1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Bruno Barras with Benjamin Werner's account to implement a call-by-value conversion algorithm and a lazy reduction machine with sharing, Nov 1996 *) (* Addition of zeta-reduction (let-in contraction) by Hugo Herbelin, Oct 2000 *) (* Call-by-value machine moved to cbv.ml, Mar 01 *) (* Additional tools for module subtyping by Jacek Chrzaszcz, Aug 2002 *) (* Extension with closure optimization by Bruno Barras, Aug 2003 *) (* Support for evar reduction by Bruno Barras, Feb 2009 *) (* Miscellaneous other improvements by Bruno Barras, 1997-2009 *) (* This file implements a lazy reduction for the Calculus of Inductive Constructions *) [@@@ocaml.warning "+4"] open CErrors open Util open Pp open Names open Constr open Declarations open Context open Environ open Vars open Esubst let stats = ref false (* Profiling *) let beta = ref 0 let delta = ref 0 let eta = ref 0 let zeta = ref 0 let evar = ref 0 let nb_match = ref 0 let fix = ref 0 let cofix = ref 0 let prune = ref 0 let reset () = beta := 0; delta := 0; zeta := 0; evar := 0; nb_match := 0; fix := 0; cofix := 0; evar := 0; prune := 0 let stop() = Feedback.msg_debug (str "[Reds: beta=" ++ int !beta ++ str" delta=" ++ int !delta ++ str " eta=" ++ int !eta ++ str" zeta=" ++ int !zeta ++ str" evar=" ++ int !evar ++ str" match=" ++ int !nb_match ++ str" fix=" ++ int !fix ++ str " cofix=" ++ int !cofix ++ str" prune=" ++ int !prune ++ str"]") let incr_cnt red cnt = if red then begin if !stats then incr cnt; true end else false let with_stats c = if !stats then begin reset(); let r = Lazy.force c in stop(); r end else Lazy.force c let all_opaque = TransparentState.empty let all_transparent = TransparentState.full module type RedFlagsSig = sig type reds type red_kind val fBETA : red_kind val fDELTA : red_kind val fETA : red_kind val fMATCH : red_kind val fFIX : red_kind val fCOFIX : red_kind val fZETA : red_kind val fCONST : Constant.t -> red_kind val fVAR : Id.t -> red_kind val no_red : reds val red_add : reds -> red_kind -> reds val red_sub : reds -> red_kind -> reds val red_add_transparent : reds -> TransparentState.t -> reds val red_transparent : reds -> TransparentState.t val mkflags : red_kind list -> reds val red_set : reds -> red_kind -> bool val red_projection : reds -> Projection.t -> bool end module RedFlags : RedFlagsSig = struct (* [r_const=(true,cl)] means all constants but those in [cl] *) (* [r_const=(false,cl)] means only those in [cl] *) (* [r_delta=true] just mean [r_const=(true,[])] *) open TransparentState type reds = { r_beta : bool; r_delta : bool; r_eta : bool; r_const : TransparentState.t; r_zeta : bool; r_match : bool; r_fix : bool; r_cofix : bool } type red_kind = BETA | DELTA | ETA | MATCH | FIX | COFIX | ZETA | CONST of Constant.t | VAR of Id.t let fBETA = BETA let fDELTA = DELTA let fETA = ETA let fMATCH = MATCH let fFIX = FIX let fCOFIX = COFIX let fZETA = ZETA let fCONST kn = CONST kn let fVAR id = VAR id let no_red = { r_beta = false; r_delta = false; r_eta = false; r_const = all_opaque; r_zeta = false; r_match = false; r_fix = false; r_cofix = false } let red_add red = function | BETA -> { red with r_beta = true } | ETA -> { red with r_eta = true } | DELTA -> { red with r_delta = true; r_const = all_transparent } | CONST kn -> let r = red.r_const in { red with r_const = { r with tr_cst = Cpred.add kn r.tr_cst } } | MATCH -> { red with r_match = true } | FIX -> { red with r_fix = true } | COFIX -> { red with r_cofix = true } | ZETA -> { red with r_zeta = true } | VAR id -> let r = red.r_const in { red with r_const = { r with tr_var = Id.Pred.add id r.tr_var } } let red_sub red = function | BETA -> { red with r_beta = false } | ETA -> { red with r_eta = false } | DELTA -> { red with r_delta = false } | CONST kn -> let r = red.r_const in { red with r_const = { r with tr_cst = Cpred.remove kn r.tr_cst } } | MATCH -> { red with r_match = false } | FIX -> { red with r_fix = false } | COFIX -> { red with r_cofix = false } | ZETA -> { red with r_zeta = false } | VAR id -> let r = red.r_const in { red with r_const = { r with tr_var = Id.Pred.remove id r.tr_var } } let red_transparent red = red.r_const let red_add_transparent red tr = { red with r_const = tr } let mkflags = List.fold_left red_add no_red let red_set red = function | BETA -> incr_cnt red.r_beta beta | ETA -> incr_cnt red.r_eta eta | CONST kn -> let c = is_transparent_constant red.r_const kn in incr_cnt c delta | VAR id -> (* En attendant d'avoir des kn pour les Var *) let c = is_transparent_variable red.r_const id in incr_cnt c delta | ZETA -> incr_cnt red.r_zeta zeta | MATCH -> incr_cnt red.r_match nb_match | FIX -> incr_cnt red.r_fix fix | COFIX -> incr_cnt red.r_cofix cofix | DELTA -> (* Used for Rel/Var defined in context *) incr_cnt red.r_delta delta let red_projection red p = if Projection.unfolded p then true else red_set red (fCONST (Projection.constant p)) end open RedFlags let all = mkflags [fBETA;fDELTA;fZETA;fMATCH;fFIX;fCOFIX] let allnolet = mkflags [fBETA;fDELTA;fMATCH;fFIX;fCOFIX] let beta = mkflags [fBETA] let betadeltazeta = mkflags [fBETA;fDELTA;fZETA] let betaiota = mkflags [fBETA;fMATCH;fFIX;fCOFIX] let betaiotazeta = mkflags [fBETA;fMATCH;fFIX;fCOFIX;fZETA] let betazeta = mkflags [fBETA;fZETA] let delta = mkflags [fDELTA] let zeta = mkflags [fZETA] let nored = no_red (* Flags of reduction and cache of constants: 'a is a type that may be * mapped to constr. 'a infos implements a cache for constants and * abstractions, storing a representation (of type 'a) of the body of * this constant or abstraction. * * i_tab is the cache table of the results * * ref_value_cache searches in the tab, otherwise uses i_repr to * compute the result and store it in the table. If the constant can't * be unfolded, returns None, but does not store this failure. * This * doesn't take the RESET into account. You mustn't keep such a table * after a Reset. * This type is not exported. Only its two * instantiations (cbv or lazy) are. *) type table_key = Constant.t Univ.puniverses tableKey let eq_pconstant_key (c,u) (c',u') = eq_constant_key c c' && Univ.Instance.equal u u' module IdKeyHash = struct open Hashset.Combine type t = table_key let equal = Names.eq_table_key eq_pconstant_key let hash = function | ConstKey (c, _) -> combinesmall 1 (Constant.UserOrd.hash c) | VarKey id -> combinesmall 2 (Id.hash id) | RelKey i -> combinesmall 3 (Int.hash i) end module KeyTable = Hashtbl.Make(IdKeyHash) open Context.Named.Declaration let assoc_defined id env = match Environ.lookup_named id env with | LocalDef (_, c, _) -> c | LocalAssum _ -> raise Not_found (**********************************************************************) (* Lazy reduction: the one used in kernel operations *) (* type of shared terms. fconstr and frterm are mutually recursive. * Clone of the constr structure, but completely mutable, and * annotated with reduction state (reducible or not). * - FLIFT is a delayed shift; allows sharing between 2 lifted copies * of a given term. * - FCLOS is a delayed substitution applied to a constr * - FLOCKED is used to erase the content of a reference that must * be updated. This is to allow the garbage collector to work * before the term is computed. *) (* Norm means the term is fully normalized and cannot create a redex when substituted Cstr means the term is in head normal form and that it can create a redex when substituted (i.e. constructor, fix, lambda) Whnf means we reached the head normal form and that it cannot create a redex when substituted Red is used for terms that might be reduced *) type red_state = Norm | Cstr | Whnf | Red let neutr = function | Whnf|Norm -> Whnf | Red|Cstr -> Red type optrel = Unknown | KnownR | KnownI let opt_of_rel = function | Sorts.Relevant -> KnownR | Sorts.Irrelevant -> KnownI module Mark : sig type t val mark : red_state -> optrel -> t val relevance : t -> optrel val red_state : t -> red_state val neutr : t -> t val set_norm : t -> t end = struct type t = int let[@inline] of_state = function | Norm -> 0b00 | Cstr -> 0b01 | Whnf -> 0b10 | Red -> 0b11 let[@inline] of_relevance = function | Unknown -> 0 | KnownR -> 0b01 | KnownI -> 0b10 let[@inline] mark state relevance = (of_state state) * 4 + (of_relevance relevance) let[@inline] relevance x = match x land 0b11 with | 0b00 -> Unknown | 0b01 -> KnownR | 0b10 -> KnownI | _ -> assert false let[@inline] red_state x = match x land 0b1100 with | 0b0000 -> Norm | 0b0100 -> Cstr | 0b1000 -> Whnf | 0b1100 -> Red | _ -> assert false let[@inline] neutr x = x lor 0b1000 (* Whnf|Norm -> Whnf | Red|Cstr -> Red *) let[@inline] set_norm x = x land 0b0011 end let mark = Mark.mark type fconstr = { mutable mark : Mark.t; mutable term: fterm; } and fterm = | FRel of int | FAtom of constr (* Metas and Sorts *) | FFlex of table_key | FInd of pinductive | FConstruct of pconstructor | FApp of fconstr * fconstr array | FProj of Projection.t * fconstr | FFix of fixpoint * fconstr subs | FCoFix of cofixpoint * fconstr subs | FCaseT of case_info * constr * fconstr * constr array * fconstr subs (* predicate and branches are closures *) | FLambda of int * (Name.t Context.binder_annot * constr) list * constr * fconstr subs | FProd of Name.t Context.binder_annot * fconstr * constr * fconstr subs | FLetIn of Name.t Context.binder_annot * fconstr * fconstr * constr * fconstr subs | FEvar of existential * fconstr subs | FInt of Uint63.t | FLIFT of int * fconstr | FCLOS of constr * fconstr subs | FLOCKED let fterm_of v = v.term let set_norm v = v.mark <- Mark.set_norm v.mark let is_val v = match Mark.red_state v.mark with Norm -> true | Cstr | Whnf | Red -> false let mk_atom c = {mark=mark Norm Unknown;term=FAtom c} let mk_red f = {mark=mark Red Unknown;term=f} (* Could issue a warning if no is still Red, pointing out that we loose sharing. *) let update ~share v1 mark t = if share then (v1.mark <- mark; v1.term <- t; v1) else {mark;term=t;} (** Reduction cache *) type infos_cache = { i_env : env; i_sigma : existential -> constr option; i_share : bool; } type clos_infos = { i_flags : reds; i_cache : infos_cache } type clos_tab = (fconstr, Empty.t) constant_def KeyTable.t let info_flags info = info.i_flags let info_env info = info.i_cache.i_env (**********************************************************************) (* The type of (machine) stacks (= lambda-bar-calculus' contexts) *) type 'a next_native_args = (CPrimitives.arg_kind * 'a) list type stack_member = | Zapp of fconstr array | ZcaseT of case_info * constr * constr array * fconstr subs | Zproj of Projection.Repr.t | Zfix of fconstr * stack | Zprimitive of CPrimitives.t * pconstant * fconstr list * fconstr next_native_args (* operator, constr def, arguments already seen (in rev order), next arguments *) | Zshift of int | Zupdate of fconstr and stack = stack_member list let empty_stack = [] let append_stack v s = if Int.equal (Array.length v) 0 then s else match s with | Zapp l :: s -> Zapp (Array.append v l) :: s | (ZcaseT _ | Zproj _ | Zfix _ | Zshift _ | Zupdate _ | Zprimitive _) :: _ | [] -> Zapp v :: s (* Collapse the shifts in the stack *) let zshift n s = match (n,s) with (0,_) -> s | (_,Zshift(k)::s) -> Zshift(n+k)::s | (_,(ZcaseT _ | Zproj _ | Zfix _ | Zapp _ | Zupdate _ | Zprimitive _) :: _) | _,[] -> Zshift(n)::s let rec stack_args_size = function | Zapp v :: s -> Array.length v + stack_args_size s | Zshift(_)::s -> stack_args_size s | Zupdate(_)::s -> stack_args_size s | (ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | [] -> 0 (* Lifting. Preserves sharing (useful only for cell with norm=Red). lft_fconstr always create a new cell, while lift_fconstr avoids it when the lift is 0. *) let rec lft_fconstr n ft = let r = Mark.relevance ft.mark in match ft.term with | (FInd _|FConstruct _|FFlex(ConstKey _|VarKey _)|FInt _) -> ft | FRel i -> {mark=mark Norm r;term=FRel(i+n)} | FLambda(k,tys,f,e) -> {mark=mark Cstr r; term=FLambda(k,tys,f,subs_shft(n,e))} | FFix(fx,e) -> {mark=mark Cstr r; term=FFix(fx,subs_shft(n,e))} | FCoFix(cfx,e) -> {mark=mark Cstr r; term=FCoFix(cfx,subs_shft(n,e))} | FLIFT(k,m) -> lft_fconstr (n+k) m | FLOCKED -> assert false | FFlex (RelKey _) | FAtom _ | FApp _ | FProj _ | FCaseT _ | FProd _ | FLetIn _ | FEvar _ | FCLOS _ -> {mark=ft.mark; term=FLIFT(n,ft)} let lift_fconstr k f = if Int.equal k 0 then f else lft_fconstr k f let lift_fconstr_vect k v = if Int.equal k 0 then v else Array.Fun1.map lft_fconstr k v let clos_rel e i = match expand_rel i e with | Inl(n,mt) -> lift_fconstr n mt | Inr(k,None) -> {mark=mark Norm Unknown; term= FRel k} | Inr(k,Some p) -> lift_fconstr (k-p) {mark=mark Red Unknown;term=FFlex(RelKey p)} (* since the head may be reducible, we might introduce lifts of 0 *) let compact_stack head stk = let rec strip_rec depth = function | Zshift(k)::s -> strip_rec (depth+k) s | Zupdate(m)::s -> (* Be sure to create a new cell otherwise sharing would be lost by the update operation *) let h' = lft_fconstr depth head in (** The stack contains [Zupdate] marks only if in sharing mode *) let _ = update ~share:true m h'.mark h'.term in strip_rec depth s | ((ZcaseT _ | Zproj _ | Zfix _ | Zapp _ | Zprimitive _) :: _ | []) as stk -> zshift depth stk in strip_rec 0 stk (* Put an update mark in the stack, only if needed *) let zupdate info m s = let share = info.i_cache.i_share in if share && begin match Mark.red_state m.mark with Red -> true | Norm | Whnf | Cstr -> false end then let s' = compact_stack m s in let _ = m.term <- FLOCKED in Zupdate(m)::s' else s let mk_lambda env t = let (rvars,t') = Term.decompose_lam t in FLambda(List.length rvars, List.rev rvars, t', env) let destFLambda clos_fun t = match [@ocaml.warning "-4"] t.term with FLambda(_,[(na,ty)],b,e) -> (na,clos_fun e ty,clos_fun (subs_lift e) b) | FLambda(n,(na,ty)::tys,b,e) -> (na,clos_fun e ty,{mark=t.mark;term=FLambda(n-1,tys,b,subs_lift e)}) | _ -> assert false (* t must be a FLambda and binding list cannot be empty *) (* Optimization: do not enclose variables in a closure. Makes variable access much faster *) let mk_clos e t = match kind t with | Rel i -> clos_rel e i | Var x -> {mark = mark Red Unknown; term = FFlex (VarKey x) } | Const c -> {mark = mark Red Unknown; term = FFlex (ConstKey c) } | Meta _ | Sort _ -> {mark = mark Norm KnownR; term = FAtom t } | Ind kn -> {mark = mark Norm KnownR; term = FInd kn } | Construct kn -> {mark = mark Cstr Unknown; term = FConstruct kn } | Int i -> {mark = mark Cstr Unknown; term = FInt i} | (CoFix _|Lambda _|Fix _|Prod _|Evar _|App _|Case _|Cast _|LetIn _|Proj _) -> {mark = mark Red Unknown; term = FCLOS(t,e)} let inject c = mk_clos (subs_id 0) c (** Hand-unrolling of the map function to bypass the call to the generic array allocation *) let mk_clos_vect env v = match v with | [||] -> [||] | [|v0|] -> [|mk_clos env v0|] | [|v0; v1|] -> [|mk_clos env v0; mk_clos env v1|] | [|v0; v1; v2|] -> [|mk_clos env v0; mk_clos env v1; mk_clos env v2|] | [|v0; v1; v2; v3|] -> [|mk_clos env v0; mk_clos env v1; mk_clos env v2; mk_clos env v3|] | v -> Array.Fun1.map mk_clos env v let ref_value_cache ({ i_cache = cache; _ }) tab ref = try KeyTable.find tab ref with Not_found -> let v = try let body = match ref with | RelKey n -> let open! Context.Rel.Declaration in let i = n - 1 in let (d, _) = try Range.get cache.i_env.env_rel_context.env_rel_map i with Invalid_argument _ -> raise Not_found in begin match d with | LocalAssum _ -> raise Not_found | LocalDef (_, t, _) -> lift n t end | VarKey id -> assoc_defined id cache.i_env | ConstKey cst -> constant_value_in cache.i_env cst in Def (inject body) with | NotEvaluableConst (IsPrimitive op) (* Const *) -> Primitive op | Not_found (* List.assoc *) | NotEvaluableConst _ (* Const *) -> Undef None in KeyTable.add tab ref v; v (* The inverse of mk_clos: move back to constr *) let rec to_constr lfts v = match v.term with | FRel i -> mkRel (reloc_rel i lfts) | FFlex (RelKey p) -> mkRel (reloc_rel p lfts) | FFlex (VarKey x) -> mkVar x | FAtom c -> exliftn lfts c | FFlex (ConstKey op) -> mkConstU op | FInd op -> mkIndU op | FConstruct op -> mkConstructU op | FCaseT (ci,p,c,ve,env) -> if is_subs_id env && is_lift_id lfts then mkCase (ci, p, to_constr lfts c, ve) else let subs = comp_subs lfts env in mkCase (ci, subst_constr subs p, to_constr lfts c, Array.map (fun b -> subst_constr subs b) ve) | FFix ((op,(lna,tys,bds)) as fx, e) -> if is_subs_id e && is_lift_id lfts then mkFix fx else let n = Array.length bds in let subs_ty = comp_subs lfts e in let subs_bd = comp_subs (el_liftn n lfts) (subs_liftn n e) in let tys = Array.Fun1.map subst_constr subs_ty tys in let bds = Array.Fun1.map subst_constr subs_bd bds in mkFix (op, (lna, tys, bds)) | FCoFix ((op,(lna,tys,bds)) as cfx, e) -> if is_subs_id e && is_lift_id lfts then mkCoFix cfx else let n = Array.length bds in let subs_ty = comp_subs lfts e in let subs_bd = comp_subs (el_liftn n lfts) (subs_liftn n e) in let tys = Array.Fun1.map subst_constr subs_ty tys in let bds = Array.Fun1.map subst_constr subs_bd bds in mkCoFix (op, (lna, tys, bds)) | FApp (f,ve) -> mkApp (to_constr lfts f, Array.Fun1.map to_constr lfts ve) | FProj (p,c) -> mkProj (p,to_constr lfts c) | FLambda (len, tys, f, e) -> if is_subs_id e && is_lift_id lfts then Term.compose_lam (List.rev tys) f else let subs = comp_subs lfts e in let tys = List.mapi (fun i (na, c) -> na, subst_constr (subs_liftn i subs) c) tys in let f = subst_constr (subs_liftn len subs) f in Term.compose_lam (List.rev tys) f | FProd (n, t, c, e) -> if is_subs_id e && is_lift_id lfts then mkProd (n, to_constr lfts t, c) else let subs' = comp_subs lfts e in mkProd (n, to_constr lfts t, subst_constr (subs_lift subs') c) | FLetIn (n,b,t,f,e) -> let subs = comp_subs (el_lift lfts) (subs_lift e) in mkLetIn (n, to_constr lfts b, to_constr lfts t, subst_constr subs f) | FEvar ((ev,args),env) -> let subs = comp_subs lfts env in mkEvar(ev,Array.map (fun a -> subst_constr subs a) args) | FLIFT (k,a) -> to_constr (el_shft k lfts) a | FInt i -> Constr.mkInt i | FCLOS (t,env) -> if is_subs_id env && is_lift_id lfts then t else let subs = comp_subs lfts env in subst_constr subs t | FLOCKED -> assert false (*mkVar(Id.of_string"_LOCK_")*) and subst_constr subst c = match [@ocaml.warning "-4"] Constr.kind c with | Rel i -> begin match expand_rel i subst with | Inl (k, lazy v) -> Vars.lift k v | Inr (m, _) -> mkRel m end | _ -> Constr.map_with_binders Esubst.subs_lift subst_constr subst c and comp_subs el s = Esubst.lift_subst (fun el c -> lazy (to_constr el c)) el s (* This function defines the correspondence between constr and fconstr. When we find a closure whose substitution is the identity, then we directly return the constr to avoid possibly huge reallocation. *) let term_of_fconstr c = to_constr el_id c (* fstrong applies unfreeze_fun recursively on the (freeze) term and * yields a term. Assumes that the unfreeze_fun never returns a * FCLOS term. let rec fstrong unfreeze_fun lfts v = to_constr (fstrong unfreeze_fun) lfts (unfreeze_fun v) *) let rec zip m stk = match stk with | [] -> m | Zapp args :: s -> zip {mark=Mark.neutr m.mark; term=FApp(m, args)} s | ZcaseT(ci,p,br,e)::s -> let t = FCaseT(ci, p, m, br, e) in let mark = mark (neutr (Mark.red_state m.mark)) Unknown in zip {mark; term=t} s | Zproj p :: s -> let mark = mark (neutr (Mark.red_state m.mark)) Unknown in zip {mark; term=FProj(Projection.make p true,m)} s | Zfix(fx,par)::s -> zip fx (par @ append_stack [|m|] s) | Zshift(n)::s -> zip (lift_fconstr n m) s | Zupdate(rf)::s -> (** The stack contains [Zupdate] marks only if in sharing mode *) zip (update ~share:true rf m.mark m.term) s | Zprimitive(_op,c,rargs,kargs)::s -> let args = List.rev_append rargs (m::List.map snd kargs) in let f = {mark = mark Red Unknown;term = FFlex (ConstKey c)} in zip {mark=mark (neutr (Mark.red_state m.mark)) KnownR; term = FApp (f, Array.of_list args)} s let fapp_stack (m,stk) = zip m stk (*********************************************************************) (* The assertions in the functions below are granted because they are called only when m is a constructor, a cofix (strip_update_shift_app), a fix (get_nth_arg) or an abstraction (strip_update_shift, through get_arg). *) (* optimised for the case where there are no shifts... *) let strip_update_shift_app_red head stk = let rec strip_rec rstk h depth = function | Zshift(k) as e :: s -> strip_rec (e::rstk) (lift_fconstr k h) (depth+k) s | (Zapp args :: s) -> strip_rec (Zapp args :: rstk) {mark=h.mark;term=FApp(h,args)} depth s | Zupdate(m)::s -> (** The stack contains [Zupdate] marks only if in sharing mode *) strip_rec rstk (update ~share:true m h.mark h.term) depth s | ((ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | []) as stk -> (depth,List.rev rstk, stk) in strip_rec [] head 0 stk let strip_update_shift_app head stack = assert (match Mark.red_state head.mark with Red -> false | Norm | Cstr | Whnf -> true); strip_update_shift_app_red head stack let get_nth_arg head n stk = assert (match Mark.red_state head.mark with Red -> false | Norm | Cstr | Whnf -> true); let rec strip_rec rstk h n = function | Zshift(k) as e :: s -> strip_rec (e::rstk) (lift_fconstr k h) n s | Zapp args::s' -> let q = Array.length args in if n >= q then strip_rec (Zapp args::rstk) {mark=h.mark;term=FApp(h,args)} (n-q) s' else let bef = Array.sub args 0 n in let aft = Array.sub args (n+1) (q-n-1) in let stk' = List.rev (if Int.equal n 0 then rstk else (Zapp bef :: rstk)) in (Some (stk', args.(n)), append_stack aft s') | Zupdate(m)::s -> (** The stack contains [Zupdate] mark only if in sharing mode *) strip_rec rstk (update ~share:true m h.mark h.term) n s | ((ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | []) as s -> (None, List.rev rstk @ s) in strip_rec [] head n stk (* Beta reduction: look for an applied argument in the stack. Since the encountered update marks are removed, h must be a whnf *) let rec get_args n tys f e = function | Zupdate r :: s -> (** The stack contains [Zupdate] mark only if in sharing mode *) let _hd = update ~share:true r (mark Cstr (Mark.relevance r.mark)) (FLambda(n,tys,f,e)) in get_args n tys f e s | Zshift k :: s -> get_args n tys f (subs_shft (k,e)) s | Zapp l :: s -> let na = Array.length l in if n == na then (Inl (subs_cons(l,e)),s) else if n < na then (* more arguments *) let args = Array.sub l 0 n in let eargs = Array.sub l n (na-n) in (Inl (subs_cons(args,e)), Zapp eargs :: s) else (* more lambdas *) let etys = List.skipn na tys in get_args (n-na) etys f (subs_cons(l,e)) s | ((ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | []) as stk -> (Inr {mark=mark Cstr Unknown;term=FLambda(n,tys,f,e)}, stk) (* Eta expansion: add a reference to implicit surrounding lambda at end of stack *) let rec eta_expand_stack = function | (Zapp _ | Zfix _ | ZcaseT _ | Zproj _ | Zshift _ | Zupdate _ | Zprimitive _ as e) :: s -> e :: eta_expand_stack s | [] -> [Zshift 1; Zapp [|{mark=mark Norm Unknown; term= FRel 1}|]] (* Get the arguments of a native operator *) let rec skip_native_args rargs nargs = match nargs with | (kd, a) :: nargs' -> if kd = CPrimitives.Kwhnf then rargs, nargs else skip_native_args (a::rargs) nargs' | [] -> rargs, [] let get_native_args op c stk = let kargs = CPrimitives.kind op in let rec get_args rnargs kargs args = match kargs, args with | kd::kargs, a::args -> get_args ((kd,a)::rnargs) kargs args | _, _ -> rnargs, kargs, args in let rec strip_rec rnargs h depth kargs = function | Zshift k :: s -> strip_rec (List.map (fun (kd,f) -> kd,lift_fconstr k f) rnargs) (lift_fconstr k h) (depth+k) kargs s | Zapp args :: s' -> begin match get_args rnargs kargs (Array.to_list args) with | rnargs, [], [] -> (skip_native_args [] (List.rev rnargs), s') | rnargs, [], eargs -> (skip_native_args [] (List.rev rnargs), Zapp (Array.of_list eargs) :: s') | rnargs, kargs, _ -> strip_rec rnargs {mark = h.mark;term=FApp(h, args)} depth kargs s' end | Zupdate(m) :: s -> strip_rec rnargs (update ~share:true m h.mark h.term) depth kargs s | (Zprimitive _ | ZcaseT _ | Zproj _ | Zfix _) :: _ | [] -> assert false in strip_rec [] {mark = mark Red Unknown;term = FFlex(ConstKey c)} 0 kargs stk let get_native_args1 op c stk = match get_native_args op c stk with | ((rargs, (kd,a):: nargs), stk) -> assert (kd = CPrimitives.Kwhnf); (rargs, a, nargs, stk) | _ -> assert false let check_native_args op stk = let nargs = CPrimitives.arity op in let rargs = stack_args_size stk in nargs <= rargs (* Iota reduction: extract the arguments to be passed to the Case branches *) let rec reloc_rargs_rec depth = function | Zapp args :: s -> Zapp (lift_fconstr_vect depth args) :: reloc_rargs_rec depth s | Zshift(k)::s -> if Int.equal k depth then s else reloc_rargs_rec (depth-k) s | ((ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zprimitive _) :: _ | []) as stk -> stk let reloc_rargs depth stk = if Int.equal depth 0 then stk else reloc_rargs_rec depth stk let rec try_drop_parameters depth n = function | Zapp args::s -> let q = Array.length args in if n > q then try_drop_parameters depth (n-q) s else if Int.equal n q then reloc_rargs depth s else let aft = Array.sub args n (q-n) in reloc_rargs depth (append_stack aft s) | Zshift(k)::s -> try_drop_parameters (depth-k) n s | [] -> if Int.equal n 0 then [] else raise Not_found | (ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zprimitive _) :: _ -> assert false (* strip_update_shift_app only produces Zapp and Zshift items *) let drop_parameters depth n argstk = try try_drop_parameters depth n argstk with Not_found -> (* we know that n < stack_args_size(argstk) (if well-typed term) *) anomaly (Pp.str "ill-typed term: found a match on a partially applied constructor.") (** [eta_expand_ind_stack env ind c s t] computes stacks corresponding to the conversion of the eta expansion of t, considered as an inhabitant of ind, and the Constructor c of this inductive type applied to arguments s. @assumes [t] is an irreducible term, and not a constructor. [ind] is the inductive of the constructor term [c] @raise Not_found if the inductive is not a primitive record, or if the constructor is partially applied. *) let eta_expand_ind_stack env ind m s (f, s') = let open Declarations in let mib = lookup_mind (fst ind) env in (* disallow eta-exp for non-primitive records *) if not (mib.mind_finite == BiFinite) then raise Not_found; match Declareops.inductive_make_projections ind mib with | Some projs -> (* (Construct, pars1 .. parsm :: arg1...argn :: []) ~= (f, s') -> arg1..argn ~= (proj1 t...projn t) where t = zip (f,s') *) let pars = mib.Declarations.mind_nparams in let right = fapp_stack (f, s') in let (depth, args, _s) = strip_update_shift_app m s in (** Try to drop the params, might fail on partially applied constructors. *) let argss = try_drop_parameters depth pars args in let hstack = Array.map (fun p -> { mark = mark Red Unknown; (* right can't be a constructor though *) term = FProj (Projection.make p true, right) }) projs in argss, [Zapp hstack] | None -> raise Not_found (* disallow eta-exp for non-primitive records *) let rec project_nth_arg n = function | Zapp args :: s -> let q = Array.length args in if n >= q then project_nth_arg (n - q) s else (* n < q *) args.(n) | (ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zshift _ | Zprimitive _) :: _ | [] -> assert false (* After drop_parameters we have a purely applicative stack *) (* Iota reduction: expansion of a fixpoint. * Given a fixpoint and a substitution, returns the corresponding * fixpoint body, and the substitution in which it should be * evaluated: its first variables are the fixpoint bodies * * FCLOS(fix Fi {F0 := T0 .. Fn-1 := Tn-1}, S) * -> (S. FCLOS(F0,S) . ... . FCLOS(Fn-1,S), Ti) *) (* does not deal with FLIFT *) let contract_fix_vect fix = let (thisbody, make_body, env, nfix) = match [@ocaml.warning "-4"] fix with | FFix (((reci,i),(nas,_,bds as rdcl)),env) -> (bds.(i), (fun j -> { mark = mark Cstr (opt_of_rel nas.(j).binder_relevance); term = FFix (((reci,j),rdcl),env) }), env, Array.length bds) | FCoFix ((i,(nas,_,bds as rdcl)),env) -> (bds.(i), (fun j -> { mark = mark Cstr (opt_of_rel nas.(j).binder_relevance); term = FCoFix ((j,rdcl),env) }), env, Array.length bds) | _ -> assert false in (subs_cons(Array.init nfix make_body, env), thisbody) let unfold_projection info p = if red_projection info.i_flags p then Some (Zproj (Projection.repr p)) else None (*********************************************************************) (* A machine that inspects the head of a term until it finds an atom or a subterm that may produce a redex (abstraction, constructor, cofix, letin, constant), or a neutral term (product, inductive) *) let rec knh info m stk = match m.term with | FLIFT(k,a) -> knh info a (zshift k stk) | FCLOS(t,e) -> knht info e t (zupdate info m stk) | FLOCKED -> assert false | FApp(a,b) -> knh info a (append_stack b (zupdate info m stk)) | FCaseT(ci,p,t,br,e) -> knh info t (ZcaseT(ci,p,br,e)::zupdate info m stk) | FFix(((ri,n),_),_) -> (match get_nth_arg m ri.(n) stk with (Some(pars,arg),stk') -> knh info arg (Zfix(m,pars)::stk') | (None, stk') -> (m,stk')) | FProj (p,c) -> (match unfold_projection info p with | None -> (m, stk) | Some s -> knh info c (s :: zupdate info m stk)) (* cases where knh stops *) | (FFlex _|FLetIn _|FConstruct _|FEvar _| FCoFix _|FLambda _|FRel _|FAtom _|FInd _|FProd _|FInt _) -> (m, stk) (* The same for pure terms *) and knht info e t stk = match kind t with | App(a,b) -> knht info e a (append_stack (mk_clos_vect e b) stk) | Case(ci,p,t,br) -> knht info e t (ZcaseT(ci, p, br, e)::stk) | Fix fx -> knh info { mark = mark Cstr Unknown; term = FFix (fx, e) } stk | Cast(a,_,_) -> knht info e a stk | Rel n -> knh info (clos_rel e n) stk | Proj (p, c) -> knh info { mark = mark Red Unknown; term = FProj (p, mk_clos e c) } stk | (Ind _|Const _|Construct _|Var _|Meta _ | Sort _ | Int _) -> (mk_clos e t, stk) | CoFix cfx -> { mark = mark Cstr Unknown; term = FCoFix (cfx,e) }, stk | Lambda _ -> { mark = mark Cstr Unknown; term = mk_lambda e t }, stk | Prod (n, t, c) -> { mark = mark Whnf KnownR; term = FProd (n, mk_clos e t, c, e) }, stk | LetIn (n,b,t,c) -> { mark = mark Red Unknown; term = FLetIn (n, mk_clos e b, mk_clos e t, c, e) }, stk | Evar ev -> { mark = mark Red Unknown; term = FEvar (ev, e) }, stk let inject c = mk_clos (subs_id 0) c (************************************************************************) (* Reduction of Native operators *) open Primred module FNativeEntries = struct type elem = fconstr type args = fconstr array type evd = unit let get = Array.get let get_int () e = match [@ocaml.warning "-4"] e.term with | FInt i -> i | _ -> raise Primred.NativeDestKO let dummy = {mark = mark Norm KnownR; term = FRel 0} let current_retro = ref Retroknowledge.empty let defined_int = ref false let fint = ref dummy let init_int retro = match retro.Retroknowledge.retro_int63 with | Some c -> defined_int := true; fint := { mark = mark Norm KnownR; term = FFlex (ConstKey (Univ.in_punivs c)) } | None -> defined_int := false let defined_bool = ref false let ftrue = ref dummy let ffalse = ref dummy let init_bool retro = match retro.Retroknowledge.retro_bool with | Some (ct,cf) -> defined_bool := true; ftrue := { mark = mark Cstr KnownR; term = FConstruct (Univ.in_punivs ct) }; ffalse := { mark = mark Cstr KnownR; term = FConstruct (Univ.in_punivs cf) } | None -> defined_bool :=false let defined_carry = ref false let fC0 = ref dummy let fC1 = ref dummy let init_carry retro = match retro.Retroknowledge.retro_carry with | Some(c0,c1) -> defined_carry := true; fC0 := { mark = mark Cstr KnownR; term = FConstruct (Univ.in_punivs c0) }; fC1 := { mark = mark Cstr KnownR; term = FConstruct (Univ.in_punivs c1) } | None -> defined_carry := false let defined_pair = ref false let fPair = ref dummy let init_pair retro = match retro.Retroknowledge.retro_pair with | Some c -> defined_pair := true; fPair := { mark = mark Cstr KnownR; term = FConstruct (Univ.in_punivs c) } | None -> defined_pair := false let defined_cmp = ref false let fEq = ref dummy let fLt = ref dummy let fGt = ref dummy let init_cmp retro = match retro.Retroknowledge.retro_cmp with | Some (cEq, cLt, cGt) -> defined_cmp := true; fEq := { mark = mark Cstr KnownR; term = FConstruct (Univ.in_punivs cEq) }; fLt := { mark = mark Cstr KnownR; term = FConstruct (Univ.in_punivs cLt) }; fGt := { mark = mark Cstr KnownR; term = FConstruct (Univ.in_punivs cGt) } | None -> defined_cmp := false let defined_refl = ref false let frefl = ref dummy let init_refl retro = match retro.Retroknowledge.retro_refl with | Some crefl -> defined_refl := true; frefl := { mark = mark Cstr KnownR; term = FConstruct (Univ.in_punivs crefl) } | None -> defined_refl := false let init env = current_retro := env.retroknowledge; init_int !current_retro; init_bool !current_retro; init_carry !current_retro; init_pair !current_retro; init_cmp !current_retro; init_refl !current_retro let check_env env = if not (!current_retro == env.retroknowledge) then init env let check_int env = check_env env; assert (!defined_int) let check_bool env = check_env env; assert (!defined_bool) let check_carry env = check_env env; assert (!defined_carry && !defined_int) let check_pair env = check_env env; assert (!defined_pair && !defined_int) let check_cmp env = check_env env; assert (!defined_cmp) let mkInt env i = check_int env; { mark = mark Cstr KnownR; term = FInt i } let mkBool env b = check_bool env; if b then !ftrue else !ffalse let mkCarry env b e = check_carry env; {mark = mark Cstr KnownR; term = FApp ((if b then !fC1 else !fC0),[|!fint;e|])} let mkIntPair env e1 e2 = check_pair env; { mark = mark Cstr KnownR; term = FApp(!fPair, [|!fint;!fint;e1;e2|]) } let mkLt env = check_cmp env; !fLt let mkEq env = check_cmp env; !fEq let mkGt env = check_cmp env; !fGt end module FredNative = RedNative(FNativeEntries) (************************************************************************) (* Computes a weak head normal form from the result of knh. *) let rec knr info tab m stk = match m.term with | FLambda(n,tys,f,e) when red_set info.i_flags fBETA -> (match get_args n tys f e stk with Inl e', s -> knit info tab e' f s | Inr lam, s -> (lam,s)) | FFlex(ConstKey (kn,_ as c)) when red_set info.i_flags (fCONST kn) -> (match ref_value_cache info tab (ConstKey c) with | Def v -> kni info tab v stk | Primitive op when check_native_args op stk -> let rargs, a, nargs, stk = get_native_args1 op c stk in kni info tab a (Zprimitive(op,c,rargs,nargs)::stk) | Undef _ | OpaqueDef _ | Primitive _ -> (set_norm m; (m,stk))) | FFlex(VarKey id) when red_set info.i_flags (fVAR id) -> (match ref_value_cache info tab (VarKey id) with | Def v -> kni info tab v stk | Primitive _ -> assert false | OpaqueDef _ | Undef _ -> (set_norm m; (m,stk))) | FFlex(RelKey k) when red_set info.i_flags fDELTA -> (match ref_value_cache info tab (RelKey k) with | Def v -> kni info tab v stk | Primitive _ -> assert false | OpaqueDef _ | Undef _ -> (set_norm m; (m,stk))) | FConstruct((_ind,c),_u) -> let use_match = red_set info.i_flags fMATCH in let use_fix = red_set info.i_flags fFIX in if use_match || use_fix then (match [@ocaml.warning "-4"] strip_update_shift_app m stk with | (depth, args, ZcaseT(ci,_,br,e)::s) when use_match -> assert (ci.ci_npar>=0); let rargs = drop_parameters depth ci.ci_npar args in knit info tab e br.(c-1) (rargs@s) | (_, cargs, Zfix(fx,par)::s) when use_fix -> let rarg = fapp_stack(m,cargs) in let stk' = par @ append_stack [|rarg|] s in let (fxe,fxbd) = contract_fix_vect fx.term in knit info tab fxe fxbd stk' | (depth, args, Zproj p::s) when use_match -> let rargs = drop_parameters depth (Projection.Repr.npars p) args in let rarg = project_nth_arg (Projection.Repr.arg p) rargs in kni info tab rarg s | (_,args,s) -> (m,args@s)) else (m,stk) | FCoFix _ when red_set info.i_flags fCOFIX -> (match strip_update_shift_app m stk with | (_, args, (((ZcaseT _|Zproj _)::_) as stk')) -> let (fxe,fxbd) = contract_fix_vect m.term in knit info tab fxe fxbd (args@stk') | (_,args, ((Zapp _ | Zfix _ | Zshift _ | Zupdate _ | Zprimitive _) :: _ | [] as s)) -> (m,args@s)) | FLetIn (_,v,_,bd,e) when red_set info.i_flags fZETA -> knit info tab (subs_cons([|v|],e)) bd stk | FEvar(ev,env) -> (match info.i_cache.i_sigma ev with Some c -> knit info tab env c stk | None -> (m,stk)) | FInt _ -> (match [@ocaml.warning "-4"] strip_update_shift_app m stk with | (_, _, Zprimitive(op,c,rargs,nargs)::s) -> let (rargs, nargs) = skip_native_args (m::rargs) nargs in begin match nargs with | [] -> let args = Array.of_list (List.rev rargs) in begin match FredNative.red_prim (info_env info) () op args with | Some m -> kni info tab m s | None -> let f = {mark = mark Whnf KnownR; term = FFlex (ConstKey c)} in let m = {mark = mark Whnf KnownR; term = FApp(f,args)} in (m,s) end | (kd,a)::nargs -> assert (kd = CPrimitives.Kwhnf); kni info tab a (Zprimitive(op,c,rargs,nargs)::s) end | (_, _, s) -> (m, s)) | FLOCKED | FRel _ | FAtom _ | FFlex (RelKey _ | ConstKey _ | VarKey _) | FInd _ | FApp _ | FProj _ | FFix _ | FCoFix _ | FCaseT _ | FLambda _ | FProd _ | FLetIn _ | FLIFT _ | FCLOS _ -> (m, stk) (* Computes the weak head normal form of a term *) and kni info tab m stk = let (hm,s) = knh info m stk in knr info tab hm s and knit info tab e t stk = let (ht,s) = knht info e t stk in knr info tab ht s let kh info tab v stk = fapp_stack(kni info tab v stk) (************************************************************************) let rec zip_term zfun m stk = match stk with | [] -> m | Zapp args :: s -> zip_term zfun (mkApp(m, Array.map zfun args)) s | ZcaseT(ci,p,br,e)::s -> let t = mkCase(ci, zfun (mk_clos e p), m, Array.map (fun b -> zfun (mk_clos e b)) br) in zip_term zfun t s | Zproj p::s -> let t = mkProj (Projection.make p true, m) in zip_term zfun t s | Zfix(fx,par)::s -> let h = mkApp(zip_term zfun (zfun fx) par,[|m|]) in zip_term zfun h s | Zshift(n)::s -> zip_term zfun (lift n m) s | Zupdate(_rf)::s -> zip_term zfun m s | Zprimitive(_,c,rargs, kargs)::s -> let kargs = List.map (fun (_,a) -> zfun a) kargs in let args = List.fold_left (fun args a -> zfun a ::args) (m::kargs) rargs in let h = mkApp (mkConstU c, Array.of_list args) in zip_term zfun h s (* Computes the strong normal form of a term. 1- Calls kni 2- tries to rebuild the term. If a closure still has to be computed, calls itself recursively. *) let rec kl info tab m = let share = info.i_cache.i_share in if is_val m then (incr prune; term_of_fconstr m) else let (nm,s) = kni info tab m [] in let () = if share then ignore (fapp_stack (nm, s)) in (* to unlock Zupdates! *) zip_term (kl info tab) (norm_head info tab nm) s (* no redex: go up for atoms and already normalized terms, go down otherwise. *) and norm_head info tab m = if is_val m then (incr prune; term_of_fconstr m) else match m.term with | FLambda(_n,tys,f,e) -> let (e',info,rvtys) = List.fold_left (fun (e,info,ctxt) (na,ty) -> (subs_lift e, info, (na,kl info tab (mk_clos e ty))::ctxt)) (e,info,[]) tys in let bd = kl info tab (mk_clos e' f) in List.fold_left (fun b (na,ty) -> mkLambda(na,ty,b)) bd rvtys | FLetIn(na,a,b,f,e) -> let c = mk_clos (subs_lift e) f in mkLetIn(na, kl info tab a, kl info tab b, kl info tab c) | FProd(na,dom,rng,e) -> mkProd(na, kl info tab dom, kl info tab (mk_clos (subs_lift e) rng)) | FCoFix((n,(na,tys,bds)),e) -> let ftys = Array.Fun1.map mk_clos e tys in let fbds = Array.Fun1.map mk_clos (subs_liftn (Array.length na) e) bds in mkCoFix(n,(na, CArray.map (kl info tab) ftys, CArray.map (kl info tab) fbds)) | FFix((n,(na,tys,bds)),e) -> let ftys = Array.Fun1.map mk_clos e tys in let fbds = Array.Fun1.map mk_clos (subs_liftn (Array.length na) e) bds in mkFix(n,(na, CArray.map (kl info tab) ftys, CArray.map (kl info tab) fbds)) | FEvar((i,args),env) -> mkEvar(i, Array.map (fun a -> kl info tab (mk_clos env a)) args) | FProj (p,c) -> mkProj (p, kl info tab c) | FLOCKED | FRel _ | FAtom _ | FFlex _ | FInd _ | FConstruct _ | FApp _ | FCaseT _ | FLIFT _ | FCLOS _ | FInt _ -> term_of_fconstr m (* Initialization and then normalization *) (* weak reduction *) let whd_val info tab v = with_stats (lazy (term_of_fconstr (kh info tab v []))) (* strong reduction *) let norm_val info tab v = with_stats (lazy (kl info tab v)) let whd_stack infos tab m stk = match Mark.red_state m.mark with | Whnf | Norm -> (** No need to perform [kni] nor to unlock updates because every head subterm of [m] is [Whnf] or [Norm] *) knh infos m stk | Red | Cstr -> let k = kni infos tab m stk in let () = if infos.i_cache.i_share then ignore (fapp_stack k) in (* to unlock Zupdates! *) k let create_clos_infos ?(evars=fun _ -> None) flgs env = let share = (Environ.typing_flags env).Declarations.share_reduction in let cache = { i_env = env; i_sigma = evars; i_share = share; } in { i_flags = flgs; i_cache = cache } let create_tab () = KeyTable.create 17 let oracle_of_infos infos = Environ.oracle infos.i_cache.i_env let infos_with_reds infos reds = { infos with i_flags = reds } let unfold_reference info tab key = match key with | ConstKey (kn,_) -> if red_set info.i_flags (fCONST kn) then ref_value_cache info tab key else Undef None | VarKey i -> if red_set info.i_flags (fVAR i) then ref_value_cache info tab key else Undef None | RelKey _ -> ref_value_cache info tab key let relevance_of f = Mark.relevance f.mark let set_relevance r f = f.mark <- Mark.mark (Mark.red_state f.mark) (opt_of_rel r)