1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Pp open Util open Names open Constr open Globnames open Declarations open Lib open Libobject open EConstr open Reductionops open Namegen module NamedDecl = Context.Named.Declaration (*s Flags governing the computation of implicit arguments *) type implicits_flags = { auto : bool; (* automatic or manual only *) strict : bool; (* true = strict *) strongly_strict : bool; (* true = strongly strict *) reversible_pattern : bool; contextual : bool; (* true = contextual *) maximal : bool } let implicit_args = ref { auto = false; strict = true; strongly_strict = false; reversible_pattern = false; contextual = false; maximal = false; } let make_implicit_args flag = implicit_args := { !implicit_args with auto = flag } let make_strict_implicit_args flag = implicit_args := { !implicit_args with strict = flag } let make_strongly_strict_implicit_args flag = implicit_args := { !implicit_args with strongly_strict = flag } let make_reversible_pattern_implicit_args flag = implicit_args := { !implicit_args with reversible_pattern = flag } let make_contextual_implicit_args flag = implicit_args := { !implicit_args with contextual = flag } let make_maximal_implicit_args flag = implicit_args := { !implicit_args with maximal = flag } let is_implicit_args () = !implicit_args.auto let is_strict_implicit_args () = !implicit_args.strict let is_strongly_strict_implicit_args () = !implicit_args.strongly_strict let is_reversible_pattern_implicit_args () = !implicit_args.reversible_pattern let is_contextual_implicit_args () = !implicit_args.contextual let is_maximal_implicit_args () = !implicit_args.maximal let with_implicit_protection f x = let oflags = !implicit_args in try let rslt = f x in implicit_args := oflags; rslt with reraise -> let reraise = CErrors.push reraise in let () = implicit_args := oflags in iraise reraise let set_maximality imps b = (* Force maximal insertion on ending implicits (compatibility) *) let is_set x = match x with None -> false | _ -> true in b || List.for_all is_set imps (*s Computation of implicit arguments *) (* We remember various information about why an argument is inferable as implicit - [DepRigid] means that the implicit argument can be found by unification along a rigid path (we do not print the arguments of this kind if there is enough arguments to infer them) - [DepFlex] means that the implicit argument can be found by unification along a collapsible path only (e.g. as x in (P x) where P is another argument) (we do (defensively) print the arguments of this kind) - [DepFlexAndRigid] means that the least argument from which the implicit argument can be inferred is following a collapsible path but there is a greater argument from where the implicit argument is inferable following a rigid path (useful to know how to print a partial application) - [Manual] means the argument has been explicitly set as implicit. We also consider arguments inferable from the conclusion but it is operational only if [conclusion_matters] is true. *) type argument_position = | Conclusion | Hyp of int let argument_position_eq p1 p2 = match p1, p2 with | Conclusion, Conclusion -> true | Hyp h1, Hyp h2 -> Int.equal h1 h2 | _ -> false type implicit_explanation = | DepRigid of argument_position | DepFlex of argument_position | DepFlexAndRigid of (*flex*) argument_position * (*rig*) argument_position | Manual let argument_less = function | Hyp n, Hyp n' -> n<n' | Hyp _, Conclusion -> true | Conclusion, _ -> false let update pos rig st = let e = if rig then match st with | None -> DepRigid pos | Some (DepRigid n as x) -> if argument_less (pos,n) then DepRigid pos else x | Some (DepFlexAndRigid (fpos,rpos) as x) -> if argument_less (pos,fpos) || argument_position_eq pos fpos then DepRigid pos else if argument_less (pos,rpos) then DepFlexAndRigid (fpos,pos) else x | Some (DepFlex fpos) -> if argument_less (pos,fpos) || argument_position_eq pos fpos then DepRigid pos else DepFlexAndRigid (fpos,pos) | Some Manual -> assert false else match st with | None -> DepFlex pos | Some (DepRigid rpos as x) -> if argument_less (pos,rpos) then DepFlexAndRigid (pos,rpos) else x | Some (DepFlexAndRigid (fpos,rpos) as x) -> if argument_less (pos,fpos) then DepFlexAndRigid (pos,rpos) else x | Some (DepFlex fpos as x) -> if argument_less (pos,fpos) then DepFlex pos else x | Some Manual -> assert false in Some e (* modified is_rigid_reference with a truncated env *) let is_flexible_reference env sigma bound depth f = match kind sigma f with | Rel n when n >= bound+depth -> (* inductive type *) false | Rel n when n >= depth -> (* previous argument *) true | Rel n -> (* since local definitions have been expanded *) false | Const (kn,_) -> let cb = Environ.lookup_constant kn env in (match cb.const_body with Def _ -> true | _ -> false) | Var id -> env |> Environ.lookup_named id |> NamedDecl.is_local_def | Ind _ | Construct _ -> false | _ -> true let push_lift d (e,n) = (push_rel d e,n+1) let is_reversible_pattern sigma bound depth f l = isRel sigma f && let n = destRel sigma f in (n < bound+depth) && (n >= depth) && Array.for_all (fun c -> isRel sigma c && destRel sigma c < depth) l && Array.distinct l (* Precondition: rels in env are for inductive types only *) let add_free_rels_until strict strongly_strict revpat bound env sigma m pos acc = let rec frec rig (env,depth as ed) c = let hd = if strict then whd_all env sigma c else c in let c = if strongly_strict then hd else c in match kind sigma hd with | Rel n when (n < bound+depth) && (n >= depth) -> let i = bound + depth - n - 1 in acc.(i) <- update pos rig acc.(i) | App (f,l) when revpat && is_reversible_pattern sigma bound depth f l -> let i = bound + depth - EConstr.destRel sigma f - 1 in acc.(i) <- update pos rig acc.(i) | App (f,_) when rig && is_flexible_reference env sigma bound depth f -> if strict then () else iter_with_full_binders sigma push_lift (frec false) ed c | Proj (p, _) when rig -> if strict then () else iter_with_full_binders sigma push_lift (frec false) ed c | Case _ when rig -> if strict then () else iter_with_full_binders sigma push_lift (frec false) ed c | Evar _ -> () | _ -> iter_with_full_binders sigma push_lift (frec rig) ed c in let () = if not (Vars.noccur_between sigma 1 bound m) then frec true (env,1) m in acc (* compute the list of implicit arguments *) let rec is_rigid_head sigma t = match kind sigma t with | Rel _ | Evar _ -> false | Ind _ | Const _ | Var _ | Sort _ -> true | Case (_,_,f,_) -> is_rigid_head sigma f | Proj (p,c) -> true | App (f,args) -> (match kind sigma f with | Fix ((fi,i),_) -> is_rigid_head sigma (args.(fi.(i))) | _ -> is_rigid_head sigma f) | Lambda _ | LetIn _ | Construct _ | CoFix _ | Fix _ | Prod _ | Meta _ | Cast _ | Int _ -> assert false let is_rigid env sigma t = let open Context.Rel.Declaration in let t = whd_all env sigma t in match kind sigma t with | Prod (na,a,b) -> let (_,t) = splay_prod (push_rel (LocalAssum (na,a)) env) sigma b in is_rigid_head sigma t | _ -> true let find_displayed_name_in sigma all avoid na (env, b) = let envnames_b = (env, b) in let flag = RenamingElsewhereFor envnames_b in if all then compute_and_force_displayed_name_in sigma flag avoid na b else compute_displayed_name_in sigma flag avoid na b let compute_implicits_names_gen all env sigma t = let open Context.Rel.Declaration in let rec aux env avoid names t = let t = whd_all env sigma t in match kind sigma t with | Prod (na,a,b) -> let na',avoid' = find_displayed_name_in sigma all avoid na.Context.binder_name (names,b) in aux (push_rel (LocalAssum (na,a)) env) avoid' (na'::names) b | _ -> List.rev names in aux env Id.Set.empty [] t let compute_implicits_names = compute_implicits_names_gen true let compute_implicits_explanation_gen strict strongly_strict revpat contextual env sigma t = let open Context.Rel.Declaration in let rec aux env n t = let t = whd_all env sigma t in match kind sigma t with | Prod (na,a,b) -> add_free_rels_until strict strongly_strict revpat n env sigma a (Hyp (n+1)) (aux (push_rel (LocalAssum (na,a)) env) (n+1) b) | _ -> let v = Array.make n None in if contextual then add_free_rels_until strict strongly_strict revpat n env sigma t Conclusion v else v in match kind sigma (whd_all env sigma t) with | Prod (na,a,b) -> let v = aux (push_rel (LocalAssum (na,a)) env) 1 b in Array.to_list v | _ -> [] let compute_implicits_explanation_flags env sigma f t = compute_implicits_explanation_gen (f.strict || f.strongly_strict) f.strongly_strict f.reversible_pattern f.contextual env sigma t let compute_implicits_flags env sigma f all t = List.combine (compute_implicits_names_gen all env sigma t) (compute_implicits_explanation_flags env sigma f t) let compute_auto_implicits env sigma flags enriching t = List.combine (compute_implicits_names env sigma t) (if enriching then compute_implicits_explanation_flags env sigma flags t else compute_implicits_explanation_gen false false false true env sigma t) (* Extra information about implicit arguments *) type maximal_insertion = bool (* true = maximal contextual insertion *) type force_inference = bool (* true = always infer, never turn into evar/subgoal *) type implicit_status = (* None = Not implicit *) (Id.t * implicit_explanation * (maximal_insertion * force_inference)) option type implicit_side_condition = DefaultImpArgs | LessArgsThan of int type implicits_list = implicit_side_condition * implicit_status list let is_status_implicit = function | None -> false | _ -> true let name_of_implicit = function | None -> anomaly (Pp.str "Not an implicit argument.") | Some (id,_,_) -> id let maximal_insertion_of = function | Some (_,_,(b,_)) -> b | None -> anomaly (Pp.str "Not an implicit argument.") let force_inference_of = function | Some (_, _, (_, b)) -> b | None -> anomaly (Pp.str "Not an implicit argument.") (* [in_ctx] means we know the expected type, [n] is the index of the argument *) let is_inferable_implicit in_ctx n = function | None -> false | Some (_,DepRigid (Hyp p),_) -> in_ctx || n >= p | Some (_,DepFlex (Hyp p),_) -> false | Some (_,DepFlexAndRigid (_,Hyp q),_) -> in_ctx || n >= q | Some (_,DepRigid Conclusion,_) -> in_ctx | Some (_,DepFlex Conclusion,_) -> false | Some (_,DepFlexAndRigid (_,Conclusion),_) -> in_ctx | Some (_,Manual,_) -> true let positions_of_implicits (_,impls) = let rec aux n = function [] -> [] | Some _ :: l -> n :: aux (n+1) l | None :: l -> aux (n+1) l in aux 1 impls (* Manage user-given implicit arguments *) let rec prepare_implicits f = function | [] -> [] | (Anonymous, Some _)::_ -> anomaly (Pp.str "Unnamed implicit.") | (Name id, Some imp)::imps -> let imps' = prepare_implicits f imps in Some (id,imp,(set_maximality imps' f.maximal,true)) :: imps' | _::imps -> None :: prepare_implicits f imps let set_manual_implicits flags enriching autoimps l = (* Compare with automatic implicits to recover printing data and names *) let rec merge k autoimps explimps = match autoimps, explimps with | autoimp::autoimps, explimp::explimps -> let imps' = merge (k+1) autoimps explimps in begin match autoimp, explimp.CAst.v with | (Name id,_), Some (_,max) -> Some (id, Manual, (set_maximality imps' max, true)) | (Name id,Some exp), None when enriching -> Some (id, exp, (set_maximality imps' flags.maximal, true)) | (Name _,_), None -> None | (Anonymous,_), Some (Name id,max) -> Some (id,Manual,(max,true)) | (Anonymous,_), Some (Anonymous,max) -> let id = Id.of_string ("arg_" ^ string_of_int k) in Some (id,Manual,(max,true)) | (Anonymous,_), None -> None end :: imps' | [], [] -> [] | [], _ -> assert false (* possibly more automatic than manual implicit arguments n when the conclusion is an unfoldable constant *) | autoimps, [] -> merge k autoimps [CAst.make None] in merge 1 autoimps l let compute_semi_auto_implicits env sigma f t = if not f.auto then [DefaultImpArgs, []] else let l = compute_implicits_flags env sigma f false t in [DefaultImpArgs, prepare_implicits f l] (*s Constants. *) let compute_constant_implicits flags cst = let env = Global.env () in let sigma = Evd.from_env env in let cb = Environ.lookup_constant cst env in let ty = of_constr cb.const_type in let impls = compute_semi_auto_implicits env sigma flags ty in impls (*s Inductives and constructors. Their implicit arguments are stored in an array, indexed by the inductive number, of pairs $(i,v)$ where $i$ are the implicit arguments of the inductive and $v$ the array of implicit arguments of the constructors. *) let compute_mib_implicits flags kn = let env = Global.env () in let sigma = Evd.from_env env in let mib = Environ.lookup_mind kn env in let ar = Array.to_list (Array.mapi (* No need to lift, arities contain no de Bruijn *) (fun i mip -> (* No need to care about constraints here *) let ty, _ = Typeops.type_of_global_in_context env (GlobRef.IndRef (kn,i)) in let r = Inductive.relevance_of_inductive env (kn,i) in Context.Rel.Declaration.LocalAssum (Context.make_annot (Name mip.mind_typename) r, ty)) mib.mind_packets) in let env_ar = Environ.push_rel_context ar env in let imps_one_inductive i mip = let ind = (kn,i) in let ar, _ = Typeops.type_of_global_in_context env (GlobRef.IndRef ind) in ((GlobRef.IndRef ind,compute_semi_auto_implicits env sigma flags (of_constr ar)), Array.mapi (fun j (ctx, cty) -> let c = of_constr (Term.it_mkProd_or_LetIn cty ctx) in (GlobRef.ConstructRef (ind,j+1),compute_semi_auto_implicits env_ar sigma flags c)) mip.mind_nf_lc) in Array.mapi imps_one_inductive mib.mind_packets let compute_all_mib_implicits flags kn = let imps = compute_mib_implicits flags kn in List.flatten (Array.map_to_list (fun (ind,cstrs) -> ind::Array.to_list cstrs) imps) (*s Variables. *) let compute_var_implicits flags id = let env = Global.env () in let sigma = Evd.from_env env in compute_semi_auto_implicits env sigma flags (NamedDecl.get_type (lookup_named id env)) (* Implicits of a global reference. *) let compute_global_implicits flags = let open GlobRef in function | VarRef id -> compute_var_implicits flags id | ConstRef kn -> compute_constant_implicits flags kn | IndRef (kn,i) -> let ((_,imps),_) = (compute_mib_implicits flags kn).(i) in imps | ConstructRef ((kn,i),j) -> let (_,cimps) = (compute_mib_implicits flags kn).(i) in snd cimps.(j-1) (* Merge a manual explicitation with an implicit_status list *) let merge_impls (cond,oldimpls) (_,newimpls) = let oldimpls,usersuffiximpls = List.chop (List.length newimpls) oldimpls in cond, (List.map2 (fun orig ni -> match orig with | Some (_, Manual, _) -> orig | _ -> ni) oldimpls newimpls)@usersuffiximpls (* Caching implicits *) type implicit_interactive_request = | ImplAuto | ImplManual of int type implicit_discharge_request = | ImplLocal | ImplConstant of implicits_flags | ImplMutualInductive of MutInd.t * implicits_flags | ImplInteractive of implicits_flags * implicit_interactive_request let implicits_table = Summary.ref GlobRef.Map.empty ~name:"implicits" let implicits_of_global ref = try let l = GlobRef.Map.find ref !implicits_table in try let rename_l = Arguments_renaming.arguments_names ref in let rec rename implicits names = match implicits, names with | [], _ -> [] | _, [] -> implicits | Some (_, x,y) :: implicits, Name id :: names -> Some (id, x,y) :: rename implicits names | imp :: implicits, _ :: names -> imp :: rename implicits names in List.map (fun (t, il) -> t, rename il rename_l) l with Not_found -> l with Not_found -> [DefaultImpArgs,[]] let cache_implicits_decl (ref,imps) = implicits_table := GlobRef.Map.add ref imps !implicits_table let load_implicits _ (_,(_,l)) = List.iter cache_implicits_decl l let cache_implicits o = load_implicits 1 o let subst_implicits_decl subst (r,imps as o) = let r' = fst (subst_global subst r) in if r==r' then o else (r',imps) let subst_implicits (subst,(req,l)) = (ImplLocal,List.Smart.map (subst_implicits_decl subst) l) (* This was moved out of lib.ml, however it is not stored with regular implicit data *) let sec_implicits = Summary.ref Id.Map.empty ~name:"section-implicits" let impls_of_context ctx = let map decl = let id = NamedDecl.get_id decl in match Id.Map.get id !sec_implicits with | Glob_term.Implicit -> Some (id, Manual, (true, true)) | Glob_term.Explicit -> None in List.rev_map map (List.filter (NamedDecl.is_local_assum) ctx) let adjust_side_condition p = function | LessArgsThan n -> LessArgsThan (n+p) | DefaultImpArgs -> DefaultImpArgs let add_section_impls vars extra_impls (cond,impls) = let p = List.length vars - List.length extra_impls in adjust_side_condition p cond, extra_impls @ impls let discharge_implicits (_,(req,l)) = match req with | ImplLocal -> None | ImplMutualInductive _ | ImplInteractive _ | ImplConstant _ -> let l' = try List.map (fun (gr, l) -> let vars = variable_section_segment_of_reference gr in let extra_impls = impls_of_context vars in let newimpls = List.map (add_section_impls vars extra_impls) l in (gr, newimpls)) l with Not_found -> l in Some (req,l') let rebuild_implicits (req,l) = match req with | ImplLocal -> assert false | ImplConstant flags -> let ref,oldimpls = List.hd l in let newimpls = compute_global_implicits flags ref in req, [ref, List.map2 merge_impls oldimpls newimpls] | ImplMutualInductive (kn,flags) -> let newimpls = compute_all_mib_implicits flags kn in let rec aux olds news = match olds, news with | (_, oldimpls) :: old, (gr, newimpls) :: tl -> (gr, List.map2 merge_impls oldimpls newimpls) :: aux old tl | [], [] -> [] | _, _ -> assert false in req, aux l newimpls | ImplInteractive (flags,o) -> let ref,oldimpls = List.hd l in (if isVarRef ref && is_in_section ref then ImplLocal else req), match o with | ImplAuto -> let newimpls = compute_global_implicits flags ref in [ref,List.map2 merge_impls oldimpls newimpls] | ImplManual userimplsize -> if flags.auto then let newimpls = List.hd (compute_global_implicits flags ref) in let p = List.length (snd newimpls) - userimplsize in let newimpls = on_snd (List.firstn p) newimpls in [ref,List.map (fun o -> merge_impls o newimpls) oldimpls] else [ref,oldimpls] let classify_implicits (req,_ as obj) = match req with | ImplLocal -> Dispose | _ -> Substitute obj type implicits_obj = implicit_discharge_request * (GlobRef.t * implicits_list list) list let inImplicits : implicits_obj -> obj = declare_object {(default_object "IMPLICITS") with cache_function = cache_implicits; load_function = load_implicits; subst_function = subst_implicits; classify_function = classify_implicits; discharge_function = discharge_implicits; rebuild_function = rebuild_implicits } let is_local local ref = local || isVarRef ref && is_in_section ref let declare_implicits_gen req flags ref = let imps = compute_global_implicits flags ref in add_anonymous_leaf (inImplicits (req,[ref,imps])) let declare_implicits local ref = let flags = { !implicit_args with auto = true } in let req = if is_local local ref then ImplLocal else ImplInteractive(flags,ImplAuto) in declare_implicits_gen req flags ref let declare_var_implicits id ~impl = let flags = !implicit_args in sec_implicits := Id.Map.add id impl !sec_implicits; declare_implicits_gen ImplLocal flags (GlobRef.VarRef id) let declare_constant_implicits con = let flags = !implicit_args in declare_implicits_gen (ImplConstant flags) flags (GlobRef.ConstRef con) let declare_mib_implicits kn = let flags = !implicit_args in let imps = Array.map_to_list (fun (ind,cstrs) -> ind::(Array.to_list cstrs)) (compute_mib_implicits flags kn) in add_anonymous_leaf (inImplicits (ImplMutualInductive (kn,flags),List.flatten imps)) (* Declare manual implicits *) type manual_implicits = (Name.t * bool) option CAst.t list let compute_implicits_with_manual env sigma typ enriching l = let autoimpls = compute_auto_implicits env sigma !implicit_args enriching typ in set_manual_implicits !implicit_args enriching autoimpls l let check_inclusion l = (* Check strict inclusion *) let rec aux = function | n1::(n2::_ as nl) -> if n1 <= n2 then user_err Pp.(str "Sequences of implicit arguments must be of different lengths."); aux nl | _ -> () in aux (List.map snd l) let check_rigidity isrigid = if not isrigid then user_err (strbrk "Multiple sequences of implicit arguments available only for references that cannot be applied to an arbitrarily large number of arguments.") let projection_implicits env p impls = let npars = Projection.npars p in CList.skipn_at_least npars impls let declare_manual_implicits local ref ?enriching l = let flags = !implicit_args in let env = Global.env () in let sigma = Evd.from_env env in let t, _ = Typeops.type_of_global_in_context env ref in let t = of_constr t in let enriching = Option.default flags.auto enriching in let autoimpls = compute_auto_implicits env sigma flags enriching t in let l = [DefaultImpArgs, set_manual_implicits flags enriching autoimpls l] in let req = if is_local local ref then ImplLocal else ImplInteractive(flags,ImplManual (List.length autoimpls)) in add_anonymous_leaf (inImplicits (req,[ref,l])) let maybe_declare_manual_implicits local ref ?enriching l = if List.exists (fun x -> x.CAst.v <> None) l then declare_manual_implicits local ref ?enriching l (* TODO: either turn these warnings on and document them, or handle these cases sensibly *) let warn_set_maximal_deprecated = CWarnings.create ~name:"set-maximal-deprecated" ~category:"deprecated" (fun i -> strbrk ("Argument number " ^ string_of_int i ^ " is a trailing implicit so must be maximal")) type implicit_kind = Implicit | MaximallyImplicit | NotImplicit let compute_implicit_statuses autoimps l = let rec aux i = function | _ :: autoimps, NotImplicit :: manualimps -> None :: aux (i+1) (autoimps, manualimps) | Name id :: autoimps, MaximallyImplicit :: manualimps -> Some (id, Manual, (true, true)) :: aux (i+1) (autoimps, manualimps) | Name id :: autoimps, Implicit :: manualimps -> let imps' = aux (i+1) (autoimps, manualimps) in let max = set_maximality imps' false in if max then warn_set_maximal_deprecated i; Some (id, Manual, (max, true)) :: imps' | Anonymous :: _, (Implicit | MaximallyImplicit) :: _ -> user_err ~hdr:"set_implicits" (strbrk ("Argument number " ^ string_of_int i ^ " (anonymous in original definition) cannot be declared implicit.")) | autoimps, [] -> List.map (fun _ -> None) autoimps | [], _::_ -> assert false in aux 0 (autoimps, l) let set_implicits local ref l = let flags = !implicit_args in let env = Global.env () in let sigma = Evd.from_env env in let t, _ = Typeops.type_of_global_in_context env ref in let t = of_constr t in let autoimpls = compute_implicits_names env sigma t in let l' = match l with | [] -> assert false | [l] -> [DefaultImpArgs, compute_implicit_statuses autoimpls l] | _ -> check_rigidity (is_rigid env sigma t); (* Sort by number of implicits, decreasing *) let is_implicit = function | NotImplicit -> false | _ -> true in let l = List.map (fun imps -> (imps,List.count is_implicit imps)) l in let l = List.sort (fun (_,n1) (_,n2) -> n2 - n1) l in check_inclusion l; let nargs = List.length autoimpls in List.map (fun (imps,n) -> (LessArgsThan (nargs-n), compute_implicit_statuses autoimpls imps)) l in let req = if is_local local ref then ImplLocal else ImplInteractive(flags,ImplManual (List.length autoimpls)) in add_anonymous_leaf (inImplicits (req,[ref,l'])) let extract_impargs_data impls = let rec aux p = function | (DefaultImpArgs, imps)::_ -> [None,imps] | (LessArgsThan n, imps)::l -> (Some (p,n),imps) :: aux (n+1) l | [] -> [] in aux 0 impls let make_implicits_list l = [DefaultImpArgs, l] let rec drop_first_implicits p l = if Int.equal p 0 then l else match l with | _,[] as x -> x | DefaultImpArgs,imp::impls -> drop_first_implicits (p-1) (DefaultImpArgs,impls) | LessArgsThan n,imp::impls -> let n = if is_status_implicit imp then n-1 else n in drop_first_implicits (p-1) (LessArgsThan n,impls) let rec select_impargs_size n = function | [] -> [] (* Tolerance for (DefaultImpArgs,[]) *) | [_, impls] | (DefaultImpArgs, impls)::_ -> impls | (LessArgsThan p, impls)::l -> if n <= p then impls else select_impargs_size n l let select_stronger_impargs = function | [] -> [] (* Tolerance for (DefaultImpArgs,[]) *) | (_,impls)::_ -> impls