1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (*i*) open CErrors open Util open Pp open Names open Constr open Libnames open Globnames open Constrexpr open Notation_term open Glob_term open Glob_ops open Context.Named.Declaration (*i*) (*s A scope is a set of notations; it includes - a set of ML interpreters/parsers for positive (e.g. 0, 1, 15, ...) and negative numbers (e.g. -0, -2, -13, ...). These interpreters may fail if a number has no interpretation in the scope (e.g. there is no interpretation for negative numbers in [nat]); interpreters both for terms and patterns can be set; these interpreters are in permanent table [numeral_interpreter_tab] - a set of ML printers for expressions denoting numbers parsable in this scope - a set of interpretations for infix (more generally distfix) notations - an optional pair of delimiters which, when occurring in a syntactic expression, set this scope to be the current scope *) let notation_entry_eq s1 s2 = match (s1,s2) with | InConstrEntry, InConstrEntry -> true | InCustomEntry s1, InCustomEntry s2 -> String.equal s1 s2 | (InConstrEntry | InCustomEntry _), _ -> false let notation_entry_level_eq s1 s2 = match (s1,s2) with | InConstrEntrySomeLevel, InConstrEntrySomeLevel -> true | InCustomEntryLevel (s1,n1), InCustomEntryLevel (s2,n2) -> String.equal s1 s2 && n1 = n2 | (InConstrEntrySomeLevel | InCustomEntryLevel _), _ -> false let notation_eq (from1,ntn1) (from2,ntn2) = notation_entry_level_eq from1 from2 && String.equal ntn1 ntn2 let pr_notation (from,ntn) = qstring ntn ++ match from with InConstrEntrySomeLevel -> mt () | InCustomEntryLevel (s,n) -> str " in custom " ++ str s module NotationOrd = struct type t = notation let compare = pervasives_compare end module NotationSet = Set.Make(NotationOrd) module NotationMap = CMap.Make(NotationOrd) (**********************************************************************) (* Scope of symbols *) type delimiters = string type notation_location = (DirPath.t * DirPath.t) * string type notation_data = { not_interp : interpretation; not_location : notation_location; not_deprecation : Deprecation.t option; } type scope = { notations: notation_data NotationMap.t; delimiters: delimiters option } (* Scopes table: scope_name -> symbol_interpretation *) let scope_map = ref String.Map.empty (* Delimiter table : delimiter -> scope_name *) let delimiters_map = ref String.Map.empty let empty_scope = { notations = NotationMap.empty; delimiters = None } let default_scope = "" (* empty name, not available from outside *) let init_scope_map () = scope_map := String.Map.add default_scope empty_scope !scope_map (**********************************************************************) (* Operations on scopes *) let warn_undeclared_scope = CWarnings.create ~name:"undeclared-scope" ~category:"deprecated" (fun (scope) -> strbrk "Declaring a scope implicitly is deprecated; use in advance an explicit " ++ str "\"Declare Scope " ++ str scope ++ str ".\".") let declare_scope scope = try let _ = String.Map.find scope !scope_map in () with Not_found -> scope_map := String.Map.add scope empty_scope !scope_map let error_unknown_scope sc = user_err ~hdr:"Notation" (str "Scope " ++ str sc ++ str " is not declared.") let find_scope ?(tolerant=false) scope = try String.Map.find scope !scope_map with Not_found -> if tolerant then (* tolerant mode to be turn off after deprecation phase *) begin warn_undeclared_scope scope; scope_map := String.Map.add scope empty_scope !scope_map; empty_scope end else error_unknown_scope scope let check_scope ?(tolerant=false) scope = let _ = find_scope ~tolerant scope in () let ensure_scope scope = check_scope ~tolerant:true scope let find_scope scope = find_scope scope (* [sc] might be here a [scope_name] or a [delimiter] (now allowed after Open Scope) *) let normalize_scope sc = try let _ = String.Map.find sc !scope_map in sc with Not_found -> try let sc = String.Map.find sc !delimiters_map in let _ = String.Map.find sc !scope_map in sc with Not_found -> error_unknown_scope sc (**********************************************************************) (* The global stack of scopes *) type scope_elem = Scope of scope_name | SingleNotation of notation type scopes = scope_elem list let scope_eq s1 s2 = match s1, s2 with | Scope s1, Scope s2 -> String.equal s1 s2 | SingleNotation s1, SingleNotation s2 -> notation_eq s1 s2 | Scope _, SingleNotation _ | SingleNotation _, Scope _ -> false let scope_stack = ref [] let current_scopes () = !scope_stack let scope_is_open_in_scopes sc l = List.exists (function Scope sc' -> String.equal sc sc' | _ -> false) l let scope_is_open sc = scope_is_open_in_scopes sc (!scope_stack) (* TODO: push nat_scope, z_scope, ... in scopes summary *) (* Exportation of scopes *) let open_scope i (_,(local,op,sc)) = if Int.equal i 1 then scope_stack := if op then sc :: !scope_stack else List.except scope_eq sc !scope_stack let cache_scope o = open_scope 1 o let subst_scope (subst,sc) = sc open Libobject let discharge_scope (_,(local,_,_ as o)) = if local then None else Some o let classify_scope (local,_,_ as o) = if local then Dispose else Substitute o let inScope : bool * bool * scope_elem -> obj = declare_object {(default_object "SCOPE") with cache_function = cache_scope; open_function = open_scope; subst_function = subst_scope; discharge_function = discharge_scope; classify_function = classify_scope } let open_close_scope (local,opening,sc) = Lib.add_anonymous_leaf (inScope (local,opening,Scope (normalize_scope sc))) let empty_scope_stack = [] let push_scope sc scopes = Scope sc :: scopes let push_scopes = List.fold_right push_scope let make_current_scopes (tmp_scope,scopes) = Option.fold_right push_scope tmp_scope (push_scopes scopes !scope_stack) (**********************************************************************) (* Delimiters *) let declare_delimiters scope key = let sc = find_scope scope in let newsc = { sc with delimiters = Some key } in begin match sc.delimiters with | None -> scope_map := String.Map.add scope newsc !scope_map | Some oldkey when String.equal oldkey key -> () | Some oldkey -> (* FIXME: implement multikey scopes? *) Flags.if_verbose Feedback.msg_info (str "Overwriting previous delimiting key " ++ str oldkey ++ str " in scope " ++ str scope); scope_map := String.Map.add scope newsc !scope_map end; try let oldscope = String.Map.find key !delimiters_map in if String.equal oldscope scope then () else begin Flags.if_verbose Feedback.msg_info (str "Hiding binding of key " ++ str key ++ str " to " ++ str oldscope); delimiters_map := String.Map.add key scope !delimiters_map end with Not_found -> delimiters_map := String.Map.add key scope !delimiters_map let remove_delimiters scope = let sc = find_scope scope in let newsc = { sc with delimiters = None } in match sc.delimiters with | None -> CErrors.user_err (str "No bound key for scope " ++ str scope ++ str ".") | Some key -> scope_map := String.Map.add scope newsc !scope_map; try let _ = ignore (String.Map.find key !delimiters_map) in delimiters_map := String.Map.remove key !delimiters_map with Not_found -> assert false (* A delimiter for scope [scope] should exist *) let find_delimiters_scope ?loc key = try String.Map.find key !delimiters_map with Not_found -> user_err ?loc ~hdr:"find_delimiters" (str "Unknown scope delimiting key " ++ str key ++ str ".") (* Uninterpretation tables *) type interp_rule = | NotationRule of scope_name option * notation | SynDefRule of KerName.t (* We define keys for glob_constr and aconstr to split the syntax entries according to the key of the pattern (adapted from Chet Murthy by HH) *) type key = | RefKey of GlobRef.t | Oth let key_compare k1 k2 = match k1, k2 with | RefKey gr1, RefKey gr2 -> GlobRef.Ordered.compare gr1 gr2 | RefKey _, Oth -> -1 | Oth, RefKey _ -> 1 | Oth, Oth -> 0 module KeyOrd = struct type t = key let compare = key_compare end module KeyMap = Map.Make(KeyOrd) type notation_rule = interp_rule * interpretation * int option let keymap_add key interp map = let old = try KeyMap.find key map with Not_found -> [] in KeyMap.add key (interp :: old) map let keymap_find key map = try KeyMap.find key map with Not_found -> [] (* Scopes table : interpretation -> scope_name *) let notations_key_table = ref (KeyMap.empty : notation_rule list KeyMap.t) let glob_prim_constr_key c = match DAst.get c with | GRef (ref, _) -> Some (canonical_gr ref) | GApp (c, _) -> begin match DAst.get c with | GRef (ref, _) -> Some (canonical_gr ref) | _ -> None end | _ -> None let glob_constr_keys c = match DAst.get c with | GApp (c, _) -> begin match DAst.get c with | GRef (ref, _) -> [RefKey (canonical_gr ref); Oth] | _ -> [Oth] end | GRef (ref,_) -> [RefKey (canonical_gr ref)] | _ -> [Oth] let cases_pattern_key c = match DAst.get c with | PatCstr (ref,_,_) -> RefKey (canonical_gr (GlobRef.ConstructRef ref)) | _ -> Oth let notation_constr_key = function (* Rem: NApp(NRef ref,[]) stands for @ref *) | NApp (NRef ref,args) -> RefKey(canonical_gr ref), Some (List.length args) | NList (_,_,NApp (NRef ref,args),_,_) | NBinderList (_,_,NApp (NRef ref,args),_,_) -> RefKey (canonical_gr ref), Some (List.length args) | NRef ref -> RefKey(canonical_gr ref), None | NApp (_,args) -> Oth, Some (List.length args) | _ -> Oth, None (**********************************************************************) (* Interpreting numbers (not in summary because functional objects) *) type required_module = full_path * string list type rawnum = Constrexpr.sign * Constrexpr.raw_numeral type prim_token_uid = string type 'a prim_token_interpreter = ?loc:Loc.t -> 'a -> glob_constr type 'a prim_token_uninterpreter = any_glob_constr -> 'a option type 'a prim_token_interpretation = 'a prim_token_interpreter * 'a prim_token_uninterpreter module InnerPrimToken = struct type interpreter = | RawNumInterp of (?loc:Loc.t -> rawnum -> glob_constr) | BigNumInterp of (?loc:Loc.t -> Bigint.bigint -> glob_constr) | StringInterp of (?loc:Loc.t -> string -> glob_constr) let interp_eq f f' = match f,f' with | RawNumInterp f, RawNumInterp f' -> f == f' | BigNumInterp f, BigNumInterp f' -> f == f' | StringInterp f, StringInterp f' -> f == f' | _ -> false let ofNumeral s n = let n = String.(concat "" (split_on_char '_' n)) in match s with | SPlus -> Bigint.of_string n | SMinus -> Bigint.neg (Bigint.of_string n) let do_interp ?loc interp primtok = match primtok, interp with | Numeral (s,n), RawNumInterp interp -> interp ?loc (s,n) | Numeral (s,{ NumTok.int = n; frac = ""; exp = "" }), BigNumInterp interp -> interp ?loc (ofNumeral s n) | String s, StringInterp interp -> interp ?loc s | (Numeral _ | String _), (RawNumInterp _ | BigNumInterp _ | StringInterp _) -> raise Not_found type uninterpreter = | RawNumUninterp of (any_glob_constr -> rawnum option) | BigNumUninterp of (any_glob_constr -> Bigint.bigint option) | StringUninterp of (any_glob_constr -> string option) let uninterp_eq f f' = match f,f' with | RawNumUninterp f, RawNumUninterp f' -> f == f' | BigNumUninterp f, BigNumUninterp f' -> f == f' | StringUninterp f, StringUninterp f' -> f == f' | _ -> false let mkNumeral n = if Bigint.is_pos_or_zero n then Numeral (SPlus,NumTok.int (Bigint.to_string n)) else Numeral (SMinus,NumTok.int (Bigint.to_string (Bigint.neg n))) let mkString = function | None -> None | Some s -> if Unicode.is_utf8 s then Some (String s) else None let do_uninterp uninterp g = match uninterp with | RawNumUninterp u -> Option.map (fun (s,n) -> Numeral (s,n)) (u g) | BigNumUninterp u -> Option.map mkNumeral (u g) | StringUninterp u -> mkString (u g) end (* The following two tables of (un)interpreters will *not* be synchronized. But their indexes will be checked to be unique. These tables contain primitive token interpreters which are registered in plugins, such as string and ascii syntax. It is essential that only plugins add to these tables, and that vernacular commands do not. See https://github.com/coq/coq/issues/8401 for details of what goes wrong when vernacular commands add to these tables. *) let prim_token_interpreters = (Hashtbl.create 7 : (prim_token_uid, InnerPrimToken.interpreter) Hashtbl.t) let prim_token_uninterpreters = (Hashtbl.create 7 : (prim_token_uid, InnerPrimToken.uninterpreter) Hashtbl.t) (*******************************************************) (* Numeral notation interpretation *) type prim_token_notation_error = | UnexpectedTerm of Constr.t | UnexpectedNonOptionTerm of Constr.t exception PrimTokenNotationError of string * Environ.env * Evd.evar_map * prim_token_notation_error type numnot_option = | Nop | Warning of string | Abstract of string type int_ty = { uint : Names.inductive; int : Names.inductive } type z_pos_ty = { z_ty : Names.inductive; pos_ty : Names.inductive } type decimal_ty = { int : int_ty; decimal : Names.inductive } type target_kind = | Int of int_ty (* Coq.Init.Decimal.int + uint *) | UInt of Names.inductive (* Coq.Init.Decimal.uint *) | Z of z_pos_ty (* Coq.Numbers.BinNums.Z and positive *) | Int63 (* Coq.Numbers.Cyclic.Int63.Int63.int *) | Decimal of decimal_ty (* Coq.Init.Decimal.decimal + uint + int *) type string_target_kind = | ListByte | Byte type option_kind = Option | Direct type 'target conversion_kind = 'target * option_kind type ('target, 'warning) prim_token_notation_obj = { to_kind : 'target conversion_kind; to_ty : GlobRef.t; of_kind : 'target conversion_kind; of_ty : GlobRef.t; ty_name : Libnames.qualid; (* for warnings / error messages *) warning : 'warning } type numeral_notation_obj = (target_kind, numnot_option) prim_token_notation_obj type string_notation_obj = (string_target_kind, unit) prim_token_notation_obj module PrimTokenNotation = struct (** * Code shared between Numeral notation and String notation *) (** Reduction The constr [c] below isn't necessarily well-typed, since we built it via an [mkApp] of a conversion function on a term that starts with the right constructor but might be partially applied. At least [c] is known to be evar-free, since it comes from our own ad-hoc [constr_of_glob] or from conversions such as [coqint_of_rawnum]. It is important to fully normalize the term, *including inductive parameters of constructors*; see https://github.com/coq/coq/issues/9840 for details on what goes wrong if this does not happen, e.g., from using the vm rather than cbv. *) let eval_constr env sigma (c : Constr.t) = let c = EConstr.of_constr c in let c' = Tacred.compute env sigma c in EConstr.Unsafe.to_constr c' let eval_constr_app env sigma c1 c2 = eval_constr env sigma (mkApp (c1,[| c2 |])) exception NotAValidPrimToken (** The uninterp function below work at the level of [glob_constr] which is too low for us here. So here's a crude conversion back to [constr] for the subset that concerns us. Note that if you update [constr_of_glob], you should update the corresponding numeral notation *and* string notation doc in doc/sphinx/user-extensions/syntax-extensions.rst that describes what it means for a term to be ground / to be able to be considered for parsing. *) let rec constr_of_glob env sigma g = match DAst.get g with | Glob_term.GRef (GlobRef.ConstructRef c, _) -> let sigma,c = Evd.fresh_constructor_instance env sigma c in sigma,mkConstructU c | Glob_term.GRef (GlobRef.IndRef c, _) -> let sigma,c = Evd.fresh_inductive_instance env sigma c in sigma,mkIndU c | Glob_term.GApp (gc, gcl) -> let sigma,c = constr_of_glob env sigma gc in let sigma,cl = List.fold_left_map (constr_of_glob env) sigma gcl in sigma,mkApp (c, Array.of_list cl) | Glob_term.GInt i -> sigma, mkInt i | _ -> raise NotAValidPrimToken let rec glob_of_constr token_kind ?loc env sigma c = match Constr.kind c with | App (c, ca) -> let c = glob_of_constr token_kind ?loc env sigma c in let cel = List.map (glob_of_constr token_kind ?loc env sigma) (Array.to_list ca) in DAst.make ?loc (Glob_term.GApp (c, cel)) | Construct (c, _) -> DAst.make ?loc (Glob_term.GRef (GlobRef.ConstructRef c, None)) | Const (c, _) -> DAst.make ?loc (Glob_term.GRef (GlobRef.ConstRef c, None)) | Ind (ind, _) -> DAst.make ?loc (Glob_term.GRef (GlobRef.IndRef ind, None)) | Var id -> DAst.make ?loc (Glob_term.GRef (GlobRef.VarRef id, None)) | Int i -> DAst.make ?loc (Glob_term.GInt i) | _ -> Loc.raise ?loc (PrimTokenNotationError(token_kind,env,sigma,UnexpectedTerm c)) let no_such_prim_token uninterpreted_token_kind ?loc ty = CErrors.user_err ?loc (str ("Cannot interpret this "^uninterpreted_token_kind^" as a value of type ") ++ pr_qualid ty) let interp_option uninterpreted_token_kind token_kind ty ?loc env sigma c = match Constr.kind c with | App (_Some, [| _; c |]) -> glob_of_constr token_kind ?loc env sigma c | App (_None, [| _ |]) -> no_such_prim_token uninterpreted_token_kind ?loc ty | x -> Loc.raise ?loc (PrimTokenNotationError(token_kind,env,sigma,UnexpectedNonOptionTerm c)) let uninterp_option c = match Constr.kind c with | App (_Some, [| _; x |]) -> x | _ -> raise NotAValidPrimToken let uninterp to_raw o (Glob_term.AnyGlobConstr n) = let env = Global.env () in let sigma = Evd.from_env env in let sigma,of_ty = Evd.fresh_global env sigma o.of_ty in let of_ty = EConstr.Unsafe.to_constr of_ty in try let sigma,n = constr_of_glob env sigma n in let c = eval_constr_app env sigma of_ty n in let c = if snd o.of_kind == Direct then c else uninterp_option c in Some (to_raw (fst o.of_kind, c)) with | Type_errors.TypeError _ | Pretype_errors.PretypeError _ -> None (* cf. eval_constr_app *) | NotAValidPrimToken -> None (* all other functions except big2raw *) end (** Conversion from bigint to int63 *) let rec int63_of_pos_bigint i = let open Bigint in if equal i zero then Uint63.of_int 0 else let (quo,rem) = div2_with_rest i in if rem then Uint63.add (Uint63.of_int 1) (Uint63.mul (Uint63.of_int 2) (int63_of_pos_bigint quo)) else Uint63.mul (Uint63.of_int 2) (int63_of_pos_bigint quo) module Numeral = struct (** * Numeral notation *) open PrimTokenNotation let warn_large_num = CWarnings.create ~name:"large-number" ~category:"numbers" (fun ty -> strbrk "Stack overflow or segmentation fault happens when " ++ strbrk "working with large numbers in " ++ pr_qualid ty ++ strbrk " (threshold may vary depending" ++ strbrk " on your system limits and on the command executed).") let warn_abstract_large_num = CWarnings.create ~name:"abstract-large-number" ~category:"numbers" (fun (ty,f) -> strbrk "To avoid stack overflow, large numbers in " ++ pr_qualid ty ++ strbrk " are interpreted as applications of " ++ Nametab.pr_global_env (Termops.vars_of_env (Global.env ())) f ++ strbrk ".") (** Comparing two raw numbers (base 10, big-endian, non-negative). A bit nasty, but not critical: only used to decide when a number is considered as large (see warnings above). *) exception Comp of int let rec rawnum_compare s s' = let l = String.length s and l' = String.length s' in if l < l' then - rawnum_compare s' s else let d = l-l' in try for i = 0 to d-1 do if s.[i] != '0' then raise (Comp 1) done; for i = d to l-1 do let c = pervasives_compare s.[i] s'.[i-d] in if c != 0 then raise (Comp c) done; 0 with Comp c -> c (***********************************************************************) (** ** Conversion between Coq [Decimal.int] and internal raw string *) (** Decimal.Nil has index 1, then Decimal.D0 has index 2 .. Decimal.D9 is 11 *) let digit_of_char c = assert ('0' <= c && c <= '9'); Char.code c - Char.code '0' + 2 let char_of_digit n = assert (2<=n && n<=11); Char.chr (n-2 + Char.code '0') let coquint_of_rawnum uint str = let nil = mkConstruct (uint,1) in let rec do_chars s i acc = if i < 0 then acc else if s.[i] == '_' then do_chars s (i-1) acc else let dg = mkConstruct (uint, digit_of_char s.[i]) in do_chars s (i-1) (mkApp(dg,[|acc|])) in do_chars str (String.length str - 1) nil let coqint_of_rawnum inds sign str = let uint = coquint_of_rawnum inds.uint str in let pos_neg = match sign with SPlus -> 1 | SMinus -> 2 in mkApp (mkConstruct (inds.int, pos_neg), [|uint|]) let coqdecimal_of_rawnum inds sign n = let i, f, e = NumTok.(n.int, n.frac, n.exp) in let i = coqint_of_rawnum inds.int sign i in let f = coquint_of_rawnum inds.int.uint f in if e = "" then mkApp (mkConstruct (inds.decimal, 1), [|i; f|]) (* Decimal *) else let sign, e = match e.[1] with | '-' -> SMinus, String.sub e 2 (String.length e - 2) | '+' -> SPlus, String.sub e 2 (String.length e - 2) | _ -> SPlus, String.sub e 1 (String.length e - 1) in let e = coqint_of_rawnum inds.int sign e in mkApp (mkConstruct (inds.decimal, 2), [|i; f; e|]) (* DecimalExp *) let rawnum_of_coquint c = let rec of_uint_loop c buf = match Constr.kind c with | Construct ((_,1), _) (* Nil *) -> () | App (c, [|a|]) -> (match Constr.kind c with | Construct ((_,n), _) (* D0 to D9 *) -> let () = Buffer.add_char buf (char_of_digit n) in of_uint_loop a buf | _ -> raise NotAValidPrimToken) | _ -> raise NotAValidPrimToken in let buf = Buffer.create 64 in let () = of_uint_loop c buf in if Int.equal (Buffer.length buf) 0 then (* To avoid ambiguities between Nil and (D0 Nil), we choose to not display Nil alone as "0" *) raise NotAValidPrimToken else NumTok.int (Buffer.contents buf) let rawnum_of_coqint c = match Constr.kind c with | App (c,[|c'|]) -> (match Constr.kind c with | Construct ((_,1), _) (* Pos *) -> (SPlus, rawnum_of_coquint c') | Construct ((_,2), _) (* Neg *) -> (SMinus, rawnum_of_coquint c') | _ -> raise NotAValidPrimToken) | _ -> raise NotAValidPrimToken let rawnum_of_decimal c = let of_ife i f e = let sign, n = rawnum_of_coqint i in let f = try (rawnum_of_coquint f).NumTok.int with NotAValidPrimToken -> "" in let e = match e with None -> "" | Some e -> match rawnum_of_coqint e with | SPlus, e -> "e+" ^ e.NumTok.int | SMinus, e -> "e-" ^ e.NumTok.int in sign,{ n with NumTok.frac = f; exp = e } in match Constr.kind c with | App (_,[|i; f|]) -> of_ife i f None | App (_,[|i; f; e|]) -> of_ife i f (Some e) | _ -> raise NotAValidPrimToken (***********************************************************************) (** ** Conversion between Coq [Z] and internal bigint *) (** First, [positive] from/to bigint *) let rec pos_of_bigint posty n = match Bigint.div2_with_rest n with | (q, false) -> let c = mkConstruct (posty, 2) in (* xO *) mkApp (c, [| pos_of_bigint posty q |]) | (q, true) when not (Bigint.equal q Bigint.zero) -> let c = mkConstruct (posty, 1) in (* xI *) mkApp (c, [| pos_of_bigint posty q |]) | (q, true) -> mkConstruct (posty, 3) (* xH *) let rec bigint_of_pos c = match Constr.kind c with | Construct ((_, 3), _) -> (* xH *) Bigint.one | App (c, [| d |]) -> begin match Constr.kind c with | Construct ((_, n), _) -> begin match n with | 1 -> (* xI *) Bigint.add_1 (Bigint.mult_2 (bigint_of_pos d)) | 2 -> (* xO *) Bigint.mult_2 (bigint_of_pos d) | n -> assert false (* no other constructor of type positive *) end | x -> raise NotAValidPrimToken end | x -> raise NotAValidPrimToken (** Now, [Z] from/to bigint *) let z_of_bigint { z_ty; pos_ty } n = if Bigint.equal n Bigint.zero then mkConstruct (z_ty, 1) (* Z0 *) else let (s, n) = if Bigint.is_pos_or_zero n then (2, n) (* Zpos *) else (3, Bigint.neg n) (* Zneg *) in let c = mkConstruct (z_ty, s) in mkApp (c, [| pos_of_bigint pos_ty n |]) let bigint_of_z z = match Constr.kind z with | Construct ((_, 1), _) -> (* Z0 *) Bigint.zero | App (c, [| d |]) -> begin match Constr.kind c with | Construct ((_, n), _) -> begin match n with | 2 -> (* Zpos *) bigint_of_pos d | 3 -> (* Zneg *) Bigint.neg (bigint_of_pos d) | n -> assert false (* no other constructor of type Z *) end | _ -> raise NotAValidPrimToken end | _ -> raise NotAValidPrimToken (** Now, [Int63] from/to bigint *) let int63_of_pos_bigint ?loc n = let i = int63_of_pos_bigint n in mkInt i let error_negative ?loc = CErrors.user_err ?loc ~hdr:"interp_int63" (Pp.str "int63 are only non-negative numbers.") let error_overflow ?loc n = CErrors.user_err ?loc ~hdr:"interp_int63" Pp.(str "overflow in int63 literal: " ++ str (Bigint.to_string n)) let interp_int63 ?loc n = let open Bigint in if is_pos_or_zero n then if less_than n (pow two 63) then int63_of_pos_bigint ?loc n else error_overflow ?loc n else error_negative ?loc let bigint_of_int63 c = match Constr.kind c with | Int i -> Bigint.of_string (Uint63.to_string i) | _ -> raise NotAValidPrimToken let big2raw n = if Bigint.is_pos_or_zero n then (SPlus, NumTok.int (Bigint.to_string n)) else (SMinus, NumTok.int (Bigint.to_string (Bigint.neg n))) let raw2big s n = match s with | SPlus -> Bigint.of_string n | SMinus -> Bigint.neg (Bigint.of_string n) let interp o ?loc n = begin match o.warning, n with | Warning threshold, (SPlus, { NumTok.int = n; frac = ""; exp = "" }) when rawnum_compare n threshold >= 0 -> warn_large_num o.ty_name | _ -> () end; let c = match fst o.to_kind, n with | Int int_ty, (s, { NumTok.int = n; frac = ""; exp = "" }) -> coqint_of_rawnum int_ty s n | UInt uint_ty, (SPlus, { NumTok.int = n; frac = ""; exp = "" }) -> coquint_of_rawnum uint_ty n | Z z_pos_ty, (s, { NumTok.int = n; frac = ""; exp = "" }) -> z_of_bigint z_pos_ty (raw2big s n) | Int63, (s, { NumTok.int = n; frac = ""; exp = "" }) -> interp_int63 ?loc (raw2big s n) | (Int _ | UInt _ | Z _ | Int63), _ -> no_such_prim_token "number" ?loc o.ty_name | Decimal decimal_ty, (s,n) -> coqdecimal_of_rawnum decimal_ty s n in let env = Global.env () in let sigma = Evd.from_env env in let sigma,to_ty = Evd.fresh_global env sigma o.to_ty in let to_ty = EConstr.Unsafe.to_constr to_ty in match o.warning, snd o.to_kind with | Abstract threshold, Direct when rawnum_compare (snd n).NumTok.int threshold >= 0 -> warn_abstract_large_num (o.ty_name,o.to_ty); glob_of_constr "numeral" ?loc env sigma (mkApp (to_ty,[|c|])) | _ -> let res = eval_constr_app env sigma to_ty c in match snd o.to_kind with | Direct -> glob_of_constr "numeral" ?loc env sigma res | Option -> interp_option "number" "numeral" o.ty_name ?loc env sigma res let uninterp o n = PrimTokenNotation.uninterp begin function | (Int _, c) -> rawnum_of_coqint c | (UInt _, c) -> (SPlus, rawnum_of_coquint c) | (Z _, c) -> big2raw (bigint_of_z c) | (Int63, c) -> big2raw (bigint_of_int63 c) | (Decimal _, c) -> rawnum_of_decimal c end o n end module Strings = struct (** * String notation *) open PrimTokenNotation let qualid_of_ref n = n |> Coqlib.lib_ref |> Nametab.shortest_qualid_of_global Id.Set.empty let q_list () = qualid_of_ref "core.list.type" let q_byte () = qualid_of_ref "core.byte.type" let unsafe_locate_ind q = match Nametab.locate q with | GlobRef.IndRef i -> i | _ -> raise Not_found let locate_list () = unsafe_locate_ind (q_list ()) let locate_byte () = unsafe_locate_ind (q_byte ()) (***********************************************************************) (** ** Conversion between Coq [list Byte.byte] and internal raw string *) let coqbyte_of_char_code byte c = mkConstruct (byte, 1 + c) let coqbyte_of_string ?loc byte s = let p = if Int.equal (String.length s) 1 then int_of_char s.[0] else if Int.equal (String.length s) 3 && is_digit s.[0] && is_digit s.[1] && is_digit s.[2] then int_of_string s else user_err ?loc ~hdr:"coqbyte_of_string" (str "Expects a single character or a three-digits ascii code.") in coqbyte_of_char_code byte p let coqbyte_of_char byte c = coqbyte_of_char_code byte (Char.code c) let make_ascii_string n = if n>=32 && n<=126 then String.make 1 (char_of_int n) else Printf.sprintf "%03d" n let char_code_of_coqbyte c = match Constr.kind c with | Construct ((_,c), _) -> c - 1 | _ -> raise NotAValidPrimToken let string_of_coqbyte c = make_ascii_string (char_code_of_coqbyte c) let coqlist_byte_of_string byte_ty list_ty str = let cbyte = mkInd byte_ty in let nil = mkApp (mkConstruct (list_ty, 1), [|cbyte|]) in let cons x xs = mkApp (mkConstruct (list_ty, 2), [|cbyte; x; xs|]) in let rec do_chars s i acc = if i < 0 then acc else let b = coqbyte_of_char byte_ty s.[i] in do_chars s (i-1) (cons b acc) in do_chars str (String.length str - 1) nil (* N.B. We rely on the fact that [nil] is the first constructor and [cons] is the second constructor, for [list] *) let string_of_coqlist_byte c = let rec of_coqlist_byte_loop c buf = match Constr.kind c with | App (_nil, [|_ty|]) -> () | App (_cons, [|_ty;b;c|]) -> let () = Buffer.add_char buf (Char.chr (char_code_of_coqbyte b)) in of_coqlist_byte_loop c buf | _ -> raise NotAValidPrimToken in let buf = Buffer.create 64 in let () = of_coqlist_byte_loop c buf in Buffer.contents buf let interp o ?loc n = let byte_ty = locate_byte () in let list_ty = locate_list () in let c = match fst o.to_kind with | ListByte -> coqlist_byte_of_string byte_ty list_ty n | Byte -> coqbyte_of_string ?loc byte_ty n in let env = Global.env () in let sigma = Evd.from_env env in let sigma,to_ty = Evd.fresh_global env sigma o.to_ty in let to_ty = EConstr.Unsafe.to_constr to_ty in let res = eval_constr_app env sigma to_ty c in match snd o.to_kind with | Direct -> glob_of_constr "string" ?loc env sigma res | Option -> interp_option "string" "string" o.ty_name ?loc env sigma res let uninterp o n = PrimTokenNotation.uninterp begin function | (ListByte, c) -> string_of_coqlist_byte c | (Byte, c) -> string_of_coqbyte c end o n end (* A [prim_token_infos], which is synchronized with the document state, either contains a unique id pointing to an unsynchronized prim token function, or a numeral notation object describing how to interpret and uninterpret. We provide [prim_token_infos] because we expect plugins to provide their own interpretation functions, rather than going through numeral notations, which are available as a vernacular. *) type prim_token_interp_info = Uid of prim_token_uid | NumeralNotation of numeral_notation_obj | StringNotation of string_notation_obj type prim_token_infos = { pt_local : bool; (** Is this interpretation local? *) pt_scope : scope_name; (** Concerned scope *) pt_interp_info : prim_token_interp_info; (** Unique id "pointing" to (un)interp functions, OR a numeral notation object describing (un)interp functions *) pt_required : required_module; (** Module that should be loaded first *) pt_refs : GlobRef.t list; (** Entry points during uninterpretation *) pt_in_match : bool (** Is this prim token legal in match patterns ? *) } (* Table from scope_name to backtrack-able informations about interpreters (in particular interpreter unique id). *) let prim_token_interp_infos = ref (String.Map.empty : (required_module * prim_token_interp_info) String.Map.t) (* Table from global_reference to backtrack-able informations about prim_token uninterpretation (in particular uninterpreter unique id). *) let prim_token_uninterp_infos = ref (GlobRef.Map.empty : (scope_name * prim_token_interp_info * bool) GlobRef.Map.t) let hashtbl_check_and_set allow_overwrite uid f h eq = match Hashtbl.find h uid with | exception Not_found -> Hashtbl.add h uid f | _ when allow_overwrite -> Hashtbl.add h uid f | g when eq f g -> () | _ -> user_err ~hdr:"prim_token_interpreter" (str "Unique identifier " ++ str uid ++ str " already used to register a numeral or string (un)interpreter.") let register_gen_interpretation allow_overwrite uid (interp, uninterp) = hashtbl_check_and_set allow_overwrite uid interp prim_token_interpreters InnerPrimToken.interp_eq; hashtbl_check_and_set allow_overwrite uid uninterp prim_token_uninterpreters InnerPrimToken.uninterp_eq let register_rawnumeral_interpretation ?(allow_overwrite=false) uid (interp, uninterp) = register_gen_interpretation allow_overwrite uid (InnerPrimToken.RawNumInterp interp, InnerPrimToken.RawNumUninterp uninterp) let register_bignumeral_interpretation ?(allow_overwrite=false) uid (interp, uninterp) = register_gen_interpretation allow_overwrite uid (InnerPrimToken.BigNumInterp interp, InnerPrimToken.BigNumUninterp uninterp) let register_string_interpretation ?(allow_overwrite=false) uid (interp, uninterp) = register_gen_interpretation allow_overwrite uid (InnerPrimToken.StringInterp interp, InnerPrimToken.StringUninterp uninterp) let cache_prim_token_interpretation (_,infos) = let ptii = infos.pt_interp_info in let sc = infos.pt_scope in check_scope ~tolerant:true sc; prim_token_interp_infos := String.Map.add sc (infos.pt_required,ptii) !prim_token_interp_infos; List.iter (fun r -> prim_token_uninterp_infos := GlobRef.Map.add r (sc,ptii,infos.pt_in_match) !prim_token_uninterp_infos) infos.pt_refs let subst_prim_token_interpretation (subs,infos) = { infos with pt_refs = List.map (subst_global_reference subs) infos.pt_refs } let classify_prim_token_interpretation infos = if infos.pt_local then Dispose else Substitute infos let inPrimTokenInterp : prim_token_infos -> obj = declare_object {(default_object "PRIM-TOKEN-INTERP") with open_function = (fun i o -> if Int.equal i 1 then cache_prim_token_interpretation o); cache_function = cache_prim_token_interpretation; subst_function = subst_prim_token_interpretation; classify_function = classify_prim_token_interpretation} let enable_prim_token_interpretation infos = Lib.add_anonymous_leaf (inPrimTokenInterp infos) (** Compatibility. Avoid the next two functions, they will now store unnecessary objects in the library segment. Instead, combine [register_*_interpretation] and [enable_prim_token_interpretation] (the latter inside a [Mltop.declare_cache_obj]). *) let fresh_string_of = let count = ref 0 in fun root -> count := !count+1; (string_of_int !count)^"_"^root let declare_numeral_interpreter ?(local=false) sc dir interp (patl,uninterp,b) = let uid = fresh_string_of sc in register_bignumeral_interpretation uid (interp,uninterp); enable_prim_token_interpretation { pt_local = local; pt_scope = sc; pt_interp_info = Uid uid; pt_required = dir; pt_refs = List.map_filter glob_prim_constr_key patl; pt_in_match = b } let declare_string_interpreter ?(local=false) sc dir interp (patl,uninterp,b) = let uid = fresh_string_of sc in register_string_interpretation uid (interp,uninterp); enable_prim_token_interpretation { pt_local = local; pt_scope = sc; pt_interp_info = Uid uid; pt_required = dir; pt_refs = List.map_filter glob_prim_constr_key patl; pt_in_match = b } let check_required_module ?loc sc (sp,d) = try let _ = Nametab.global_of_path sp in () with Not_found -> match d with | [] -> user_err ?loc ~hdr:"prim_token_interpreter" (str "Cannot interpret in " ++ str sc ++ str " because " ++ pr_path sp ++ str " could not be found in the current environment.") | _ -> user_err ?loc ~hdr:"prim_token_interpreter" (str "Cannot interpret in " ++ str sc ++ str " without requiring first module " ++ str (List.last d) ++ str ".") (* Look if some notation or numeral printer in [scope] can be used in the scope stack [scopes], and if yes, using delimiters or not *) let find_with_delimiters = function | None -> None | Some scope -> match (String.Map.find scope !scope_map).delimiters with | Some key -> Some (Some scope, Some key) | None -> None let rec find_without_delimiters find (ntn_scope,ntn) = function | Scope scope :: scopes -> (* Is the expected ntn/numpr attached to the most recently open scope? *) begin match ntn_scope with | Some scope' when String.equal scope scope' -> Some (None,None) | _ -> (* If the most recently open scope has a notation/numeral printer but not the expected one then we need delimiters *) if find scope then find_with_delimiters ntn_scope else find_without_delimiters find (ntn_scope,ntn) scopes end | SingleNotation ntn' :: scopes -> begin match ntn_scope, ntn with | None, Some ntn when notation_eq ntn ntn' -> Some (None, None) | _ -> find_without_delimiters find (ntn_scope,ntn) scopes end | [] -> (* Can we switch to [scope]? Yes if it has defined delimiters *) find_with_delimiters ntn_scope (* The mapping between notations and their interpretation *) let warn_notation_overridden = CWarnings.create ~name:"notation-overridden" ~category:"parsing" (fun (ntn,which_scope) -> str "Notation" ++ spc () ++ pr_notation ntn ++ spc () ++ strbrk "was already used" ++ which_scope ++ str ".") let declare_notation_interpretation ntn scopt pat df ~onlyprint deprecation = let scope = match scopt with Some s -> s | None -> default_scope in let sc = find_scope scope in if not onlyprint then begin let () = if NotationMap.mem ntn sc.notations then let which_scope = match scopt with | None -> mt () | Some _ -> spc () ++ strbrk "in scope" ++ spc () ++ str scope in warn_notation_overridden (ntn,which_scope) in let notdata = { not_interp = pat; not_location = df; not_deprecation = deprecation; } in let sc = { sc with notations = NotationMap.add ntn notdata sc.notations } in scope_map := String.Map.add scope sc !scope_map end; begin match scopt with | None -> scope_stack := SingleNotation ntn :: !scope_stack | Some _ -> () end let declare_uninterpretation rule (metas,c as pat) = let (key,n) = notation_constr_key c in notations_key_table := keymap_add key (rule,pat,n) !notations_key_table let rec find_interpretation ntn find = function | [] -> raise Not_found | Scope scope :: scopes -> (try let n = find scope in (n,Some scope) with Not_found -> find_interpretation ntn find scopes) | SingleNotation ntn'::scopes when notation_eq ntn' ntn -> (try let n = find default_scope in (n,None) with Not_found -> (* e.g. because single notation only for constr, not cases_pattern *) find_interpretation ntn find scopes) | SingleNotation _::scopes -> find_interpretation ntn find scopes let find_notation ntn sc = NotationMap.find ntn (find_scope sc).notations let notation_of_prim_token = function | Numeral (SPlus,n) -> InConstrEntrySomeLevel, NumTok.to_string n | Numeral (SMinus,n) -> InConstrEntrySomeLevel, "- "^NumTok.to_string n | String _ -> raise Not_found let find_prim_token check_allowed ?loc p sc = (* Try for a user-defined numerical notation *) try let n = find_notation (notation_of_prim_token p) sc in let (_,c) = n.not_interp in let df = n.not_location in let pat = Notation_ops.glob_constr_of_notation_constr ?loc c in check_allowed pat; pat, df with Not_found -> (* Try for a primitive numerical notation *) let (spdir,info) = String.Map.find sc !prim_token_interp_infos in check_required_module ?loc sc spdir; let interp = match info with | Uid uid -> Hashtbl.find prim_token_interpreters uid | NumeralNotation o -> InnerPrimToken.RawNumInterp (Numeral.interp o) | StringNotation o -> InnerPrimToken.StringInterp (Strings.interp o) in let pat = InnerPrimToken.do_interp ?loc interp p in check_allowed pat; pat, ((dirpath (fst spdir),DirPath.empty),"") let interp_prim_token_gen ?loc g p local_scopes = let scopes = make_current_scopes local_scopes in let p_as_ntn = try notation_of_prim_token p with Not_found -> InConstrEntrySomeLevel,"" in try let (pat,loc), sc = find_interpretation p_as_ntn (find_prim_token ?loc g p) scopes in pat, (loc,sc) with Not_found -> user_err ?loc ~hdr:"interp_prim_token" ((match p with | Numeral _ -> str "No interpretation for numeral " ++ pr_notation (notation_of_prim_token p) | String s -> str "No interpretation for string " ++ qs s) ++ str ".") let interp_prim_token ?loc = interp_prim_token_gen ?loc (fun _ -> ()) let rec check_allowed_ref_in_pat looked_for = DAst.(with_val (function | GVar _ | GHole _ -> () | GRef (g,_) -> looked_for g | GApp (f, l) -> begin match DAst.get f with | GRef (g, _) -> looked_for g; List.iter (check_allowed_ref_in_pat looked_for) l | _ -> raise Not_found end | _ -> raise Not_found)) let interp_prim_token_cases_pattern_expr ?loc looked_for p = interp_prim_token_gen ?loc (check_allowed_ref_in_pat looked_for) p let warn_deprecated_notation = Deprecation.create_warning ~object_name:"Notation" ~warning_name:"deprecated-notation" pr_notation let interp_notation ?loc ntn local_scopes = let scopes = make_current_scopes local_scopes in try let (n,sc) = find_interpretation ntn (find_notation ntn) scopes in Option.iter (fun d -> warn_deprecated_notation ?loc (ntn,d)) n.not_deprecation; n.not_interp, (n.not_location, sc) with Not_found -> user_err ?loc (str "Unknown interpretation for notation " ++ pr_notation ntn ++ str ".") let uninterp_notations c = List.map_append (fun key -> keymap_find key !notations_key_table) (glob_constr_keys c) let uninterp_cases_pattern_notations c = keymap_find (cases_pattern_key c) !notations_key_table let uninterp_ind_pattern_notations ind = keymap_find (RefKey (canonical_gr (GlobRef.IndRef ind))) !notations_key_table let availability_of_notation (ntn_scope,ntn) scopes = let f scope = NotationMap.mem ntn (String.Map.find scope !scope_map).notations in find_without_delimiters f (ntn_scope,Some ntn) (make_current_scopes scopes) (* We support coercions from a custom entry at some level to an entry at some level (possibly the same), and from and to the constr entry. E.g.: Notation "[ expr ]" := expr (expr custom group at level 1). Notation "( x )" := x (in custom group at level 0, x at level 1). Notation "{ x }" := x (in custom group at level 0, x constr). Supporting any level is maybe overkill in that coercions are commonly from the lowest level of the source entry to the highest level of the target entry. *) type entry_coercion = notation list module EntryCoercionOrd = struct type t = notation_entry * notation_entry let compare = pervasives_compare end module EntryCoercionMap = Map.Make(EntryCoercionOrd) let entry_coercion_map = ref EntryCoercionMap.empty let level_ord lev lev' = match lev, lev' with | None, _ -> true | _, None -> true | Some n, Some n' -> n <= n' let rec search nfrom nto = function | [] -> raise Not_found | ((pfrom,pto),coe)::l -> if level_ord pfrom nfrom && level_ord nto pto then coe else search nfrom nto l let decompose_custom_entry = function | InConstrEntrySomeLevel -> InConstrEntry, None | InCustomEntryLevel (s,n) -> InCustomEntry s, Some n let availability_of_entry_coercion entry entry' = let entry, lev = decompose_custom_entry entry in let entry', lev' = decompose_custom_entry entry' in if notation_entry_eq entry entry' && level_ord lev' lev then Some [] else try Some (search lev lev' (EntryCoercionMap.find (entry,entry') !entry_coercion_map)) with Not_found -> None let better_path ((lev1,lev2),path) ((lev1',lev2'),path') = (* better = shorter and lower source and higher target *) level_ord lev1 lev1' && level_ord lev2' lev2 && List.length path <= List.length path' let shorter_path (_,path) (_,path') = List.length path <= List.length path' let rec insert_coercion_path path = function | [] -> [path] | path'::paths as allpaths -> (* If better or equal we keep the more recent one *) if better_path path path' then path::paths else if better_path path' path then allpaths else if shorter_path path path' then path::allpaths else path'::insert_coercion_path path paths let declare_entry_coercion (entry,_ as ntn) entry' = let entry, lev = decompose_custom_entry entry in let entry', lev' = decompose_custom_entry entry' in (* Transitive closure *) let toaddleft = EntryCoercionMap.fold (fun (entry'',entry''') paths l -> List.fold_right (fun ((lev'',lev'''),path) l -> if notation_entry_eq entry entry''' && level_ord lev lev''' && not (notation_entry_eq entry' entry'') then ((entry'',entry'),((lev'',lev'),path@[ntn]))::l else l) paths l) !entry_coercion_map [] in let toaddright = EntryCoercionMap.fold (fun (entry'',entry''') paths l -> List.fold_right (fun ((lev'',lev'''),path) l -> if entry' = entry'' && level_ord lev' lev'' && entry <> entry''' then ((entry,entry'''),((lev,lev'''),path@[ntn]))::l else l) paths l) !entry_coercion_map [] in entry_coercion_map := List.fold_right (fun (pair,path) -> let olds = try EntryCoercionMap.find pair !entry_coercion_map with Not_found -> [] in EntryCoercionMap.add pair (insert_coercion_path path olds)) (((entry,entry'),((lev,lev'),[ntn]))::toaddright@toaddleft) !entry_coercion_map let entry_has_global_map = ref String.Map.empty let declare_custom_entry_has_global s n = try let p = String.Map.find s !entry_has_global_map in user_err (str "Custom entry " ++ str s ++ str " has already a rule for global references at level " ++ int p ++ str ".") with Not_found -> entry_has_global_map := String.Map.add s n !entry_has_global_map let entry_has_global = function | InConstrEntrySomeLevel -> true | InCustomEntryLevel (s,n) -> try String.Map.find s !entry_has_global_map <= n with Not_found -> false let entry_has_ident_map = ref String.Map.empty let declare_custom_entry_has_ident s n = try let p = String.Map.find s !entry_has_ident_map in user_err (str "Custom entry " ++ str s ++ str " has already a rule for global references at level " ++ int p ++ str ".") with Not_found -> entry_has_ident_map := String.Map.add s n !entry_has_ident_map let entry_has_ident = function | InConstrEntrySomeLevel -> true | InCustomEntryLevel (s,n) -> try String.Map.find s !entry_has_ident_map <= n with Not_found -> false let uninterp_prim_token c = match glob_prim_constr_key c with | None -> raise Notation_ops.No_match | Some r -> try let (sc,info,_) = GlobRef.Map.find r !prim_token_uninterp_infos in let uninterp = match info with | Uid uid -> Hashtbl.find prim_token_uninterpreters uid | NumeralNotation o -> InnerPrimToken.RawNumUninterp (Numeral.uninterp o) | StringNotation o -> InnerPrimToken.StringUninterp (Strings.uninterp o) in match InnerPrimToken.do_uninterp uninterp (AnyGlobConstr c) with | None -> raise Notation_ops.No_match | Some n -> (sc,n) with Not_found -> raise Notation_ops.No_match let uninterp_prim_token_cases_pattern c = match glob_constr_of_closed_cases_pattern (Global.env()) c with | exception Not_found -> raise Notation_ops.No_match | na,c -> let (sc,n) = uninterp_prim_token c in (na,sc,n) let availability_of_prim_token n printer_scope local_scopes = let f scope = try let uid = snd (String.Map.find scope !prim_token_interp_infos) in let open InnerPrimToken in match n, uid with | Numeral _, NumeralNotation _ -> true | _, NumeralNotation _ -> false | String _, StringNotation _ -> true | _, StringNotation _ -> false | _, Uid uid -> let interp = Hashtbl.find prim_token_interpreters uid in match n, interp with | Numeral _, (RawNumInterp _ | BigNumInterp _) -> true | String _, StringInterp _ -> true | _ -> false with Not_found -> false in let scopes = make_current_scopes local_scopes in Option.map snd (find_without_delimiters f (Some printer_scope,None) scopes) (* Miscellaneous *) let pair_eq f g (x1, y1) (x2, y2) = f x1 x2 && g y1 y2 let notation_binder_source_eq s1 s2 = match s1, s2 with | NtnParsedAsIdent, NtnParsedAsIdent -> true | NtnParsedAsPattern b1, NtnParsedAsPattern b2 -> b1 = b2 | NtnBinderParsedAsConstr bk1, NtnBinderParsedAsConstr bk2 -> bk1 = bk2 | (NtnParsedAsIdent | NtnParsedAsPattern _ | NtnBinderParsedAsConstr _), _ -> false let ntpe_eq t1 t2 = match t1, t2 with | NtnTypeConstr, NtnTypeConstr -> true | NtnTypeBinder s1, NtnTypeBinder s2 -> notation_binder_source_eq s1 s2 | NtnTypeConstrList, NtnTypeConstrList -> true | NtnTypeBinderList, NtnTypeBinderList -> true | (NtnTypeConstr | NtnTypeBinder _ | NtnTypeConstrList | NtnTypeBinderList), _ -> false let var_attributes_eq (_, ((entry1, sc1), tp1)) (_, ((entry2, sc2), tp2)) = notation_entry_level_eq entry1 entry2 && pair_eq (Option.equal String.equal) (List.equal String.equal) sc1 sc2 && ntpe_eq tp1 tp2 let interpretation_eq (vars1, t1) (vars2, t2) = List.equal var_attributes_eq vars1 vars2 && Notation_ops.eq_notation_constr (List.map fst vars1, List.map fst vars2) t1 t2 let exists_notation_in_scope scopt ntn onlyprint r = let scope = match scopt with Some s -> s | None -> default_scope in try let sc = String.Map.find scope !scope_map in let n = NotationMap.find ntn sc.notations in interpretation_eq n.not_interp r with Not_found -> false let isNVar_or_NHole = function NVar _ | NHole _ -> true | _ -> false (**********************************************************************) (* Mapping classes to scopes *) open Classops type scope_class = cl_typ let scope_class_compare : scope_class -> scope_class -> int = cl_typ_ord let compute_scope_class sigma t = let (cl,_,_) = find_class_type sigma t in cl module ScopeClassOrd = struct type t = scope_class let compare = scope_class_compare end module ScopeClassMap = Map.Make(ScopeClassOrd) let initial_scope_class_map : scope_name ScopeClassMap.t = ScopeClassMap.empty let scope_class_map = ref initial_scope_class_map let declare_scope_class sc cl = scope_class_map := ScopeClassMap.add cl sc !scope_class_map let find_scope_class cl = ScopeClassMap.find cl !scope_class_map let find_scope_class_opt = function | None -> None | Some cl -> try Some (find_scope_class cl) with Not_found -> None (**********************************************************************) (* Special scopes associated to arguments of a global reference *) let rec compute_arguments_classes sigma t = match EConstr.kind sigma (Reductionops.whd_betaiotazeta sigma t) with | Prod (_,t,u) -> let cl = try Some (compute_scope_class sigma t) with Not_found -> None in cl :: compute_arguments_classes sigma u | _ -> [] let compute_arguments_scope_full sigma t = let cls = compute_arguments_classes sigma t in let scs = List.map find_scope_class_opt cls in scs, cls let compute_arguments_scope sigma t = fst (compute_arguments_scope_full sigma t) let compute_type_scope sigma t = find_scope_class_opt (try Some (compute_scope_class sigma t) with Not_found -> None) let current_type_scope_name () = find_scope_class_opt (Some CL_SORT) let scope_class_of_class (x : cl_typ) : scope_class = x (** Updating a scope list, thanks to a list of argument classes and the current Bind Scope base. When some current scope have been manually given, the corresponding argument class is emptied below, so this manual scope will be preserved. *) let update_scope cl sco = match find_scope_class_opt cl with | None -> sco | sco' -> sco' let rec update_scopes cls scl = match cls, scl with | [], _ -> scl | _, [] -> List.map find_scope_class_opt cls | cl :: cls, sco :: scl -> update_scope cl sco :: update_scopes cls scl let arguments_scope = ref GlobRef.Map.empty type arguments_scope_discharge_request = | ArgsScopeAuto | ArgsScopeManual | ArgsScopeNoDischarge let load_arguments_scope _ (_,(_,r,n,scl,cls)) = List.iter (Option.iter check_scope) scl; let initial_stamp = ScopeClassMap.empty in arguments_scope := GlobRef.Map.add r (scl,cls,initial_stamp) !arguments_scope let cache_arguments_scope o = load_arguments_scope 1 o let subst_scope_class subst cs = try Some (subst_cl_typ subst cs) with Not_found -> None let subst_arguments_scope (subst,(req,r,n,scl,cls)) = let r' = fst (subst_global subst r) in let subst_cl ocl = match ocl with | None -> ocl | Some cl -> match subst_scope_class subst cl with | Some cl' as ocl' when cl' != cl -> ocl' | _ -> ocl in let cls' = List.Smart.map subst_cl cls in (ArgsScopeNoDischarge,r',n,scl,cls') let discharge_arguments_scope (_,(req,r,n,l,_)) = if req == ArgsScopeNoDischarge || (isVarRef r && Lib.is_in_section r) then None else let n = try let vars = Lib.variable_section_segment_of_reference r in vars |> List.filter is_local_assum |> List.length with Not_found (* Not a ref defined in this section *) -> 0 in Some (req,r,n,l,[]) let classify_arguments_scope (req,_,_,_,_ as obj) = if req == ArgsScopeNoDischarge then Dispose else Substitute obj let rebuild_arguments_scope sigma (req,r,n,l,_) = match req with | ArgsScopeNoDischarge -> assert false | ArgsScopeAuto -> let env = Global.env () in (*FIXME?*) let typ = EConstr.of_constr @@ fst (Typeops.type_of_global_in_context env r) in let scs,cls = compute_arguments_scope_full sigma typ in (req,r,List.length scs,scs,cls) | ArgsScopeManual -> (* Add to the manually given scopes the one found automatically for the extra parameters of the section. Discard the classes of the manually given scopes to avoid further re-computations. *) let env = Global.env () in (*FIXME?*) let typ = EConstr.of_constr @@ fst (Typeops.type_of_global_in_context env r) in let l',cls = compute_arguments_scope_full sigma typ in let l1 = List.firstn n l' in let cls1 = List.firstn n cls in (req,r,0,l1@l,cls1) type arguments_scope_obj = arguments_scope_discharge_request * GlobRef.t * (* Used to communicate information from discharge to rebuild *) (* set to 0 otherwise *) int * scope_name option list * scope_class option list let inArgumentsScope : arguments_scope_obj -> obj = declare_object {(default_object "ARGUMENTS-SCOPE") with cache_function = cache_arguments_scope; load_function = load_arguments_scope; subst_function = subst_arguments_scope; classify_function = classify_arguments_scope; discharge_function = discharge_arguments_scope; (* XXX: Should we pass the sigma here or not, see @herbelin's comment in 6511 *) rebuild_function = rebuild_arguments_scope Evd.empty } let is_local local ref = local || isVarRef ref && Lib.is_in_section ref let declare_arguments_scope_gen req r n (scl,cls) = Lib.add_anonymous_leaf (inArgumentsScope (req,r,n,scl,cls)) let declare_arguments_scope local r scl = let req = if is_local local r then ArgsScopeNoDischarge else ArgsScopeManual in (* We empty the list of argument classes to disable further scope re-computations and keep these manually given scopes. *) declare_arguments_scope_gen req r 0 (scl,[]) let find_arguments_scope r = try let (scl,cls,stamp) = GlobRef.Map.find r !arguments_scope in let cur_stamp = !scope_class_map in if stamp == cur_stamp then scl else (* Recent changes in the Bind Scope base, we re-compute the scopes *) let scl' = update_scopes cls scl in arguments_scope := GlobRef.Map.add r (scl',cls,cur_stamp) !arguments_scope; scl' with Not_found -> [] let declare_ref_arguments_scope sigma ref = let env = Global.env () in (* FIXME? *) let typ = EConstr.of_constr @@ fst @@ Typeops.type_of_global_in_context env ref in let (scs,cls as o) = compute_arguments_scope_full sigma typ in declare_arguments_scope_gen ArgsScopeAuto ref (List.length scs) o (********************************) (* Encoding notations as string *) type symbol = | Terminal of string | NonTerminal of Id.t | SProdList of Id.t * symbol list | Break of int let rec symbol_eq s1 s2 = match s1, s2 with | Terminal s1, Terminal s2 -> String.equal s1 s2 | NonTerminal id1, NonTerminal id2 -> Id.equal id1 id2 | SProdList (id1, l1), SProdList (id2, l2) -> Id.equal id1 id2 && List.equal symbol_eq l1 l2 | Break i1, Break i2 -> Int.equal i1 i2 | _ -> false let rec string_of_symbol = function | NonTerminal _ -> ["_"] | Terminal "_" -> ["'_'"] | Terminal s -> [s] | SProdList (_,l) -> let l = List.flatten (List.map string_of_symbol l) in "_"::l@".."::l@["_"] | Break _ -> [] let make_notation_key from symbols = (from,String.concat " " (List.flatten (List.map string_of_symbol symbols))) let decompose_notation_key (from,s) = let len = String.length s in let rec decomp_ntn dirs n = if n>=len then List.rev dirs else let pos = try String.index_from s n ' ' with Not_found -> len in let tok = match String.sub s n (pos-n) with | "_" -> NonTerminal (Id.of_string "_") | s -> Terminal (String.drop_simple_quotes s) in decomp_ntn (tok::dirs) (pos+1) in from, decomp_ntn [] 0 (************) (* Printing *) let pr_delimiters_info = function | None -> str "No delimiting key" | Some key -> str "Delimiting key is " ++ str key let classes_of_scope sc = ScopeClassMap.fold (fun cl sc' l -> if String.equal sc sc' then cl::l else l) !scope_class_map [] let pr_scope_class = pr_class let pr_scope_classes sc = let l = classes_of_scope sc in match l with | [] -> mt () | _ :: ll -> let opt_s = match ll with [] -> mt () | _ -> str "es" in hov 0 (str "Bound to class" ++ opt_s ++ spc() ++ prlist_with_sep spc pr_scope_class l) ++ fnl() let pr_notation_info prglob ntn c = str "\"" ++ str ntn ++ str "\" := " ++ prglob (Notation_ops.glob_constr_of_notation_constr c) let pr_named_scope prglob scope sc = (if String.equal scope default_scope then match NotationMap.cardinal sc.notations with | 0 -> str "No lonely notation" | n -> str "Lonely notation" ++ (if Int.equal n 1 then mt() else str"s") else str "Scope " ++ str scope ++ fnl () ++ pr_delimiters_info sc.delimiters) ++ fnl () ++ pr_scope_classes scope ++ NotationMap.fold (fun ntn { not_interp = (_, r); not_location = (_, df) } strm -> pr_notation_info prglob df r ++ fnl () ++ strm) sc.notations (mt ()) let pr_scope prglob scope = pr_named_scope prglob scope (find_scope scope) let pr_scopes prglob = String.Map.fold (fun scope sc strm -> pr_named_scope prglob scope sc ++ fnl () ++ strm) !scope_map (mt ()) let rec find_default ntn = function | [] -> None | Scope scope :: scopes -> if NotationMap.mem ntn (find_scope scope).notations then Some scope else find_default ntn scopes | SingleNotation ntn' :: scopes -> if notation_eq ntn ntn' then Some default_scope else find_default ntn scopes let factorize_entries = function | [] -> [] | (ntn,c)::l -> let (ntn,l_of_ntn,rest) = List.fold_left (fun (a',l,rest) (a,c) -> if notation_eq a a' then (a',c::l,rest) else (a,[c],(a',l)::rest)) (ntn,[c],[]) l in (ntn,l_of_ntn)::rest type symbol_token = WhiteSpace of int | String of string let split_notation_string str = let push_token beg i l = if Int.equal beg i then l else let s = String.sub str beg (i - beg) in String s :: l in let push_whitespace beg i l = if Int.equal beg i then l else WhiteSpace (i-beg) :: l in let rec loop beg i = if i < String.length str then if str.[i] == ' ' then push_token beg i (loop_on_whitespace (i+1) (i+1)) else loop beg (i+1) else push_token beg i [] and loop_on_whitespace beg i = if i < String.length str then if str.[i] != ' ' then push_whitespace beg i (loop i (i+1)) else loop_on_whitespace beg (i+1) else push_whitespace beg i [] in loop 0 0 let rec raw_analyze_notation_tokens = function | [] -> [] | String ".." :: sl -> NonTerminal Notation_ops.ldots_var :: raw_analyze_notation_tokens sl | String "_" :: _ -> user_err Pp.(str "_ must be quoted.") | String x :: sl when Id.is_valid x -> NonTerminal (Names.Id.of_string x) :: raw_analyze_notation_tokens sl | String s :: sl -> Terminal (String.drop_simple_quotes s) :: raw_analyze_notation_tokens sl | WhiteSpace n :: sl -> Break n :: raw_analyze_notation_tokens sl let decompose_raw_notation ntn = raw_analyze_notation_tokens (split_notation_string ntn) let possible_notations ntn = (* We collect the possible interpretations of a notation string depending on whether it is in "x 'U' y" or "_ U _" format *) let toks = split_notation_string ntn in if List.exists (function String "_" -> true | _ -> false) toks then (* Only "_ U _" format *) [ntn] else let _,ntn' = make_notation_key None (raw_analyze_notation_tokens toks) in if String.equal ntn ntn' then (* Only symbols *) [ntn] else [ntn;ntn'] let browse_notation strict ntn map = let ntns = possible_notations ntn in let find (from,ntn' as fullntn') ntn = if String.contains ntn ' ' then String.equal ntn ntn' else let _,toks = decompose_notation_key fullntn' in let get_terminals = function Terminal ntn -> Some ntn | _ -> None in let trms = List.map_filter get_terminals toks in if strict then String.List.equal [ntn] trms else String.List.mem ntn trms in let l = String.Map.fold (fun scope_name sc -> NotationMap.fold (fun ntn { not_interp = (_, r); not_location = df } l -> if List.exists (find ntn) ntns then (ntn,(scope_name,r,df))::l else l) sc.notations) map [] in List.sort (fun x y -> String.compare (snd (fst x)) (snd (fst y))) l let global_reference_of_notation test (ntn,(sc,c,_)) = match c with | NRef ref when test ref -> Some (ntn,sc,ref) | NApp (NRef ref, l) when List.for_all isNVar_or_NHole l && test ref -> Some (ntn,sc,ref) | _ -> None let error_ambiguous_notation ?loc _ntn = user_err ?loc (str "Ambiguous notation.") let error_notation_not_reference ?loc ntn = user_err ?loc (str "Unable to interpret " ++ quote (str ntn) ++ str " as a reference.") let interp_notation_as_global_reference ?loc test ntn sc = let scopes = match sc with | Some sc -> let scope = find_scope (find_delimiters_scope sc) in String.Map.add sc scope String.Map.empty | None -> !scope_map in let ntns = browse_notation true ntn scopes in let refs = List.map (global_reference_of_notation test) ntns in match Option.List.flatten refs with | [_,_,ref] -> ref | [] -> error_notation_not_reference ?loc ntn | refs -> let f (ntn,sc,ref) = let def = find_default ntn !scope_stack in match def with | None -> false | Some sc' -> String.equal sc sc' in match List.filter f refs with | [_,_,ref] -> ref | [] -> error_notation_not_reference ?loc ntn | _ -> error_ambiguous_notation ?loc ntn let locate_notation prglob ntn scope = let ntns = factorize_entries (browse_notation false ntn !scope_map) in let scopes = Option.fold_right push_scope scope !scope_stack in match ntns with | [] -> str "Unknown notation" | _ -> str "Notation" ++ fnl () ++ prlist_with_sep fnl (fun (ntn,l) -> let scope = find_default ntn scopes in prlist_with_sep fnl (fun (sc,r,(_,df)) -> hov 0 ( pr_notation_info prglob df r ++ (if String.equal sc default_scope then mt () else (spc () ++ str ": " ++ str sc)) ++ (if Option.equal String.equal (Some sc) scope then spc () ++ str "(default interpretation)" else mt ()))) l) ntns let collect_notation_in_scope scope sc known = assert (not (String.equal scope default_scope)); NotationMap.fold (fun ntn { not_interp = (_, r); not_location = (_, df) } (l,known as acc) -> if List.mem_f notation_eq ntn known then acc else ((df,r)::l,ntn::known)) sc.notations ([],known) let collect_notations stack = fst (List.fold_left (fun (all,knownntn as acc) -> function | Scope scope -> if String.List.mem_assoc scope all then acc else let (l,knownntn) = collect_notation_in_scope scope (find_scope scope) knownntn in ((scope,l)::all,knownntn) | SingleNotation ntn -> if List.mem_f notation_eq ntn knownntn then (all,knownntn) else let { not_interp = (_, r); not_location = (_, df) } = NotationMap.find ntn (find_scope default_scope).notations in let all' = match all with | (s,lonelyntn)::rest when String.equal s default_scope -> (s,(df,r)::lonelyntn)::rest | _ -> (default_scope,[df,r])::all in (all',ntn::knownntn)) ([],[]) stack) let pr_visible_in_scope prglob (scope,ntns) = let strm = List.fold_right (fun (df,r) strm -> pr_notation_info prglob df r ++ fnl () ++ strm) ntns (mt ()) in (if String.equal scope default_scope then str "Lonely notation" ++ (match ntns with [_] -> mt () | _ -> str "s") else str "Visible in scope " ++ str scope) ++ fnl () ++ strm let pr_scope_stack prglob stack = List.fold_left (fun strm scntns -> strm ++ pr_visible_in_scope prglob scntns ++ fnl ()) (mt ()) (collect_notations stack) let pr_visibility prglob = function | Some scope -> pr_scope_stack prglob (push_scope scope !scope_stack) | None -> pr_scope_stack prglob !scope_stack (**********************************************************************) (* Synchronisation with reset *) let freeze ~marshallable = (!scope_map, !scope_stack, !arguments_scope, !delimiters_map, !notations_key_table, !scope_class_map, !prim_token_interp_infos, !prim_token_uninterp_infos, !entry_coercion_map, !entry_has_global_map, !entry_has_ident_map) let unfreeze (scm,scs,asc,dlm,fkm,clsc,ptii,ptui,coe,globs,ids) = scope_map := scm; scope_stack := scs; delimiters_map := dlm; arguments_scope := asc; notations_key_table := fkm; scope_class_map := clsc; prim_token_interp_infos := ptii; prim_token_uninterp_infos := ptui; entry_coercion_map := coe; entry_has_global_map := globs; entry_has_ident_map := ids let init () = init_scope_map (); delimiters_map := String.Map.empty; notations_key_table := KeyMap.empty; scope_class_map := initial_scope_class_map; prim_token_interp_infos := String.Map.empty; prim_token_uninterp_infos := GlobRef.Map.empty let _ = Summary.declare_summary "symbols" { Summary.freeze_function = freeze; Summary.unfreeze_function = unfreeze; Summary.init_function = init } let with_notation_protection f x = let fs = freeze ~marshallable:false in try let a = f x in unfreeze fs; a with reraise -> let reraise = CErrors.push reraise in let () = unfreeze fs in iraise reraise