FVrel(i) in let env = !(r.in_env) in try Kenvacc(r.offset + find_at db env) with Not_found -> let pos = env.size in r.in_env := push_fv db env; Kenvacc(r.offset + pos) let pos_universe_var i r sz = (* Compilation of a universe variable can happen either at toplevel (the current closure correspond to a constant and has local universes) or in a local closure (which has no local universes). *) if r.nb_uni_stack != 0 then (* Universe variables are represented by De Bruijn levels (not indices), starting at 0. The shape of the stack will be [v1|..|vn|u1..up|arg1..argq] with size = n + p + q, and q = r.arity. So Kacc (sz - r.arity - 1) will access the last universe. *) Kacc (sz - r.arity - (r.nb_uni_stack - i)) else let env = !(r.in_env) in let db = FVuniv_var i in try Kenvacc (r.offset + find_at db env) with Not_found -> let pos = env.size in r.in_env := push_fv db env; Kenvacc(r.offset + pos) let pos_evar evk r = let env = !(r.in_env) in let cid = FVevar evk in try Kenvacc(r.offset + find_at cid env) with Not_found -> let pos = env.size in r.in_env := push_fv cid env; Kenvacc (r.offset + pos) (*i Examination of the continuation *) (* Discard all instructions up to the next label. *) (* This function is to be applied to the continuation before adding a *) (* non-terminating instruction (branch, raise, return, appterm) *) (* in front of it. *) let discard_dead_code cont = cont (*function [] -> [] | (Klabel _ | Krestart ) :: _ as cont -> cont | _ :: cont -> discard_dead_code cont *) (* Return a label to the beginning of the given continuation. *) (* If the sequence starts with a branch, use the target of that branch *) (* as the label, thus avoiding a jump to a jump. *) let label_code = function | Klabel lbl :: _ as cont -> (lbl, cont) | Kbranch lbl :: _ as cont -> (lbl, cont) | cont -> let lbl = Label.create() in (lbl, Klabel lbl :: cont) (* Return a branch to the continuation. That is, an instruction that, when executed, branches to the continuation or performs what the continuation performs. We avoid generating branches to returns. *) (* spiwack: make_branch was only used once. Changed it back to the ZAM one to match the appropriate semantics (old one avoided the introduction of an unconditional branch operation, which seemed appropriate for the 31-bit integers' code). As a memory, I leave the former version in this comment. let make_branch cont = match cont with | (Kreturn _ as return) :: cont' -> return, cont' | Klabel lbl as b :: _ -> b, cont | _ -> let b = Klabel(Label.create()) in b,b::cont *) let rec make_branch_2 lbl n cont = function Kreturn m :: _ -> (Kreturn (n + m), cont) | Klabel _ :: c -> make_branch_2 lbl n cont c | Kpop m :: c -> make_branch_2 lbl (n + m) cont c | _ -> match lbl with Some lbl -> (Kbranch lbl, cont) | None -> let lbl = Label.create() in (Kbranch lbl, Klabel lbl :: cont) let make_branch cont = match cont with (Kbranch _ as branch) :: _ -> (branch, cont) | (Kreturn _ as return) :: _ -> (return, cont) | Klabel lbl :: _ -> make_branch_2 (Some lbl) 0 cont cont | _ -> make_branch_2 (None) 0 cont cont (* Check if we're in tailcall position *) let rec is_tailcall = function | Kreturn k :: _ -> Some k | Klabel _ :: c -> is_tailcall c | _ -> None (* Extension of the continuation *) (* Add a Kpop n instruction in front of a continuation *) let rec add_pop n = function | Kpop m :: cont -> add_pop (n+m) cont | Kreturn m:: cont -> Kreturn (n+m) ::cont | cont -> if Int.equal n 0 then cont else Kpop n :: cont let add_grab arity lbl cont = if Int.equal arity 1 then Klabel lbl :: cont else Krestart :: Klabel lbl :: Kgrab (arity - 1) :: cont let add_grabrec rec_arg arity lbl cont = if Int.equal arity 1 && rec_arg < arity then Klabel lbl :: Kgrabrec 0 :: Krestart :: cont else Krestart :: Klabel lbl :: Kgrabrec rec_arg :: Krestart :: Kgrab (arity - 1) :: cont (* continuation of a cofix *) let cont_cofix arity = (* accu = res *) (* stk = ai::args::ra::... *) (* ai = [At|accumulate|[Cfx_t|fcofix]|args] *) [ Kpush; Kpush; (* stk = res::res::ai::args::ra::... *) Kacc 2; Kfield 1; Kfield 0; Kmakeblock(2, cofix_evaluated_tag); Kpush; (* stk = [Cfxe_t|fcofix|res]::res::ai::args::ra::...*) Kacc 2; Ksetfield 1; (* ai = [At|accumulate|[Cfxe_t|fcofix|res]|args] *) (* stk = res::ai::args::ra::... *) Kacc 0; (* accu = res *) Kreturn (arity+2) ] (* Code of closures *) let fun_code = ref [] let init_fun_code () = fun_code := [] (* Compilation of constructors and inductive types *) (* If [tag] hits the OCaml limitation for non constant constructors, we switch to another representation for the remaining constructors: [last_variant_tag|tag - Obj.last_non_constant_constructor_tag|args] We subtract Obj.last_non_constant_constructor_tag for efficiency of match interpretation. *) let nest_block tag arity cont = Kconst (Const_b0 (tag - Obj.last_non_constant_constructor_tag)) :: Kmakeblock(arity+1, Obj.last_non_constant_constructor_tag) :: cont let code_makeblock ~stack_size ~arity ~tag cont = if tag < Obj.last_non_constant_constructor_tag then Kmakeblock(arity, tag) :: cont else begin set_max_stack_size (stack_size + 1); Kpush :: nest_block tag arity cont end let compile_structured_constant _cenv sc sz cont = set_max_stack_size sz; Kconst sc :: cont (* compiling application *) let comp_args comp_expr cenv args sz cont = let nargs_m_1 = Array.length args - 1 in let c = ref (comp_expr cenv args.(0) (sz + nargs_m_1) cont) in for i = 1 to nargs_m_1 do c := comp_expr cenv args.(i) (sz + nargs_m_1 - i) (Kpush :: !c) done; !c let comp_app comp_fun comp_arg cenv f args sz cont = let nargs = Array.length args in if Int.equal nargs 0 then comp_fun cenv f sz cont else match is_tailcall cont with | Some k -> comp_args comp_arg cenv args sz (Kpush :: comp_fun cenv f (sz + nargs) (Kappterm(nargs, k + nargs) :: (discard_dead_code cont))) | None -> if nargs <= 4 then comp_args comp_arg cenv args sz (Kpush :: (comp_fun cenv f (sz+nargs) (Kapply nargs :: cont))) else let lbl,cont1 = label_code cont in Kpush_retaddr lbl :: (comp_args comp_arg cenv args (sz + 3) (Kpush :: (comp_fun cenv f (sz+3+nargs) (Kapply nargs :: cont1)))) (* Compiling free variables *) let compile_fv_elem cenv fv sz cont = match fv with | FVrel i -> pos_rel i cenv sz :: cont | FVnamed id -> pos_named id cenv :: cont | FVuniv_var i -> pos_universe_var i cenv sz :: cont | FVevar evk -> pos_evar evk cenv :: cont let rec compile_fv cenv l sz cont = match l with | [] -> cont | [fvn] -> set_max_stack_size (sz + 1); compile_fv_elem cenv fvn sz cont | fvn :: tl -> compile_fv_elem cenv fvn sz (Kpush :: compile_fv cenv tl (sz + 1) cont) (* Compiling constants *) let rec get_alias env kn = let cb = lookup_constant kn env in let tps = cb.const_body_code in match tps with | None -> kn | Some tps -> (match Cemitcodes.force tps with | BCalias kn' -> get_alias env kn' | _ -> kn) (* sz is the size of the local stack *) let rec compile_lam env cenv lam sz cont = set_max_stack_size sz; match lam with | Lrel(_, i) -> pos_rel i cenv sz :: cont | Lint i -> compile_structured_constant cenv (Const_b0 i) sz cont | Lval v -> compile_structured_constant cenv (Const_val v) sz cont | Luint i -> compile_structured_constant cenv (Const_uint i) sz cont | Lproj (p,arg) -> compile_lam env cenv arg sz (Kproj p :: cont) | Lvar id -> pos_named id cenv :: cont | Levar (evk, args) -> if Array.is_empty args then compile_fv_elem cenv (FVevar evk) sz cont else (** Arguments are reversed in evar instances *) let args = Array.copy args in let () = Array.rev args in comp_app compile_fv_elem (compile_lam env) cenv (FVevar evk) args sz cont | Lconst (kn,u) -> compile_constant env cenv kn u [||] sz cont | Lind (ind,u) -> if Univ.Instance.is_empty u then compile_structured_constant cenv (Const_ind ind) sz cont else comp_app compile_structured_constant compile_universe cenv (Const_ind ind) (Univ.Instance.to_array u) sz cont | Lsort (Sorts.SProp | Sorts.Prop | Sorts.Set as s) -> compile_structured_constant cenv (Const_sort s) sz cont | Lsort (Sorts.Type u) -> (* We represent universes as a global constant with local universes "compacted", i.e. as [u arg0 ... argn] where we will substitute (after evaluation) [Var 0,...,Var n] with values of [arg0,...,argn] *) let u,s = Univ.compact_univ u in let compile_get_univ cenv idx sz cont = set_max_stack_size sz; compile_fv_elem cenv (FVuniv_var idx) sz cont in if List.is_empty s then compile_structured_constant cenv (Const_sort (Sorts.sort_of_univ u)) sz cont else comp_app compile_structured_constant compile_get_univ cenv (Const_sort (Sorts.sort_of_univ u)) (Array.of_list s) sz cont | Llet (_id,def,body) -> compile_lam env cenv def sz (Kpush :: compile_lam env (push_local sz cenv) body (sz+1) (add_pop 1 cont)) | Lprod (dom,codom) -> let cont1 = Kpush :: compile_lam env cenv dom (sz+1) (Kmakeprod :: cont) in compile_lam env cenv codom sz cont1 | Llam (ids,body) -> let arity = Array.length ids in let r_fun = comp_env_fun arity in let lbl_fun = Label.create() in let cont_fun = ensure_stack_capacity (compile_lam env r_fun body arity) [Kreturn arity] in fun_code := [Ksequence(add_grab arity lbl_fun cont_fun,!fun_code)]; let fv = fv r_fun in compile_fv cenv fv.fv_rev sz (Kclosure(lbl_fun,fv.size) :: cont) | Lapp (f, args) -> begin match f with | Lconst (kn,u) -> compile_constant env cenv kn u args sz cont | _ -> comp_app (compile_lam env) (compile_lam env) cenv f args sz cont end | Lfix ((rec_args, init), (_decl, types, bodies)) -> let ndef = Array.length types in let rfv = ref empty_fv in let lbl_types = Array.make ndef Label.no in let lbl_bodies = Array.make ndef Label.no in (* Compiling types *) let env_type = comp_env_fix_type rfv in for i = 0 to ndef - 1 do let fcode = ensure_stack_capacity (compile_lam env env_type types.(i) 0) [Kstop] in let lbl,fcode = label_code fcode in lbl_types.(i) <- lbl; fun_code := [Ksequence(fcode,!fun_code)] done; (* Compiling bodies *) for i = 0 to ndef - 1 do let params,body = decompose_Llam bodies.(i) in let arity = Array.length params in let env_body = comp_env_fix ndef i arity rfv in let cont1 = ensure_stack_capacity (compile_lam env env_body body arity) [Kreturn arity] in let lbl = Label.create () in lbl_bodies.(i) <- lbl; let fcode = add_grabrec rec_args.(i) arity lbl cont1 in fun_code := [Ksequence(fcode,!fun_code)] done; let fv = !rfv in compile_fv cenv fv.fv_rev sz (Kclosurerec(fv.size,init,lbl_types,lbl_bodies) :: cont) | Lcofix(init, (_decl,types,bodies)) -> let ndef = Array.length types in let lbl_types = Array.make ndef Label.no in let lbl_bodies = Array.make ndef Label.no in (* Compiling types *) let rfv = ref empty_fv in let env_type = comp_env_cofix_type ndef rfv in for i = 0 to ndef - 1 do let fcode = ensure_stack_capacity (compile_lam env env_type types.(i) 0) [Kstop] in let lbl,fcode = label_code fcode in lbl_types.(i) <- lbl; fun_code := [Ksequence(fcode,!fun_code)] done; (* Compiling bodies *) for i = 0 to ndef - 1 do let params,body = decompose_Llam bodies.(i) in let arity = Array.length params in let env_body = comp_env_cofix ndef arity rfv in let lbl = Label.create () in let comp arity = (* 4 stack slots are needed to update the cofix when forced *) set_max_stack_size (arity + 4); compile_lam env env_body body (arity+1) (cont_cofix arity) in let cont = ensure_stack_capacity comp arity in lbl_bodies.(i) <- lbl; fun_code := [Ksequence(add_grab (arity+1) lbl cont,!fun_code)]; done; let fv = !rfv in set_max_stack_size (sz + fv.size + ndef + 2); compile_fv cenv fv.fv_rev sz (Kclosurecofix(fv.size, init, lbl_types, lbl_bodies) :: cont) | Lif(t, bt, bf) -> let branch, cont = make_branch cont in let lbl_true = Label.create() in let lbl_false = Label.create() in compile_lam env cenv t sz (Kswitch([|lbl_true;lbl_false|],[||]) :: Klabel lbl_false :: compile_lam env cenv bf sz (branch :: Klabel lbl_true :: compile_lam env cenv bt sz cont)) | Lcase(ci,rtbl,t,a,branches) -> let ind = ci.ci_ind in let mib = lookup_mind (fst ind) env in let oib = mib.mind_packets.(snd ind) in let lbl_consts = Array.make oib.mind_nb_constant Label.no in let nallblock = oib.mind_nb_args + 1 in (* +1 : accumulate *) let nconst = Array.length branches.constant_branches in let nblock = min nallblock (Obj.last_non_constant_constructor_tag + 1) in let lbl_blocks = Array.make nblock Label.no in let neblock = max 0 (nallblock - Obj.last_non_constant_constructor_tag) in let lbl_eblocks = Array.make neblock Label.no in let branch1, cont = make_branch cont in (* Compilation of the return type *) let fcode = ensure_stack_capacity (compile_lam env cenv t sz) [Kpop sz; Kstop] in let lbl_typ,fcode = label_code fcode in fun_code := [Ksequence(fcode,!fun_code)]; (* Compilation of the branches *) let lbl_sw = Label.create () in let sz_b,branch,is_tailcall = match branch1 with | Kreturn k -> assert (Int.equal k sz) ; sz, branch1, true | Kbranch _ -> sz+3, Kjump, false | _ -> assert false in let c = ref cont in (* Perform the extra match if needed (too many block constructors) *) if neblock <> 0 then begin let lbl_b, code_b = label_code ( Kpush :: Kfield 0 :: Kswitch(lbl_eblocks, [||]) :: !c) in lbl_blocks.(Obj.last_non_constant_constructor_tag) <- lbl_b; c := code_b end; (* Compilation of constant branches *) for i = nconst - 1 downto 0 do let aux = compile_lam env cenv branches.constant_branches.(i) sz_b (branch::!c) in let lbl_b,code_b = label_code aux in lbl_consts.(i) <- lbl_b; c := code_b done; (* -1 for accu branch *) for i = nallblock - 2 downto 0 do let tag = i + 1 in let (ids, body) = branches.nonconstant_branches.(i) in let arity = Array.length ids in let code_b = compile_lam env (push_param arity sz_b cenv) body (sz_b+arity) (add_pop arity (branch::!c)) in let code_b = if tag < Obj.last_non_constant_constructor_tag then begin set_max_stack_size (sz_b + arity); Kpushfields arity :: code_b end else begin set_max_stack_size (sz_b + arity + 1); Kacc 0::Kpop 1::Kpushfields(arity+1)::Kpop 1::code_b end in let lbl_b, code_b = label_code code_b in if tag < Obj.last_non_constant_constructor_tag then lbl_blocks.(tag) <- lbl_b else lbl_eblocks.(tag - Obj.last_non_constant_constructor_tag) <- lbl_b; c := code_b done; let annot = {ci = ci; rtbl = rtbl; tailcall = is_tailcall; max_stack_size = !max_stack_size - sz} in (* Compiling branch for accumulators *) let lbl_accu, code_accu = set_max_stack_size (sz+3); label_code(Kmakeswitchblock(lbl_typ,lbl_sw,annot,sz) :: branch :: !c) in lbl_blocks.(0) <- lbl_accu; c := Klabel lbl_sw :: Kswitch(lbl_consts,lbl_blocks) :: code_accu; let code_sw = match branch1 with (* spiwack : branch1 can't be a lbl anymore it's a Branch instead | Klabel lbl -> Kpush_retaddr lbl :: !c *) | Kbranch lbl -> Kpush_retaddr lbl :: !c | _ -> !c in compile_lam env cenv a sz code_sw | Lmakeblock (tag,args) -> let arity = Array.length args in let cont = code_makeblock ~stack_size:(sz+arity-1) ~arity ~tag cont in comp_args (compile_lam env) cenv args sz cont | Lprim (kn, op, args) -> comp_args (compile_lam env) cenv args sz (Kprim(op, kn)::cont) and compile_get_global cenv (kn,u) sz cont = set_max_stack_size sz; if Univ.Instance.is_empty u then Kgetglobal kn :: cont else comp_app (fun _ _ _ cont -> Kgetglobal kn :: cont) compile_universe cenv () (Univ.Instance.to_array u) sz cont and compile_universe cenv uni sz cont = set_max_stack_size sz; match Univ.Level.var_index uni with | None -> compile_structured_constant cenv (Const_univ_level uni) sz cont | Some idx -> pos_universe_var idx cenv sz :: cont and compile_constant env cenv kn u args sz cont = set_max_stack_size sz; if Univ.Instance.is_empty u then (* normal compilation *) comp_app (fun _ _ sz cont -> compile_get_global cenv (kn,u) sz cont) (compile_lam env) cenv () args sz cont else let compile_arg cenv constr_or_uni sz cont = match constr_or_uni with | ArgLambda t -> compile_lam env cenv t sz cont | ArgUniv uni -> compile_universe cenv uni sz cont in let u = Univ.Instance.to_array u in let lu = Array.length u in let all = Array.init (lu + Array.length args) (fun i -> if i < lu then ArgUniv u.(i) else ArgLambda args.(i-lu)) in comp_app (fun _ _ _ cont -> Kgetglobal kn :: cont) compile_arg cenv () all sz cont let is_univ_copy max u = let u = Univ.Instance.to_array u in if Array.length u = max then Array.fold_left_i (fun i acc u -> if acc then match Univ.Level.var_index u with | None -> false | Some l -> l = i else false) true u else false let dump_bytecode = ref false let dump_bytecodes init code fvs = let open Pp in (str "code =" ++ fnl () ++ pp_bytecodes init ++ fnl () ++ pp_bytecodes code ++ fnl () ++ str "fv = " ++ prlist_with_sep (fun () -> str "; ") pp_fv_elem fvs ++ fnl ()) let compile ~fail_on_error ?universes:(universes=0) env c = init_fun_code (); Label.reset_label_counter (); let cont = [Kstop] in try let cenv, init_code = if Int.equal universes 0 then let lam = lambda_of_constr ~optimize:true env c in let cenv = empty_comp_env () in cenv, ensure_stack_capacity (compile_lam env cenv lam 0) cont else (* We are going to generate a lambda, but merge the universe closure * with the function closure if it exists. *) let lam = lambda_of_constr ~optimize:true env c in let params, body = decompose_Llam lam in let arity = Array.length params in let cenv = empty_comp_env () in let full_arity = arity + universes in let r_fun = comp_env_fun ~univs:universes arity in let lbl_fun = Label.create () in let cont_fun = ensure_stack_capacity (compile_lam env r_fun body full_arity) [Kreturn full_arity] in fun_code := [Ksequence(add_grab full_arity lbl_fun cont_fun,!fun_code)]; let fv = fv r_fun in let init_code = ensure_stack_capacity (compile_fv cenv fv.fv_rev 0) (Kclosure(lbl_fun,fv.size) :: cont) in cenv, init_code in let fv = List.rev (!(cenv.in_env).fv_rev) in (if !dump_bytecode then Feedback.msg_debug (dump_bytecodes init_code !fun_code fv)) ; Some (init_code,!fun_code, Array.of_list fv) with TooLargeInductive msg -> let fn = if fail_on_error then CErrors.user_err ?loc:None ~hdr:"compile" else (fun x -> Feedback.msg_warning x) in fn msg; None let compile_constant_body ~fail_on_error env univs = function | Undef _ | OpaqueDef _ | Primitive _ -> Some BCconstant | Def sb -> let body = Mod_subst.force_constr sb in let instance_size = Univ.AUContext.size (Declareops.universes_context univs) in match kind body with | Const (kn',u) when is_univ_copy instance_size u -> (* we use the canonical name of the constant*) let con= Constant.make1 (Constant.canonical kn') in Some (BCalias (get_alias env con)) | _ -> let res = compile ~fail_on_error ~universes:instance_size env body in Option.map (fun x -> BCdefined (to_memory x)) res (* Shortcut of the previous function used during module strengthening *) let compile_alias kn = BCalias (Constant.make1 (Constant.canonical kn))