1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Pp
open CErrors
open Util
open CAst
open Names
open Nameops
open Namegen
open Constr
open Context
open Libnames
open Globnames
open Impargs
open Glob_term
open Glob_ops
open Patternops
open Pretyping
open Cases
open Constrexpr
open Constrexpr_ops
open Notation_term
open Notation_ops
open Notation
open Inductiveops
open Context.Rel.Declaration

(** constr_expr -> glob_constr translation:
    - it adds holes for implicit arguments
    - it replaces notations by their value (scopes stuff are here)
    - it recognizes global vars from local ones
    - it prepares pattern matching problems (a pattern becomes a tree
      where nodes are constructor/variable pairs and leafs are variables)

    All that at once, fasten your seatbelt!
*)

(* To interpret implicits and arg scopes of variables in inductive
   types and recursive definitions and of projection names in records *)

type var_internalization_type =
  | Inductive of Id.t list (* list of params *) * bool (* true = check for possible capture *)
  | Recursive
  | Method
  | Variable

type var_internalization_data =
    (* type of the "free" variable, for coqdoc, e.g. while typing the
       constructor of JMeq, "JMeq" behaves as a variable of type Inductive *)
    var_internalization_type *
    (* impargs to automatically add to the variable, e.g. for "JMeq A a B b"
       in implicit mode, this is [A;B] and this adds (A:=A) and (B:=B) *)
    Id.t list *
    (* signature of impargs of the variable *)
    Impargs.implicit_status list *
    (* subscopes of the args of the variable *)
    scope_name option list

type internalization_env =
    (var_internalization_data) Id.Map.t

type ltac_sign = {
  ltac_vars : Id.Set.t;
  ltac_bound : Id.Set.t;
  ltac_extra : Genintern.Store.t;
}

let interning_grammar = ref false

(* Historically for parsing grammar rules, but in fact used only for
   translator, v7 parsing, and unstrict tactic internalization *)
let for_grammar f x =
  interning_grammar := true;
  let a = f x in
    interning_grammar := false;
    a

(**********************************************************************)
(* Locating reference, possibly via an abbreviation *)

let locate_reference qid =
  Smartlocate.global_of_extended_global (Nametab.locate_extended qid)

let is_global id =
  try
    let _ = locate_reference (qualid_of_ident id) in true
  with Not_found ->
    false

(**********************************************************************)
(* Internalization errors                                             *)

type internalization_error =
  | VariableCapture of Id.t * Id.t
  | IllegalMetavariable
  | NotAConstructor of qualid
  | UnboundFixName of bool * Id.t
  | NonLinearPattern of Id.t
  | BadPatternsNumber of int * int
  | NotAProjection of qualid
  | NotAProjectionOf of qualid * qualid
  | ProjectionsOfDifferentRecords of qualid * qualid

exception InternalizationError of internalization_error Loc.located

let explain_variable_capture id id' =
  Id.print id ++ str " is dependent in the type of " ++ Id.print id' ++
  strbrk ": cannot interpret both of them with the same type"

let explain_illegal_metavariable =
  str "Metavariables allowed only in patterns"

let explain_not_a_constructor qid =
  str "Unknown constructor: " ++ pr_qualid qid

let explain_unbound_fix_name is_cofix id =
  str "The name" ++ spc () ++ Id.print id ++
  spc () ++ str "is not bound in the corresponding" ++ spc () ++
  str (if is_cofix then "co" else "") ++ str "fixpoint definition"

let explain_non_linear_pattern id =
  str "The variable " ++ Id.print id ++ str " is bound several times in pattern"

let explain_bad_patterns_number n1 n2 =
  str "Expecting " ++ int n1 ++ str (String.plural n1 " pattern") ++
  str " but found " ++ int n2

let explain_field_not_a_projection field_id =
  pr_qualid field_id ++ str ": Not a projection"

let explain_field_not_a_projection_of field_id inductive_id =
  pr_qualid field_id ++ str ": Not a projection of inductive " ++ pr_qualid inductive_id

let explain_projections_of_diff_records inductive1_id inductive2_id =
  str "This record contains fields of both " ++ pr_qualid inductive1_id ++
  str " and " ++ pr_qualid inductive2_id

let explain_internalization_error e =
  let pp = match e with
  | VariableCapture (id,id') -> explain_variable_capture id id'
  | IllegalMetavariable -> explain_illegal_metavariable
  | NotAConstructor ref -> explain_not_a_constructor ref
  | UnboundFixName (iscofix,id) -> explain_unbound_fix_name iscofix id
  | NonLinearPattern id -> explain_non_linear_pattern id
  | BadPatternsNumber (n1,n2) -> explain_bad_patterns_number n1 n2
  | NotAProjection field_id -> explain_field_not_a_projection field_id
  | NotAProjectionOf (field_id, inductive_id) ->
    explain_field_not_a_projection_of field_id inductive_id
  | ProjectionsOfDifferentRecords (inductive1_id, inductive2_id) ->
    explain_projections_of_diff_records inductive1_id inductive2_id
  in pp ++ str "."

let error_bad_inductive_type ?loc =
  user_err ?loc  (str
    "This should be an inductive type applied to patterns.")

let error_parameter_not_implicit ?loc =
  user_err ?loc  (str
   "The parameters do not bind in patterns;" ++ spc () ++ str
    "they must be replaced by '_'.")

let error_ldots_var ?loc =
  user_err ?loc  (str "Special token " ++ Id.print ldots_var ++
    str " is for use in the Notation command.")

(**********************************************************************)
(* Pre-computing the implicit arguments and arguments scopes needed   *)
(* for interpretation *)

let parsing_explicit = ref false

let empty_internalization_env = Id.Map.empty

let compute_explicitable_implicit imps = function
  | Inductive (params,_) ->
      (* In inductive types, the parameters are fixed implicit arguments *)
      let sub_impl,_ = List.chop (List.length params) imps in
      let sub_impl' = List.filter is_status_implicit sub_impl in
      List.map name_of_implicit sub_impl'
  | Recursive | Method | Variable ->
      (* Unable to know in advance what the implicit arguments will be *)
      []

let compute_internalization_data env sigma ty typ impl =
  let impl = compute_implicits_with_manual env sigma typ (is_implicit_args()) impl in
  let expls_impl = compute_explicitable_implicit impl ty in
  (ty, expls_impl, impl, compute_arguments_scope sigma typ)

let compute_internalization_env env sigma ?(impls=empty_internalization_env) ty =
  List.fold_left3
    (fun map id typ impl -> Id.Map.add id (compute_internalization_data env sigma ty typ impl) map)
    impls

(**********************************************************************)
(* Contracting "{ _ }" in notations *)

let rec wildcards ntn n =
  if Int.equal n (String.length ntn) then []
  else let l = spaces ntn (n+1) in if ntn.[n] == '_' then n::l else l
and spaces ntn n =
  if Int.equal n (String.length ntn) then []
  else if ntn.[n] == ' ' then wildcards ntn (n+1) else spaces ntn (n+1)

let expand_notation_string ntn n =
  let pos = List.nth (wildcards ntn 0) n in
  let hd = if Int.equal pos 0 then "" else String.sub ntn 0 pos in
  let tl =
    if Int.equal pos (String.length ntn) then ""
    else String.sub ntn (pos+1) (String.length ntn - pos -1) in
  hd ^ "{ _ }" ^ tl

(* This contracts the special case of "{ _ }" for sumbool, sumor notations *)
(* Remark: expansion of squash at definition is done in metasyntax.ml *)
let contract_curly_brackets ntn (l,ll,bl,bll) =
  match ntn with
  | InCustomEntryLevel _,_ -> ntn,(l,ll,bl,bll)
  | InConstrEntrySomeLevel, ntn ->
  let ntn' = ref ntn in
  let rec contract_squash n = function
    | [] -> []
    | { CAst.v = CNotation ((InConstrEntrySomeLevel,"{ _ }"),([a],[],[],[])) } :: l ->
        ntn' := expand_notation_string !ntn' n;
        contract_squash n (a::l)
    | a :: l ->
        a::contract_squash (n+1) l in
  let l = contract_squash 0 l in
  (* side effect; don't inline *)
  (InConstrEntrySomeLevel,!ntn'),(l,ll,bl,bll)

let contract_curly_brackets_pat ntn (l,ll) =
  match ntn with
  | InCustomEntryLevel _,_ -> ntn,(l,ll)
  | InConstrEntrySomeLevel, ntn ->
  let ntn' = ref ntn in
  let rec contract_squash n = function
    | [] -> []
    | { CAst.v = CPatNotation ((InConstrEntrySomeLevel,"{ _ }"),([a],[]),[]) } :: l ->
        ntn' := expand_notation_string !ntn' n;
        contract_squash n (a::l)
    | a :: l ->
        a::contract_squash (n+1) l in
  let l = contract_squash 0 l in
  (* side effect; don't inline *)
  (InConstrEntrySomeLevel,!ntn'),(l,ll)

type intern_env = {
  ids: Names.Id.Set.t;
  unb: bool;
  tmp_scope: Notation_term.tmp_scope_name option;
  scopes: Notation_term.scope_name list;
  impls: internalization_env }

(**********************************************************************)
(* Remembering the parsing scope of variables in notations            *)

let make_current_scope tmp scopes = match tmp, scopes with
| Some tmp_scope, (sc :: _) when String.equal sc tmp_scope -> scopes
| Some tmp_scope, scopes -> tmp_scope :: scopes
| None, scopes -> scopes

let pr_scope_stack = function
  | [] -> str "the empty scope stack"
  | [a] -> str "scope " ++ str a
  | l -> str "scope stack " ++
      str "[" ++ prlist_with_sep pr_comma str l ++ str "]"

let error_inconsistent_scope ?loc id scopes1 scopes2 =
  user_err ?loc ~hdr:"set_var_scope"
   (Id.print id ++ str " is here used in " ++
    pr_scope_stack scopes2 ++ strbrk " while it was elsewhere used in " ++
    pr_scope_stack scopes1)

let error_expect_binder_notation_type ?loc id =
  user_err ?loc 
   (Id.print id ++
    str " is expected to occur in binding position in the right-hand side.")

let set_var_scope ?loc id istermvar (tmp_scope,subscopes as scopes) ntnvars =
  try
    let used_as_binder,idscopes,typ = Id.Map.find id ntnvars in
    if not istermvar then used_as_binder := true;
    let () = if istermvar then
      (* scopes have no effect on the interpretation of identifiers *)
      begin match !idscopes with
      | None -> idscopes := Some scopes
      | Some (tmp_scope', subscopes') ->
        let s' = make_current_scope tmp_scope' subscopes' in
        let s = make_current_scope tmp_scope subscopes in
        if not (List.equal String.equal s' s) then error_inconsistent_scope ?loc id s' s
      end
    in
    match typ with
    | Notation_term.NtnInternTypeOnlyBinder ->
        if istermvar then error_expect_binder_notation_type ?loc id
    | Notation_term.NtnInternTypeAny -> ()
  with Not_found ->
    (* Not in a notation *)
    ()

let set_type_scope env = {env with tmp_scope = Notation.current_type_scope_name ()}

let reset_tmp_scope env = {env with tmp_scope = None}

let set_env_scopes env (scopt,subscopes) =
  {env with tmp_scope = scopt; scopes = subscopes @ env.scopes}

let mkGProd ?loc (na,bk,t) body = DAst.make ?loc @@ GProd (na, bk, t, body)
let mkGLambda ?loc (na,bk,t) body = DAst.make ?loc @@ GLambda (na, bk, t, body)

(**********************************************************************)
(* Utilities for binders                                              *)
let build_impls = function
  |Implicit -> (function
                  |Name id ->  Some (id, Impargs.Manual, (true,true))
                  |Anonymous -> Some (Id.of_string "_", Impargs.Manual, (true,true)))
  |Explicit -> fun _ -> None

let impls_type_list ?(args = []) =
  let rec aux acc c = match DAst.get c with
    | GProd (na,bk,_,c) -> aux ((build_impls bk na)::acc) c
    | _ -> (Variable,[],List.append args (List.rev acc),[])
  in aux []

let impls_term_list ?(args = []) =
  let rec aux acc c = match DAst.get c with
    | GLambda (na,bk,_,c) -> aux ((build_impls bk na)::acc) c
    | GRec (fix_kind, nas, args, tys, bds) ->
       let nb = match fix_kind with |GFix (_, n) -> n | GCoFix n -> n in
       let acc' = List.fold_left (fun a (na, bk, _, _) -> (build_impls bk na)::a) acc args.(nb) in
         aux acc' bds.(nb)
    |_ -> (Variable,[],List.append args (List.rev acc),[])
  in aux []

(* Check if in binder "(x1 x2 .. xn : t)", none of x1 .. xn-1 occurs in t *)
let rec check_capture ty = let open CAst in function
  | { loc; v = Name id } :: { v = Name id' } :: _ when occur_glob_constr id ty ->
      raise (InternalizationError (loc,VariableCapture (id,id')))
  | _::nal ->
      check_capture ty nal
  | [] ->
      ()

let locate_if_hole ?loc na c = match DAst.get c with
  | GHole (_,naming,arg) ->
      (try match na with
        | Name id -> glob_constr_of_notation_constr ?loc
                       (Reserve.find_reserved_type id)
        | Anonymous -> raise Not_found
      with Not_found -> DAst.make ?loc @@ GHole (Evar_kinds.BinderType na, naming, arg))
  | _ -> c

let reset_hidden_inductive_implicit_test env =
  { env with impls = Id.Map.map (function
         | (Inductive (params,_),b,c,d) -> (Inductive (params,false),b,c,d)
         | x -> x) env.impls }

let check_hidden_implicit_parameters ?loc id impls =
  if Id.Map.exists (fun _ -> function
    | (Inductive (indparams,check),_,_,_) when check -> Id.List.mem id indparams
    | _ -> false) impls
  then
    user_err ?loc (Id.print id ++ strbrk " is already used as name of " ++
      strbrk "a parameter of the inductive type; bound variables in " ++
      strbrk "the type of a constructor shall use a different name.")

let pure_push_name_env (id,implargs) env =
  {env with ids = Id.Set.add id env.ids; impls = Id.Map.add id implargs env.impls}

let push_name_env ntnvars implargs env =
  let open CAst in
  function
  | { loc; v = Anonymous } ->
      env
  | { loc; v = Name id } ->
      check_hidden_implicit_parameters ?loc id env.impls ;
      if Id.Map.is_empty ntnvars && Id.equal id ldots_var
        then error_ldots_var ?loc;
      set_var_scope ?loc id false (env.tmp_scope,env.scopes) ntnvars;
      Dumpglob.dump_binding ?loc id;
      pure_push_name_env (id,implargs) env

let remember_binders_impargs env bl =
  List.map_filter (fun (na,_,_,_) ->
      match na with
      | Anonymous -> None
      | Name id -> Some (id,Id.Map.find id env.impls)) bl

let restore_binders_impargs env l =
  List.fold_right pure_push_name_env l env

let intern_generalized_binder intern_type ntnvars
    env {loc;v=na} b' t ty =
  let ids = (match na with Anonymous -> fun x -> x | Name na -> Id.Set.add na) env.ids in
  let ty, ids' =
    if t then ty, ids
    else Implicit_quantifiers.implicit_application ids ty
  in
  let ty' = intern_type {env with ids = ids; unb = true} ty in
  let fvs = Implicit_quantifiers.generalizable_vars_of_glob_constr ~bound:ids ~allowed:ids' ty' in
  let env' = List.fold_left
    (fun env {loc;v=x} -> push_name_env ntnvars (Variable,[],[],[])(*?*) env (make ?loc @@ Name x))
    env fvs in
  let bl = List.map
    CAst.(map (fun id ->
      (Name id, Implicit, DAst.make ?loc @@ GHole (Evar_kinds.BinderType (Name id), IntroAnonymous, None))))
    fvs
  in
  let na = match na with
    | Anonymous ->
          let name =
            let id =
              match ty with
              | { v = CApp ((_, { v = CRef (qid,_) } ), _) } when qualid_is_ident qid ->
                qualid_basename qid
              | _ -> default_non_dependent_ident
            in Implicit_quantifiers.make_fresh ids' (Global.env ()) id
          in Name name
    | _ -> na
  in (push_name_env ntnvars (impls_type_list ty')(*?*) env' (make ?loc na)), (make ?loc (na,b',ty')) :: List.rev bl

let intern_assumption intern ntnvars env nal bk ty =
  let intern_type env = intern (set_type_scope env) in
  match bk with
  | Default k ->
      let ty = intern_type env ty in
      check_capture ty nal;
      let impls = impls_type_list ty in
      List.fold_left
        (fun (env, bl) ({loc;v=na} as locna) ->
          (push_name_env ntnvars impls env locna,
           (make ?loc (na,k,locate_if_hole ?loc na ty))::bl))
        (env, []) nal
  | Generalized (b',t) ->
     let env, b = intern_generalized_binder intern_type ntnvars env (List.hd nal) b' t ty in
     env, b

let glob_local_binder_of_extended = DAst.with_loc_val (fun ?loc -> function
  | GLocalAssum (na,bk,t) -> (na,bk,None,t)
  | GLocalDef (na,bk,c,Some t) -> (na,bk,Some c,t)
  | GLocalDef (na,bk,c,None) ->
      let t = DAst.make ?loc @@ GHole(Evar_kinds.BinderType na,IntroAnonymous,None) in
      (na,bk,Some c,t)
  | GLocalPattern (_,_,_,_) ->
      Loc.raise ?loc (Stream.Error "pattern with quote not allowed here")
  )

let intern_cases_pattern_fwd = ref (fun _ -> failwith "intern_cases_pattern_fwd")

let intern_letin_binder intern ntnvars env (({loc;v=na} as locna),def,ty) =
  let term = intern env def in
  let ty = Option.map (intern env) ty in
  (push_name_env ntnvars (impls_term_list term) env locna,
   (na,Explicit,term,ty))

let intern_cases_pattern_as_binder ?loc ntnvars env p =
  let il,disjpat =
    let (il, subst_disjpat) = !intern_cases_pattern_fwd ntnvars (None,env.scopes) p in
    let substl,disjpat = List.split subst_disjpat in
    if not (List.for_all (fun subst -> Id.Map.equal Id.equal subst Id.Map.empty) substl) then
      user_err ?loc (str "Unsupported nested \"as\" clause.");
    il,disjpat
  in
  let env = List.fold_right (fun {loc;v=id} env -> push_name_env ntnvars (Variable,[],[],[]) env (make ?loc @@ Name id)) il env in
  let na = alias_of_pat (List.hd disjpat) in
  let ienv = Name.fold_right Id.Set.remove na env.ids in
  let id = Namegen.next_name_away_with_default "pat" na ienv in
  let na = make ?loc @@ Name id in
  env,((disjpat,il),id),na

let intern_local_binder_aux intern ntnvars (env,bl) = function
  | CLocalAssum(nal,bk,ty) ->
      let env, bl' = intern_assumption intern ntnvars env nal bk ty in
      let bl' = List.map (fun {loc;v=(na,c,t)} -> DAst.make ?loc @@ GLocalAssum (na,c,t)) bl' in
      env, bl' @ bl
  | CLocalDef( {loc; v=na} as locna,def,ty) ->
     let env,(na,bk,def,ty) = intern_letin_binder intern ntnvars env (locna,def,ty) in
     env, (DAst.make ?loc @@ GLocalDef (na,bk,def,ty)) :: bl
  | CLocalPattern {loc;v=(p,ty)} ->
      let tyc =
        match ty with
        | Some ty -> ty
        | None -> CAst.make ?loc @@ CHole(None,IntroAnonymous,None)
      in
      let env, ((disjpat,il),id),na = intern_cases_pattern_as_binder ?loc ntnvars env p in
      let bk = Default Explicit in
      let _, bl' = intern_assumption intern ntnvars env [na] bk tyc in
      let {v=(_,bk,t)} = List.hd bl' in
      (env, (DAst.make ?loc @@ GLocalPattern((disjpat,List.map (fun x -> x.v) il),id,bk,t)) :: bl)

let intern_generalization intern env ntnvars loc bk ak c =
  let c = intern {env with unb = true} c in
  let fvs = Implicit_quantifiers.generalizable_vars_of_glob_constr ~bound:env.ids c in
  let env', c' =
    let abs =
      let pi = match ak with
        | Some AbsPi -> true
        | Some _ -> false
        | None ->
          match Notation.current_type_scope_name () with
          | Some type_scope ->
              let is_type_scope = match env.tmp_scope with
              | None -> false
              | Some sc -> String.equal sc type_scope
              in
              is_type_scope ||
              String.List.mem type_scope env.scopes
          | None -> false
      in
        if pi then
          (fun {loc=loc';v=id} acc ->
            DAst.make ?loc:(Loc.merge_opt loc' loc) @@
            GProd (Name id, bk, DAst.make ?loc:loc' @@ GHole (Evar_kinds.BinderType (Name id), IntroAnonymous, None), acc))
        else
          (fun {loc=loc';v=id} acc ->
            DAst.make ?loc:(Loc.merge_opt loc' loc) @@
            GLambda (Name id, bk, DAst.make ?loc:loc' @@ GHole (Evar_kinds.BinderType (Name id), IntroAnonymous, None), acc))
    in
      List.fold_right (fun ({loc;v=id} as lid) (env, acc) ->
        let env' = push_name_env ntnvars (Variable,[],[],[]) env CAst.(make @@ Name id) in
          (env', abs lid acc)) fvs (env,c)
  in c'

let rec expand_binders ?loc mk bl c =
  match bl with
  | [] -> c
  | b :: bl ->
     match DAst.get b with
     | GLocalDef (n, bk, b, oty) ->
        expand_binders ?loc mk bl (DAst.make ?loc @@ GLetIn (n, b, oty, c))
     | GLocalAssum (n, bk, t) ->
        expand_binders ?loc mk bl (mk ?loc (n,bk,t) c)
     | GLocalPattern ((disjpat,ids), id, bk, ty) ->
        let tm = DAst.make ?loc (GVar id) in
        (* Distribute the disjunctive patterns over the shared right-hand side *)
        let eqnl = List.map (fun pat -> CAst.make ?loc (ids,[pat],c)) disjpat in
        let c = DAst.make ?loc @@ GCases (LetPatternStyle, None, [tm,(Anonymous,None)], eqnl) in
        expand_binders ?loc mk bl (mk ?loc (Name id,Explicit,ty) c)

(**********************************************************************)
(* Syntax extensions                                                  *)

let option_mem_assoc id = function
  | Some (id',c) -> Id.equal id id'
  | None -> false

let find_fresh_name renaming (terms,termlists,binders,binderlists) avoid id =
  let fold1 _ (c, _) accu = Id.Set.union (free_vars_of_constr_expr c) accu in
  let fold2 _ (l, _) accu =
    let fold accu c = Id.Set.union (free_vars_of_constr_expr c) accu in
    List.fold_left fold accu l
  in
  let fold3 _ x accu = Id.Set.add x accu in
  let fvs1 = Id.Map.fold fold1 terms avoid in
  let fvs2 = Id.Map.fold fold2 termlists fvs1 in
  let fvs3 = Id.Map.fold fold3 renaming fvs2 in
  (* TODO binders *)
  next_ident_away_from id (fun id -> Id.Set.mem id fvs3)

let is_patvar c =
  match DAst.get c with
  | PatVar _ -> true
  | _ -> false

let is_patvar_store store pat =
  match DAst.get pat with
  | PatVar na -> ignore(store na); true
  | _ -> false

let out_patvar pat =
  match pat.v with
  | CPatAtom (Some qid) when qualid_is_ident qid ->
    Name (qualid_basename qid)
  | CPatAtom None -> Anonymous
  | _ -> assert false

let term_of_name = function
  | Name id -> DAst.make (GVar id)
  | Anonymous ->
       let st = Evar_kinds.Define (not (Program.get_proofs_transparency ())) in
    DAst.make (GHole (Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with Evar_kinds.qm_obligation=st }, IntroAnonymous, None))

let traverse_binder intern_pat ntnvars (terms,_,binders,_ as subst) avoid (renaming,env) = function
 | Anonymous -> (renaming,env), None, Anonymous
 | Name id ->
  let store,get = set_temporary_memory () in
  try
    (* We instantiate binder name with patterns which may be parsed as terms *)
    let pat = coerce_to_cases_pattern_expr (fst (Id.Map.find id terms)) in
    let env,((disjpat,ids),id),na = intern_pat ntnvars env pat in
    let pat, na = match disjpat with
    | [pat] when is_patvar_store store pat -> let na = get () in None, na
    | _ -> Some ((List.map (fun x -> x.v) ids,disjpat),id), na.v in
    (renaming,env), pat, na
  with Not_found ->
  try
    (* Trying to associate a pattern *)
    let pat,(onlyident,scopes) = Id.Map.find id binders in
    let env = set_env_scopes env scopes in
    if onlyident then
      (* Do not try to interpret a variable as a constructor *)
      let na = out_patvar pat in
      let env = push_name_env ntnvars (Variable,[],[],[]) env (make ?loc:pat.loc na) in
      (renaming,env), None, na
    else
      (* Interpret as a pattern *)
      let env,((disjpat,ids),id),na = intern_pat ntnvars env pat in
      let pat, na =
        match disjpat with
        | [pat] when is_patvar_store store pat -> let na = get () in None, na
        | _ -> Some ((List.map (fun x -> x.v) ids,disjpat),id), na.v in
      (renaming,env), pat, na
  with Not_found ->
    (* Binders not bound in the notation do not capture variables *)
    (* outside the notation (i.e. in the substitution) *)
    let id' = find_fresh_name renaming subst avoid id in
    let renaming' =
      if Id.equal id id' then renaming else Id.Map.add id id' renaming
    in
    (renaming',env), None, Name id'

type binder_action =
| AddLetIn of lname * constr_expr * constr_expr option
| AddTermIter of (constr_expr * subscopes) Names.Id.Map.t
| AddPreBinderIter of Id.t * local_binder_expr (* A binder to be internalized *)
| AddBinderIter of Id.t * extended_glob_local_binder (* A binder already internalized - used for generalized binders *)

let dmap_with_loc f n =
  CAst.map_with_loc (fun ?loc c -> f ?loc (DAst.get_thunk c)) n

let error_cannot_coerce_wildcard_term ?loc () =
  user_err ?loc Pp.(str "Cannot turn \"_\" into a term.")

let error_cannot_coerce_disjunctive_pattern_term ?loc () =
  user_err ?loc Pp.(str "Cannot turn a disjunctive pattern into a term.")

let terms_of_binders bl =
  let rec term_of_pat pt = dmap_with_loc (fun ?loc -> function
    | PatVar (Name id)   -> CRef (qualid_of_ident id, None)
    | PatVar (Anonymous) -> error_cannot_coerce_wildcard_term ?loc ()
    | PatCstr (c,l,_) ->
       let qid = qualid_of_path ?loc (Nametab.path_of_global (GlobRef.ConstructRef c)) in
       let hole = CAst.make ?loc @@ CHole (None,IntroAnonymous,None) in
       let params = List.make (Inductiveops.inductive_nparams (Global.env()) (fst c)) hole in
       CAppExpl ((None,qid,None),params @ List.map term_of_pat l)) pt in
  let rec extract_variables l = match l with
    | bnd :: l ->
      let loc = bnd.loc in
      begin match DAst.get bnd with
      | GLocalAssum (Name id,_,_) -> (CAst.make ?loc @@ CRef (qualid_of_ident ?loc id, None)) :: extract_variables l
      | GLocalDef (Name id,_,_,_) -> extract_variables l
      | GLocalDef (Anonymous,_,_,_)
      | GLocalAssum (Anonymous,_,_) -> user_err Pp.(str "Cannot turn \"_\" into a term.")
      | GLocalPattern (([u],_),_,_,_) -> term_of_pat u :: extract_variables l
      | GLocalPattern ((_,_),_,_,_) -> error_cannot_coerce_disjunctive_pattern_term ?loc ()
      end
    | [] -> [] in
  extract_variables bl

let flatten_generalized_binders_if_any y l =
  match List.rev l with
  | [] -> assert false
  | a::l -> a, List.map (fun a -> AddBinderIter (y,a)) l (* if l not empty, this means we had a generalized binder *)

let flatten_binders bl =
  let dispatch = function
    | CLocalAssum (nal,bk,t) -> List.map (fun na -> CLocalAssum ([na],bk,t)) nal
    | a -> [a] in
  List.flatten (List.map dispatch bl)

let instantiate_notation_constr loc intern intern_pat ntnvars subst infos c =
  let (terms,termlists,binders,binderlists) = subst in
  (* when called while defining a notation, avoid capturing the private binders
     of the expression by variables bound by the notation (see #3892) *)
  let avoid = Id.Map.domain ntnvars in
  let rec aux (terms,binderopt,iteropt as subst') (renaming,env) c =
    let subinfos = renaming,{env with tmp_scope = None} in
    match c with
    | NVar id when Id.equal id ldots_var ->
        let rec aux_letin env = function
        | [],terminator,_ -> aux (terms,None,None) (renaming,env) terminator
        | AddPreBinderIter (y,binder)::rest,terminator,iter ->
           let env,binders = intern_local_binder_aux intern ntnvars (env,[]) binder in
           let binder,extra = flatten_generalized_binders_if_any y binders in
           aux (terms,Some (y,binder),Some (extra@rest,terminator,iter)) (renaming,env) iter
        | AddBinderIter (y,binder)::rest,terminator,iter ->
           aux (terms,Some (y,binder),Some (rest,terminator,iter)) (renaming,env) iter
        | AddTermIter nterms::rest,terminator,iter ->
           aux (nterms,None,Some (rest,terminator,iter)) (renaming,env) iter
        | AddLetIn (na,c,t)::rest,terminator,iter ->
           let env,(na,_,c,t) = intern_letin_binder intern ntnvars env (na,c,t) in
           DAst.make ?loc (GLetIn (na,c,t,aux_letin env (rest,terminator,iter))) in
        aux_letin env (Option.get iteropt)
    | NVar id -> subst_var subst' (renaming, env) id
    | NList (x,y,iter,terminator,revert) ->
      let l,(scopt,subscopes) =
        (* All elements of the list are in scopes (scopt,subscopes) *)
        try
          let l,scopes = Id.Map.find x termlists in
          (if revert then List.rev l else l),scopes
        with Not_found ->
        try
          let (bl,(scopt,subscopes)) = Id.Map.find x binderlists in
          let env,bl' = List.fold_left (intern_local_binder_aux intern ntnvars) (env,[]) bl in
          terms_of_binders (if revert then bl' else List.rev bl'),(None,[])
        with Not_found ->
          anomaly (Pp.str "Inconsistent substitution of recursive notation.") in
      let l = List.map (fun a -> AddTermIter ((Id.Map.add y (a,(scopt,subscopes)) terms))) l in
      aux (terms,None,Some (l,terminator,iter)) subinfos (NVar ldots_var)
    | NHole (knd, naming, arg) ->
      let knd = match knd with
      | Evar_kinds.BinderType (Name id as na) ->
        let na =
          try (coerce_to_name (fst (Id.Map.find id terms))).v
          with Not_found ->
          try Name (Id.Map.find id renaming)
          with Not_found -> na
        in
        Evar_kinds.BinderType na
      | _ -> knd
      in
      let arg = match arg with
      | None -> None
      | Some arg ->
        let mk_env id (c, (tmp_scope, subscopes)) map =
          let nenv = {env with tmp_scope; scopes = subscopes @ env.scopes} in
          try
            let gc = intern nenv c in
            Id.Map.add id (gc, None) map
          with Nametab.GlobalizationError _ -> map
        in
        let mk_env' (c, (onlyident,(tmp_scope,subscopes))) =
          let nenv = {env with tmp_scope; scopes = subscopes @ env.scopes} in
          if onlyident then
            let na = out_patvar c in term_of_name na, None
          else
            let _,((disjpat,_),_),_ = intern_pat ntnvars nenv c in
            match disjpat with
            | [pat] -> (glob_constr_of_cases_pattern (Global.env()) pat, None)
            | _ -> error_cannot_coerce_disjunctive_pattern_term ?loc:c.loc ()
        in
        let terms = Id.Map.fold mk_env terms Id.Map.empty in
        let binders = Id.Map.map mk_env' binders in
        let bindings = Id.Map.fold Id.Map.add terms binders in
        Some (Genintern.generic_substitute_notation bindings arg)
      in
      DAst.make ?loc @@ GHole (knd, naming, arg)
    | NBinderList (x,y,iter,terminator,revert) ->
      (try
        (* All elements of the list are in scopes (scopt,subscopes) *)
        let (bl,(scopt,subscopes)) = Id.Map.find x binderlists in
        (* We flatten binders so that we can interpret them at substitution time *)
        let bl = flatten_binders bl in
        let bl = if revert then List.rev bl else bl in
        (* We isolate let-ins which do not contribute to the repeated pattern *)
        let l = List.map (function | CLocalDef (na,c,t) -> AddLetIn (na,c,t)
                                   | binder -> AddPreBinderIter (y,binder)) bl in
        (* We stack the binders to iterate or let-ins to insert *)
        aux (terms,None,Some (l,terminator,iter)) subinfos (NVar ldots_var)
      with Not_found ->
          anomaly (Pp.str "Inconsistent substitution of recursive notation."))
    | NProd (Name id, NHole _, c') when option_mem_assoc id binderopt ->
        let binder = snd (Option.get binderopt) in
        expand_binders ?loc mkGProd [binder] (aux subst' (renaming,env) c')
    | NLambda (Name id,NHole _,c') when option_mem_assoc id binderopt ->
        let binder = snd (Option.get binderopt) in
        expand_binders ?loc mkGLambda [binder] (aux subst' (renaming,env) c')
    (* Two special cases to keep binder name synchronous with BinderType *)
    | NProd (na,NHole(Evar_kinds.BinderType na',naming,arg),c')
        when Name.equal na na' ->
        let subinfos,disjpat,na = traverse_binder intern_pat ntnvars subst avoid subinfos na in
        let ty = DAst.make ?loc @@ GHole (Evar_kinds.BinderType na,naming,arg) in
        DAst.make ?loc @@ GProd (na,Explicit,ty,Option.fold_right apply_cases_pattern disjpat (aux subst' subinfos c'))
    | NLambda (na,NHole(Evar_kinds.BinderType na',naming,arg),c')
        when Name.equal na na' ->
        let subinfos,disjpat,na = traverse_binder intern_pat ntnvars subst  avoid subinfos na in
        let ty = DAst.make ?loc @@ GHole (Evar_kinds.BinderType na,naming,arg) in
        DAst.make ?loc @@ GLambda (na,Explicit,ty,Option.fold_right apply_cases_pattern disjpat (aux subst' subinfos c'))
    | t ->
      glob_constr_of_notation_constr_with_binders ?loc
        (traverse_binder intern_pat ntnvars subst  avoid) (aux subst') subinfos t
  and subst_var (terms, binderopt, _terminopt) (renaming, env) id =
    (* subst remembers the delimiters stack in the interpretation *)
    (* of the notations *)
    try
      let (a,(scopt,subscopes)) = Id.Map.find id terms in
      intern {env with tmp_scope = scopt;
                scopes = subscopes @ env.scopes} a
    with Not_found ->
    try
      let pat,(onlyident,scopes) = Id.Map.find id binders in
      let env = set_env_scopes env scopes in
      (* We deactivate impls to avoid the check on hidden parameters *)
      (* and since we are only interested in the pattern as a term *)
      let env = reset_hidden_inductive_implicit_test env in
      if onlyident then
        term_of_name (out_patvar pat)
      else
        let env,((disjpat,ids),id),na = intern_pat ntnvars env pat in
        match disjpat with
        | [pat] -> glob_constr_of_cases_pattern (Global.env()) pat
        | _ -> user_err Pp.(str "Cannot turn a disjunctive pattern into a term.")
    with Not_found ->
    try
      match binderopt with
      | Some (x,binder) when Id.equal x id ->
         let terms = terms_of_binders [binder] in
         assert (List.length terms = 1);
         intern env (List.hd terms)
      | _ -> raise Not_found
    with Not_found ->
    DAst.make ?loc (
    try
      GVar (Id.Map.find id renaming)
    with Not_found ->
      (* Happens for local notation joint with inductive/fixpoint defs *)
      GVar id)
  in aux (terms,None,None) infos c

(* Turning substitution coming from parsing and based on production
   into a substitution for interpretation and based on binding/constr
   distinction *)

let cases_pattern_of_name {loc;v=na} =
  let atom = match na with Name id -> Some (qualid_of_ident ?loc id) | Anonymous -> None in
  CAst.make ?loc (CPatAtom atom)

let split_by_type ids subst =
  let bind id scl l s =
    match l with
    | [] -> assert false
    | a::l -> l, Id.Map.add id (a,scl) s in
  let (terms,termlists,binders,binderlists),subst =
    List.fold_left (fun ((terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists')) (id,((_,scl),typ)) ->
    match typ with
    | NtnTypeConstr ->
       let terms,terms' = bind id scl terms terms' in
       (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists')
    | NtnTypeBinder NtnBinderParsedAsConstr (AsIdentOrPattern | AsStrictPattern) ->
       let a,terms = match terms with a::terms -> a,terms | _ -> assert false in
       let binders' = Id.Map.add id (coerce_to_cases_pattern_expr a,(false,scl)) binders' in
       (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists')
    | NtnTypeBinder NtnBinderParsedAsConstr AsIdent ->
       let a,terms = match terms with a::terms -> a,terms | _ -> assert false in
       let binders' = Id.Map.add id (cases_pattern_of_name (coerce_to_name a),(true,scl)) binders' in
       (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists')
    | NtnTypeBinder (NtnParsedAsIdent | NtnParsedAsPattern _ as x) ->
       let onlyident = (x = NtnParsedAsIdent) in
       let binders,binders' = bind id (onlyident,scl) binders binders' in
       (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists')
    | NtnTypeConstrList ->
       let termlists,termlists' = bind id scl termlists termlists' in
       (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists')
    | NtnTypeBinderList ->
       let binderlists,binderlists' = bind id scl binderlists binderlists' in
       (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists'))
                   (subst,(Id.Map.empty,Id.Map.empty,Id.Map.empty,Id.Map.empty)) ids in
  assert (terms = [] && termlists = [] && binders = [] && binderlists = []);
  subst

let split_by_type_pat ?loc ids subst =
  let bind id (_,scopes) l s =
    match l with
    | [] -> assert false
    | a::l -> l, Id.Map.add id (a,scopes) s in
  let (terms,termlists),subst =
    List.fold_left (fun ((terms,termlists),(terms',termlists')) (id,(scl,typ)) ->
    match typ with
    | NtnTypeConstr | NtnTypeBinder _ ->
       let terms,terms' = bind id scl terms terms' in
       (terms,termlists),(terms',termlists')
    | NtnTypeConstrList ->
       let termlists,termlists' = bind id scl termlists termlists' in
       (terms,termlists),(terms',termlists')
    | NtnTypeBinderList -> error_invalid_pattern_notation ?loc ())
                   (subst,(Id.Map.empty,Id.Map.empty)) ids in
  assert (terms = [] && termlists = []);
  subst

let make_subst ids l =
  let fold accu (id, scopes) a = Id.Map.add id (a, scopes) accu in
  List.fold_left2 fold Id.Map.empty ids l

let intern_notation intern env ntnvars loc ntn fullargs =
  (* Adjust to parsing of { } *)
  let ntn,fullargs = contract_curly_brackets ntn fullargs in
  (* Recover interpretation { } *)
  let ((ids,c),df) = interp_notation ?loc ntn (env.tmp_scope,env.scopes) in
  Dumpglob.dump_notation_location (ntn_loc ?loc fullargs ntn) ntn df;
  (* Dispatch parsing substitution to an interpretation substitution *)
  let subst = split_by_type ids fullargs in
  (* Instantiate the notation *)
  instantiate_notation_constr loc intern intern_cases_pattern_as_binder ntnvars subst (Id.Map.empty, env) c

(**********************************************************************)
(* Discriminating between bound variables and global references       *)

let string_of_ty = function
  | Inductive _ -> "ind"
  | Recursive -> "def"
  | Method -> "meth"
  | Variable -> "var"

let gvar (loc, id) us = match us with
| None -> DAst.make ?loc @@ GVar id
| Some _ ->
  user_err ?loc  (str "Variable " ++ Id.print id ++
    str " cannot have a universe instance")

let intern_var env (ltacvars,ntnvars) namedctx loc id us =
  (* Is [id] a notation variable *)
  if Id.Map.mem id ntnvars then
    begin
      if not (Id.Map.mem id env.impls) then set_var_scope ?loc id true (env.tmp_scope,env.scopes) ntnvars;
      gvar (loc,id) us, [], [], []
    end
  else
  (* Is [id] registered with implicit arguments *)
  try
    let ty,expl_impls,impls,argsc = Id.Map.find id env.impls in
    let expl_impls = List.map
      (fun id -> CAst.make ?loc @@ CRef (qualid_of_ident ?loc id,None), Some (make ?loc @@ ExplByName id)) expl_impls in
    let tys = string_of_ty ty in
    Dumpglob.dump_reference ?loc "<>" (Id.to_string id) tys;
    gvar (loc,id) us, make_implicits_list impls, argsc, expl_impls
  with Not_found ->
  (* Is [id] bound in current term or is an ltac var bound to constr *)
  if Id.Set.mem id env.ids || Id.Set.mem id ltacvars.ltac_vars
  then
    gvar (loc,id) us, [], [], []
  else if Id.equal id ldots_var
  (* Is [id] the special variable for recursive notations? *)
  then if Id.Map.is_empty ntnvars
    then error_ldots_var ?loc
    else gvar (loc,id) us, [], [], []
  else if Id.Set.mem id ltacvars.ltac_bound then
    (* Is [id] bound to a free name in ltac (this is an ltac error message) *)
    user_err ?loc ~hdr:"intern_var"
     (str "variable " ++ Id.print id ++ str " should be bound to a term.")
  else
    (* Is [id] a goal or section variable *)
    let _ = Environ.lookup_named_ctxt id namedctx in
      try
        (* [id] a section variable *)
        (* Redundant: could be done in intern_qualid *)
        let ref = GlobRef.VarRef id in
        let impls = implicits_of_global ref in
        let scopes = find_arguments_scope ref in
        Dumpglob.dump_secvar ?loc id; (* this raises Not_found when not a section variable *)
        (* Someday we should stop relying on Dumglob raising exceptions *)
        DAst.make ?loc @@ GRef (ref, us), impls, scopes, []
      with e when CErrors.noncritical e ->
        (* [id] a goal variable *)
        gvar (loc,id) us, [], [], []

let find_appl_head_data c =
  match DAst.get c with
  | GRef (ref,_) ->
    let impls = implicits_of_global ref in
    let scopes = find_arguments_scope ref in
      c, impls, scopes, []
  | GApp (r, l) ->
    begin match DAst.get r with
    | GRef (ref,_) when l != [] ->
      let n = List.length l in
      let impls = implicits_of_global ref in 
      let scopes = find_arguments_scope ref in
        c, List.map (drop_first_implicits n) impls,
        List.skipn_at_least n scopes,[]
    | _ -> c,[],[],[]
    end
  | _ -> c,[],[],[]

let error_not_enough_arguments ?loc =
  user_err ?loc  (str "Abbreviation is not applied enough.")

let check_no_explicitation l =
  let is_unset (a, b) = match b with None -> false | Some _ -> true in
  let l = List.filter is_unset l in
  match l with
  | [] -> ()
  | (_, None) :: _ -> assert false
  | (_, Some {loc}) :: _ ->
    user_err ?loc  (str"Unexpected explicitation of the argument of an abbreviation.")

let dump_extended_global loc = function
  | TrueGlobal ref -> (*feedback_global loc ref;*) Dumpglob.add_glob ?loc ref
  | SynDef sp -> Dumpglob.add_glob_kn ?loc sp

let intern_extended_global_of_qualid qid =
  let r = Nametab.locate_extended qid in dump_extended_global qid.CAst.loc r; r

let intern_reference qid =
  let r =
    try intern_extended_global_of_qualid qid
    with Not_found -> Nametab.error_global_not_found qid
  in
  Smartlocate.global_of_extended_global r

let glob_sort_of_level (level: glob_level) : glob_sort =
  match level with
  | UAnonymous {rigid} -> UAnonymous {rigid}
  | UNamed id -> UNamed [id,0]

(* Is it a global reference or a syntactic definition? *)
let intern_qualid ?(no_secvar=false) qid intern env ntnvars us args =
  let loc = qid.loc in
  match intern_extended_global_of_qualid qid with
  | TrueGlobal (GlobRef.VarRef _) when no_secvar ->
      (* Rule out section vars since these should have been found by intern_var *)
      raise Not_found
  | TrueGlobal ref -> (DAst.make ?loc @@ GRef (ref, us)), Some ref, args
  | SynDef sp ->
      let (ids,c) = Syntax_def.search_syntactic_definition ?loc sp in
      let nids = List.length ids in
      if List.length args < nids then error_not_enough_arguments ?loc;
      let args1,args2 = List.chop nids args in
      check_no_explicitation args1;
      let terms = make_subst ids (List.map fst args1) in
      let subst = (terms, Id.Map.empty, Id.Map.empty, Id.Map.empty) in
      let infos = (Id.Map.empty, env) in
      let c = instantiate_notation_constr loc intern intern_cases_pattern_as_binder ntnvars subst infos c in
      let loc = c.loc in
      let err () =
        user_err ?loc  (str "Notation " ++ pr_qualid qid
                  ++ str " cannot have a universe instance,"
                  ++ str " its expanded head does not start with a reference")
      in
      let c = match us, DAst.get c with
      | None, _ -> c
      | Some _, GRef (ref, None) -> DAst.make ?loc @@ GRef (ref, us)
      | Some _, GApp (r, arg) ->
        let loc' = r.CAst.loc in
        begin match DAst.get r with
        | GRef (ref, None) ->
          DAst.make ?loc @@ GApp (DAst.make ?loc:loc' @@ GRef (ref, us), arg)
        | _ -> err ()
        end
      | Some [s], GSort (UAnonymous {rigid=true}) -> DAst.make ?loc @@ GSort (glob_sort_of_level s)
      | Some [_old_level], GSort _new_sort ->
        (* TODO: add old_level and new_sort to the error message *)
        user_err ?loc (str "Cannot change universe level of notation " ++ pr_qualid qid)
      | Some _, _ -> err ()
      in
      c, None, args2

let warn_nonprimitive_projection =
  CWarnings.create ~name:"nonprimitive-projection-syntax" ~category:"syntax" ~default:CWarnings.Disabled
    Pp.(fun f -> pr_qualid f ++ str " used as a primitive projection but is not one.")

let error_nonprojection_syntax ?loc qid =
  CErrors.user_err ?loc ~hdr:"nonprojection-syntax" Pp.(pr_qualid qid ++ str" is not a projection.")

let check_applied_projection isproj realref qid =
  match isproj with
  | None -> ()
  | Some projargs ->
    let open GlobRef in
    let is_prim = match realref with
      | None | Some (IndRef _ | ConstructRef _ | VarRef _) -> false
      | Some (ConstRef c) ->
        if Recordops.is_primitive_projection c then true
        else if Recordops.is_projection c then false
        else error_nonprojection_syntax ?loc:qid.loc qid
        (* TODO check projargs, note we will need implicit argument info *)
    in
    if not is_prim then warn_nonprimitive_projection ?loc:qid.loc qid

let intern_applied_reference ~isproj intern env namedctx (_, ntnvars as lvar) us args qid =
  let loc = qid.CAst.loc in
  if qualid_is_ident qid then
      try
        let res = intern_var env lvar namedctx loc (qualid_basename qid) us in
        check_applied_projection isproj None qid;
        res, args
      with Not_found ->
      try
        let r, realref, args2 = intern_qualid ~no_secvar:true qid intern env ntnvars us args in
        check_applied_projection isproj realref qid;
        let x, imp, scopes, l = find_appl_head_data r in
          (x,imp,scopes,l), args2
      with Not_found ->
        (* Extra allowance for non globalizing functions *)
        if !interning_grammar || env.unb then
          (* check_applied_projection ?? *)
          (gvar (loc,qualid_basename qid) us, [], [], []), args
        else Nametab.error_global_not_found qid
  else
    let r,realref,args2 =
      try intern_qualid qid intern env ntnvars us args
      with Not_found -> Nametab.error_global_not_found qid
    in
    check_applied_projection isproj realref qid;
    let x, imp, scopes, l = find_appl_head_data r in
    (x,imp,scopes,l), args2

let interp_reference vars r =
  let (r,_,_,_),_ =
    intern_applied_reference ~isproj:None (fun _ -> error_not_enough_arguments ?loc:None)
      {ids = Id.Set.empty; unb = false ;
       tmp_scope = None; scopes = []; impls = empty_internalization_env}
      Environ.empty_named_context_val
      (vars, Id.Map.empty) None [] r
  in r

(**********************************************************************)
(** {5 Cases }                                                        *)

(** Private internalization patterns *)
type 'a raw_cases_pattern_expr_r =
  | RCPatAlias of 'a raw_cases_pattern_expr * lname
  | RCPatCstr  of GlobRef.t
    * 'a raw_cases_pattern_expr list * 'a raw_cases_pattern_expr list
  (** [RCPatCstr (loc, c, l1, l2)] represents [((@ c l1) l2)] *)
  | RCPatAtom  of (lident * (Notation_term.tmp_scope_name option * Notation_term.scope_name list)) option
  | RCPatOr    of 'a raw_cases_pattern_expr list
and 'a raw_cases_pattern_expr = ('a raw_cases_pattern_expr_r, 'a) DAst.t

(** {6 Elementary bricks } *)
let apply_scope_env env = function
  | [] -> {env with tmp_scope = None}, []
  | sc::scl -> {env with tmp_scope = sc}, scl

let rec simple_adjust_scopes n scopes =
  (* Note: they can be less scopes than arguments but also more scopes *)
  (* than arguments because extra scopes are used in the presence of *)
  (* coercions to funclass *)
  if Int.equal n 0 then [] else match scopes with
  | [] -> None :: simple_adjust_scopes (n-1) []
  | sc::scopes -> sc :: simple_adjust_scopes (n-1) scopes

let find_remaining_scopes pl1 pl2 ref =
  let impls_st = implicits_of_global ref in
  let len_pl1 = List.length pl1 in
  let len_pl2 = List.length pl2 in
  let impl_list = if Int.equal len_pl1 0
    then select_impargs_size len_pl2 impls_st
    else List.skipn_at_least len_pl1 (select_stronger_impargs impls_st) in
  let allscs = find_arguments_scope ref in
  let scope_list = List.skipn_at_least len_pl1 allscs in
  let rec aux = function
    |[],l -> l
    |_,[] -> []
    |h::t,_::tt when is_status_implicit h -> aux (t,tt)
    |_::t,h::tt -> h :: aux (t,tt)
  in ((try List.firstn len_pl1 allscs with Failure _ -> simple_adjust_scopes len_pl1 allscs),
      simple_adjust_scopes len_pl2 (aux (impl_list,scope_list)))

(* @return the first variable that occurs twice in a pattern

naive n^2 algo *)
let rec has_duplicate = function
  | [] -> None
  | x::l -> if Id.List.mem x l then (Some x) else has_duplicate l

let loc_of_multiple_pattern pl =
 Loc.merge_opt (cases_pattern_expr_loc (List.hd pl)) (cases_pattern_expr_loc (List.last pl))

let loc_of_lhs lhs =
 Loc.merge_opt (loc_of_multiple_pattern (List.hd lhs)) (loc_of_multiple_pattern (List.last lhs))

let check_linearity lhs ids =
  match has_duplicate ids with
    | Some id ->
        raise (InternalizationError (loc_of_lhs lhs,NonLinearPattern id))
    | None ->
        ()

(* Match the number of pattern against the number of matched args *)
let check_number_of_pattern loc n l =
  let p = List.length l in
  if not (Int.equal n p) then raise (InternalizationError (loc,BadPatternsNumber (n,p)))

let check_or_pat_variables loc ids idsl =
  let eq_id {v=id} {v=id'} = Id.equal id id' in
  (* Collect remaining patterns which do not have the same variables as the first pattern *)
  let idsl = List.filter (fun ids' -> not (List.eq_set eq_id ids ids')) idsl in
  match idsl with
  | ids'::_ ->
    (* Look for an [id] which is either in [ids] and not in [ids'] or in [ids'] and not in [ids] *)
    let ids'' = List.subtract eq_id ids ids' in
    let ids'' = if ids'' = [] then List.subtract eq_id ids' ids else ids'' in
    user_err ?loc
      (strbrk "The components of this disjunctive pattern must bind the same variables (" ++
       Id.print (List.hd ids'').v ++ strbrk " is not bound in all patterns).")
  | [] -> ()

(** Use only when params were NOT asked to the user.
    @return if letin are included *)
let check_constructor_length env loc cstr len_pl pl0 =
  let n = len_pl + List.length pl0 in
  if Int.equal n (Inductiveops.constructor_nallargs env cstr) then false else
    (Int.equal n (Inductiveops.constructor_nalldecls env cstr) ||
      (error_wrong_numarg_constructor ?loc env cstr
         (Inductiveops.constructor_nrealargs env cstr)))

open Declarations

(* Similar to Cases.adjust_local_defs but on RCPat *)
let insert_local_defs_in_pattern (ind,j) l =
  let (mib,mip) = Global.lookup_inductive ind in
  if mip.mind_consnrealdecls.(j-1) = mip.mind_consnrealargs.(j-1) then
    (* Optimisation *) l
  else
    let (ctx, _) = mip.mind_nf_lc.(j-1) in
    let decls = List.skipn (Context.Rel.length mib.mind_params_ctxt) (List.rev ctx) in
    let rec aux decls args =
      match decls, args with
      | Context.Rel.Declaration.LocalDef _ :: decls, args -> (DAst.make @@ RCPatAtom None) :: aux decls args
      | _, [] -> [] (* In particular, if there were trailing local defs, they have been inserted *)
      | Context.Rel.Declaration.LocalAssum _ :: decls, a :: args -> a :: aux decls args
      | _ -> assert false in
    aux decls l

let add_local_defs_and_check_length loc env g pl args =
  let open GlobRef in
  match g with
  | ConstructRef cstr ->
     (* We consider that no variables corresponding to local binders
        have been given in the "explicit" arguments, which come from a
        "@C args" notation or from a custom user notation *)
     let pl' = insert_local_defs_in_pattern cstr pl in
     let maxargs = Inductiveops.constructor_nalldecls env cstr in
     if List.length pl' + List.length args > maxargs then
       error_wrong_numarg_constructor ?loc env cstr (Inductiveops.constructor_nrealargs env cstr);
     (* Two possibilities: either the args are given with explicit
     variables for local definitions, then we give the explicit args
     extended with local defs, so that there is nothing more to be
     added later on; or the args are not enough to have all arguments,
     which a priori means local defs to add in the [args] part, so we
     postpone the insertion of local defs in the explicit args *)
     (* Note: further checks done later by check_constructor_length *)
     if List.length pl' + List.length args = maxargs then pl' else pl
  | _ -> pl

let add_implicits_check_length fail nargs nargs_with_letin impls_st len_pl1 pl2 =
  let impl_list = if Int.equal len_pl1 0
    then select_impargs_size (List.length pl2) impls_st
    else List.skipn_at_least len_pl1 (select_stronger_impargs impls_st) in
  let remaining_args = List.fold_left (fun i x -> if is_status_implicit x then i else succ i) in
  let rec aux i = function
    |[],l -> let args_len = List.length l + List.length impl_list + len_pl1 in
             ((if Int.equal args_len nargs then false
              else Int.equal args_len nargs_with_letin || (fst (fail (nargs - List.length impl_list + i))))
               ,l)
    |imp::q as il,[] -> if is_status_implicit imp && maximal_insertion_of imp
      then let (b,out) = aux i (q,[]) in (b,(DAst.make @@ RCPatAtom None)::out)
      else fail (remaining_args (len_pl1+i) il)
    |imp::q,(hh::tt as l) -> if is_status_implicit imp
      then let (b,out) = aux i (q,l) in (b,(DAst.make @@ RCPatAtom None)::out)
      else let (b,out) = aux (succ i) (q,tt) in (b,hh::out)
  in aux 0 (impl_list,pl2)

let add_implicits_check_constructor_length env loc c len_pl1 pl2 =
  let nargs = Inductiveops.constructor_nallargs env c in
  let nargs' = Inductiveops.constructor_nalldecls env c in
  let impls_st = implicits_of_global (GlobRef.ConstructRef c) in
  add_implicits_check_length (error_wrong_numarg_constructor ?loc env c)
    nargs nargs' impls_st len_pl1 pl2

let add_implicits_check_ind_length env loc c len_pl1 pl2 =
  let nallargs = inductive_nallargs env c in
  let nalldecls = inductive_nalldecls env c in
  let impls_st = implicits_of_global (GlobRef.IndRef c) in
  add_implicits_check_length (error_wrong_numarg_inductive ?loc env c)
    nallargs nalldecls impls_st len_pl1 pl2

(** Do not raise NotEnoughArguments thanks to preconditions*)
let chop_params_pattern loc ind args with_letin =
  let nparams = if with_letin
    then Inductiveops.inductive_nparamdecls (Global.env()) ind
    else Inductiveops.inductive_nparams (Global.env()) ind in
  assert (nparams <= List.length args);
  let params,args = List.chop nparams args in
  List.iter (fun c -> match DAst.get c with
    | PatVar Anonymous -> ()
    | PatVar _ | PatCstr(_,_,_) -> error_parameter_not_implicit ?loc:c.CAst.loc) params;
  args

let find_constructor loc add_params ref =
  let open GlobRef in
  let (ind,_ as cstr) = match ref with
  | ConstructRef cstr -> cstr
  | IndRef _ ->
    let error = str "There is an inductive name deep in a \"in\" clause." in
    user_err ?loc ~hdr:"find_constructor" error
  | ConstRef _ | VarRef _ ->
    let error = str "This reference is not a constructor." in
    user_err ?loc ~hdr:"find_constructor" error
  in
  cstr, match add_params with
    | Some nb_args ->
      let env = Global.env () in
      let nb =
        if Int.equal nb_args (Inductiveops.constructor_nrealdecls env cstr)
        then Inductiveops.inductive_nparamdecls env ind
        else Inductiveops.inductive_nparams env ind
      in
      List.make nb ([], [(Id.Map.empty, DAst.make @@ PatVar Anonymous)])
    | None -> []

let find_pattern_variable qid =
  if qualid_is_ident qid then qualid_basename qid
  else raise (InternalizationError(qid.CAst.loc,NotAConstructor qid))

let check_duplicate ?loc fields =
  let eq (ref1, _) (ref2, _) = qualid_eq ref1 ref2 in
  let dups = List.duplicates eq fields in
  match dups with
  | [] -> ()
  | (r, _) :: _ ->
    user_err ?loc (str "This record defines several times the field " ++
      pr_qualid r ++ str ".")

let inductive_of_record loc record =
  let inductive = GlobRef.IndRef (inductive_of_constructor record.Recordops.s_CONST) in
  Nametab.shortest_qualid_of_global ?loc Id.Set.empty inductive

(** [sort_fields ~complete loc fields completer] expects a list
    [fields] of field assignments [f = e1; g = e2; ...], where [f, g]
    are fields of a record and [e1] are "values" (either terms, when
    interning a record construction, or patterns, when intering record
    pattern-matching). It will sort the fields according to the record
    declaration order (which is important when type-checking them in
    presence of dependencies between fields). If the parameter
    [complete] is true, we require the assignment to be complete: all
    the fields of the record must be present in the
    assignment. Otherwise the record assignment may be partial
    (in a pattern, we may match on some fields only), and we call the
    function [completer] to fill the missing fields; the returned
    field assignment list is always complete. *)
let sort_fields ~complete loc fields completer =
  match fields with
    | [] -> None
    | (first_field_ref, first_field_value):: other_fields ->
        let (first_field_glob_ref, record) =
          try
            let gr = locate_reference first_field_ref in
            (gr, Recordops.find_projection gr)
          with Not_found ->
            raise (InternalizationError(loc, NotAProjection first_field_ref))
        in
        (* the number of parameters *)
        let nparams = record.Recordops.s_EXPECTEDPARAM in
        (* the reference constructor of the record *)
        let base_constructor =
          let global_record_id = GlobRef.ConstructRef record.Recordops.s_CONST in
          try Nametab.shortest_qualid_of_global ?loc Id.Set.empty global_record_id
          with Not_found ->
            anomaly (str "Environment corruption for records.") in
        let () = check_duplicate ?loc fields in
        let (end_index,    (* one past the last field index *)
             first_field_index,  (* index of the first field of the record *)
             proj_list)    (* list of projections *)
          =
          (* eliminate the first field from the projections,
             but keep its index *)
          let rec build_proj_list projs proj_kinds idx ~acc_first_idx acc =
            match projs with
              | [] -> (idx, acc_first_idx, acc)
              | (Some field_glob_id) :: projs ->
                 let field_glob_ref = GlobRef.ConstRef field_glob_id in
                 let first_field = GlobRef.equal field_glob_ref first_field_glob_ref in
                 begin match proj_kinds with
                    | [] -> anomaly (Pp.str "Number of projections mismatch.")
                    | { Recordops.pk_true_proj = regular } :: proj_kinds ->
                       (* "regular" is false when the field is defined
                           by a let-in in the record declaration
                           (its value is fixed from other fields). *)
                       if first_field && not regular && complete then
                         user_err ?loc  (str "No local fields allowed in a record construction.")
                       else if first_field then
                         build_proj_list projs proj_kinds (idx+1) ~acc_first_idx:idx acc
                       else if not regular && complete then
                         (* skip non-regular fields *)
                         build_proj_list projs proj_kinds idx ~acc_first_idx acc
                       else
                         build_proj_list projs proj_kinds (idx+1) ~acc_first_idx
                                         ((idx, field_glob_id) :: acc)
                 end
              | None :: projs ->
                 if complete then
                   (* we don't want anonymous fields *)
                   user_err ?loc  (str "This record contains anonymous fields.")
                 else
                   (* anonymous arguments don't appear in proj_kinds *)
                   build_proj_list projs proj_kinds (idx+1) ~acc_first_idx acc
          in
          build_proj_list record.Recordops.s_PROJ record.Recordops.s_PROJKIND 1 ~acc_first_idx:0 []
        in
        (* now we want to have all fields assignments indexed by their place in
           the constructor *)
        let rec index_fields fields remaining_projs acc =
          match fields with
            | (field_ref, field_value) :: fields ->
               let field_glob_ref = try locate_reference field_ref
               with Not_found ->
                 user_err ?loc ~hdr:"intern"
                               (str "The field \"" ++ pr_qualid field_ref ++ str "\" does not exist.") in
               let this_field_record = try Recordops.find_projection field_glob_ref
                 with Not_found ->
                   let inductive_ref = inductive_of_record loc record in
                   raise (InternalizationError(loc, NotAProjectionOf (field_ref, inductive_ref)))
               in
               let remaining_projs, (field_index, _) =
                 let the_proj (idx, glob_id) = GlobRef.equal field_glob_ref (GlobRef.ConstRef glob_id) in
                 try CList.extract_first the_proj remaining_projs
                 with Not_found ->
                   let ind1 = inductive_of_record loc record in
                   let ind2 = inductive_of_record loc this_field_record in
                   raise (InternalizationError(loc, ProjectionsOfDifferentRecords (ind1, ind2)))
               in
               index_fields fields remaining_projs ((field_index, field_value) :: acc)
            | [] ->
               (* the order does not matter as we sort them next,
                  List.rev_* is just for efficiency *)
               let remaining_fields =
                 let complete_field (idx, field_ref) = (idx,
                 completer idx field_ref record.Recordops.s_CONST) in
                 List.rev_map complete_field remaining_projs in
               List.rev_append remaining_fields acc
        in
        let unsorted_indexed_fields =
          index_fields other_fields proj_list
            [(first_field_index, first_field_value)] in
        let sorted_indexed_fields =
          let cmp_by_index (i, _) (j, _) = Int.compare i j in
          List.sort cmp_by_index unsorted_indexed_fields in
        let sorted_fields = List.map snd sorted_indexed_fields in
        Some (nparams, base_constructor, sorted_fields)

(** {6 Manage multiple aliases} *)

type alias = {
  alias_ids : lident list;
  alias_map : Id.t Id.Map.t;
}

let empty_alias = {
  alias_ids = [];
  alias_map = Id.Map.empty;
}

  (* [merge_aliases] returns the sets of all aliases encountered at this
     point and a substitution mapping extra aliases to the first one *)
let merge_aliases aliases {loc;v=na} =
  match na with
  | Anonymous -> aliases
  | Name id ->
  let alias_ids = aliases.alias_ids @ [make ?loc id] in
  let alias_map = match aliases.alias_ids with
  | [] -> aliases.alias_map
  | {v=id'} :: _ -> Id.Map.add id id' aliases.alias_map
  in
  { alias_ids; alias_map; }

let alias_of als = match als.alias_ids with
| [] -> Anonymous
| {v=id} :: _ -> Name id

(** {6 Expanding notations }

    @returns a raw_case_pattern_expr :
    - no notations and syntactic definition
    - global reference and identifier instead of reference

*)

let is_zero s =
  let rec aux i =
    Int.equal (String.length s) i || ((s.[i] == '0' || s.[i] == '_') && aux (i+1))
  in aux 0
let is_zero n = is_zero n.NumTok.int && is_zero n.NumTok.frac

let merge_subst s1 s2 = Id.Map.fold Id.Map.add s1 s2

let product_of_cases_patterns aliases idspl =
  (* each [pl] is a disjunction of patterns over common identifiers [ids] *)
  (* We stepwise build a disjunction of patterns [ptaill] over common [ids'] *)
  List.fold_right (fun (ids,pl) (ids',ptaill) ->
    (ids @ ids',
     (* Cartesian prod of the or-pats for the nth arg and the tail args *)
     List.flatten (
       List.map (fun (subst,p) ->
         List.map (fun (subst',ptail) -> (merge_subst subst subst',p::ptail)) ptaill) pl)))
    idspl (aliases.alias_ids,[aliases.alias_map,[]])

let rec subst_pat_iterator y t = DAst.(map (function
  | RCPatAtom id as p ->
    begin match id with Some ({v=x},_) when Id.equal x y -> DAst.get t | _ -> p end
  | RCPatCstr (id,l1,l2) ->
    RCPatCstr (id,List.map (subst_pat_iterator y t) l1,
                List.map (subst_pat_iterator y t) l2)
  | RCPatAlias (p,a) -> RCPatAlias (subst_pat_iterator y t p,a)
  | RCPatOr pl -> RCPatOr (List.map (subst_pat_iterator y t) pl)))

let is_non_zero c = match c with
| { CAst.v = CPrim (Numeral (SPlus, p)) } -> not (is_zero p)
| _ -> false

let is_non_zero_pat c = match c with
| { CAst.v = CPatPrim (Numeral (SPlus, p)) } -> not (is_zero p)
| _ -> false

let get_asymmetric_patterns = Goptions.declare_bool_option_and_ref
    ~depr:false
    ~name:"no parameters in constructors"
    ~key:["Asymmetric";"Patterns"]
    ~value:false

let drop_notations_pattern looked_for genv =
  (* At toplevel, Constructors and Inductives are accepted, in recursive calls
     only constructor are allowed *)
  let ensure_kind top loc g =
    try
      if top then looked_for g else
      match g with GlobRef.ConstructRef _ -> () | _ -> raise Not_found
    with Not_found ->
      error_invalid_pattern_notation ?loc ()
  in
  let test_kind top =
    if top then looked_for else function GlobRef.ConstructRef _ -> () | _ -> raise Not_found
  in
  (* [rcp_of_glob] : from [glob_constr] to [raw_cases_pattern_expr] *)
  let rec rcp_of_glob scopes x = DAst.(map (function
    | GVar id -> RCPatAtom (Some (CAst.make ?loc:x.loc id,scopes))
    | GHole (_,_,_) -> RCPatAtom (None)
    | GRef (g,_) -> RCPatCstr (g,[],[])
    | GApp (r, l) ->
      begin match DAst.get r with
      | GRef (g,_) ->
        let allscs = find_arguments_scope g in
        let allscs = simple_adjust_scopes (List.length l) allscs in (* TO CHECK *)
        RCPatCstr (g, List.map2 (fun sc a -> rcp_of_glob (sc,snd scopes) a) allscs l,[])
      | _ ->
        CErrors.anomaly Pp.(str "Invalid return pattern from Notation.interp_prim_token_cases_pattern_expr.")
      end
    | _ -> CErrors.anomaly Pp.(str "Invalid return pattern from Notation.interp_prim_token_cases_pattern_expr."))) x
  in
  let rec drop_syndef top scopes qid pats =
    try
      match Nametab.locate_extended qid with
      | SynDef sp ->
        let filter (vars,a) =
        try match a with
        | NRef g ->
          (* Convention: do not deactivate implicit arguments and scopes for further arguments *)
          test_kind top g;
          let () = assert (List.is_empty vars) in
          let (_,argscs) = find_remaining_scopes [] pats g in
          Some (g, [], List.map2 (in_pat_sc scopes) argscs pats)
        | NApp (NRef g,[]) -> (* special case: Syndef for @Cstr, this deactivates *)
              test_kind top g;
              let () = assert (List.is_empty vars) in
              Some (g, List.map (in_pat false scopes) pats, [])
        | NApp (NRef g,args) ->
              (* Convention: do not deactivate implicit arguments and scopes for further arguments *)
              test_kind top g;
              let nvars = List.length vars in
              if List.length pats < nvars then error_not_enough_arguments ?loc:qid.loc;
              let pats1,pats2 = List.chop nvars pats in
              let subst = make_subst vars pats1 in
              let idspl1 = List.map (in_not false qid.loc scopes (subst, Id.Map.empty) []) args in
              let (_,argscs) = find_remaining_scopes pats1 pats2 g in
              Some (g, idspl1, List.map2 (in_pat_sc scopes) argscs pats2)
        | _ -> raise Not_found
        with Not_found -> None in
        Syntax_def.search_filtered_syntactic_definition filter sp
      | TrueGlobal g ->
          test_kind top g;
          Dumpglob.add_glob ?loc:qid.loc g;
          let (_,argscs) = find_remaining_scopes [] pats g in
          Some (g,[],List.map2 (fun x -> in_pat false (x,snd scopes)) argscs pats)
    with Not_found -> None
  and in_pat top scopes pt =
    let open CAst in
    let loc = pt.loc in
    match pt.v with
    | CPatAlias (p, id) -> DAst.make ?loc @@ RCPatAlias (in_pat top scopes p, id)
    | CPatRecord l ->
      let sorted_fields =
        sort_fields ~complete:false loc l (fun _idx fieldname constructor -> CAst.make ?loc @@ CPatAtom None) in
      begin match sorted_fields with
        | None -> DAst.make ?loc @@ RCPatAtom None
        | Some (n, head, pl) ->
          let pl =
            if get_asymmetric_patterns () then pl else
            let pars = List.make n (CAst.make ?loc @@ CPatAtom None) in
            List.rev_append pars pl in
          match drop_syndef top scopes head pl with
            | Some (a,b,c) -> DAst.make ?loc @@ RCPatCstr(a, b, c)
            | None -> raise (InternalizationError (loc,NotAConstructor head))
      end
    | CPatCstr (head, None, pl) ->
      begin
        match drop_syndef top scopes head pl with
          | Some (a,b,c) -> DAst.make ?loc @@ RCPatCstr(a, b, c)
          | None -> raise (InternalizationError (loc,NotAConstructor head))
      end
     | CPatCstr (qid, Some expl_pl, pl) ->
      let g = try Nametab.locate qid
              with Not_found ->
              raise (InternalizationError (loc,NotAConstructor qid)) in
      if expl_pl == [] then
        (* Convention: (@r) deactivates all further implicit arguments and scopes *)
        DAst.make ?loc @@ RCPatCstr (g, List.map (in_pat false scopes) pl, [])
      else
        (* Convention: (@r expl_pl) deactivates implicit arguments in expl_pl and in pl *)
        (* but not scopes in expl_pl *)
        let (argscs1,_) = find_remaining_scopes expl_pl pl g in
        DAst.make ?loc @@ RCPatCstr (g, List.map2 (in_pat_sc scopes) argscs1 expl_pl @ List.map (in_pat false scopes) pl, [])
    | CPatNotation ((InConstrEntrySomeLevel,"- _"),([a],[]),[]) when is_non_zero_pat a ->
      let p = match a.CAst.v with CPatPrim (Numeral (_, p)) -> p | _ -> assert false in
      let pat, _df = Notation.interp_prim_token_cases_pattern_expr ?loc (ensure_kind false loc) (Numeral (SMinus,p)) scopes in
      rcp_of_glob scopes pat
    | CPatNotation ((InConstrEntrySomeLevel,"( _ )"),([a],[]),[]) ->
      in_pat top scopes a
    | CPatNotation (ntn,fullargs,extrargs) ->
      let ntn,(terms,termlists) = contract_curly_brackets_pat ntn fullargs in
      let ((ids',c),df) = Notation.interp_notation ?loc ntn scopes in
      let (terms,termlists) = split_by_type_pat ?loc ids' (terms,termlists) in
      Dumpglob.dump_notation_location (patntn_loc ?loc fullargs ntn) ntn df;
      in_not top loc scopes (terms,termlists) extrargs c
    | CPatDelimiters (key, e) ->
      in_pat top (None,find_delimiters_scope ?loc key::snd scopes) e
    | CPatPrim p ->
      let pat, _df = Notation.interp_prim_token_cases_pattern_expr ?loc (test_kind false) p scopes in
      rcp_of_glob scopes pat
    | CPatAtom (Some id) ->
      begin
        match drop_syndef top scopes id [] with
          | Some (a,b,c) -> DAst.make ?loc @@ RCPatCstr (a, b, c)
          | None         -> DAst.make ?loc @@ RCPatAtom (Some ((make ?loc @@ find_pattern_variable id),scopes))
      end
    | CPatAtom None -> DAst.make ?loc @@ RCPatAtom None
    | CPatOr pl     -> DAst.make ?loc @@ RCPatOr (List.map (in_pat top scopes) pl)
    | CPatCast (_,_) ->
      (* We raise an error if the pattern contains a cast, due to
         current restrictions on casts in patterns. Cast in patterns
         are supported only in local binders and only at top level.
         The only reason they are in the [cases_pattern_expr] type
         is that the parser needs to factor the "c : t" notation
         with user defined notations. In the long term, we will try to
         support such casts everywhere, and perhaps use them to print
         the domains of lambdas in the encoding of match in constr.
         This check is here and not in the parser because it would require
         duplicating the levels of the [pattern] rule. *)
      CErrors.user_err ?loc ~hdr:"drop_notations_pattern"
                            (Pp.strbrk "Casts are not supported in this pattern.")
  and in_pat_sc scopes x = in_pat false (x,snd scopes)
  and in_not top loc scopes (subst,substlist as fullsubst) args = function
    | NVar id ->
      let () = assert (List.is_empty args) in
      begin
        (* subst remembers the delimiters stack in the interpretation *)
        (* of the notations *)
        try
          let (a,(scopt,subscopes)) = Id.Map.find id subst in
          in_pat top (scopt,subscopes@snd scopes) a
        with Not_found ->
          if Id.equal id ldots_var then DAst.make ?loc @@ RCPatAtom (Some ((make ?loc id),scopes)) else
            anomaly (str "Unbound pattern notation variable: " ++ Id.print id ++ str ".")
      end
    | NRef g ->
      ensure_kind top loc g;
      let (_,argscs) = find_remaining_scopes [] args g in
      DAst.make ?loc @@ RCPatCstr (g, [], List.map2 (in_pat_sc scopes) argscs args)
    | NApp (NRef g,pl) ->
      ensure_kind top loc g;
      let (argscs1,argscs2) = find_remaining_scopes pl args g in
      let pl = List.map2 (fun x -> in_not false loc (x,snd scopes) fullsubst []) argscs1 pl in
      let pl = add_local_defs_and_check_length loc genv g pl args in
      DAst.make ?loc @@ RCPatCstr (g, pl @ List.map (in_pat false scopes) args, [])
    | NList (x,y,iter,terminator,revert) ->
      if not (List.is_empty args) then user_err ?loc 
        (strbrk "Application of arguments to a recursive notation not supported in patterns.");
      (try
         (* All elements of the list are in scopes (scopt,subscopes) *)
         let (l,(scopt,subscopes)) = Id.Map.find x substlist in
         let termin = in_not top loc scopes fullsubst [] terminator in
         List.fold_right (fun a t ->
           let nsubst = Id.Map.add y (a, (scopt, subscopes)) subst in
           let u = in_not false loc scopes (nsubst, substlist) [] iter in
           subst_pat_iterator ldots_var t u)
           (if revert then List.rev l else l) termin
       with Not_found ->
         anomaly (Pp.str "Inconsistent substitution of recursive notation."))
    | NHole _ ->
      let () = assert (List.is_empty args) in
      DAst.make ?loc @@ RCPatAtom None
    | t -> error_invalid_pattern_notation ?loc ()
  in in_pat true

let rec intern_pat genv ntnvars aliases pat =
  let intern_cstr_with_all_args loc c with_letin idslpl1 pl2 =
    let idslpl2 = List.map (intern_pat genv ntnvars empty_alias) pl2 in
    let (ids',pll) = product_of_cases_patterns aliases (idslpl1@idslpl2) in
    let pl' = List.map (fun (asubst,pl) ->
      (asubst, DAst.make ?loc @@ PatCstr (c,chop_params_pattern loc (fst c) pl with_letin,alias_of aliases))) pll in
    ids',pl' in
  let loc = pat.loc in
  match DAst.get pat with
    | RCPatAlias (p, id) ->
      let aliases' = merge_aliases aliases id in
      intern_pat genv ntnvars aliases' p
    | RCPatCstr (head, expl_pl, pl) ->
      if get_asymmetric_patterns () then
        let len = if List.is_empty expl_pl then Some (List.length pl) else None in
        let c,idslpl1 = find_constructor loc len head in
        let with_letin =
          check_constructor_length genv loc c (List.length idslpl1 + List.length expl_pl) pl in
        intern_cstr_with_all_args loc c with_letin idslpl1 (expl_pl@pl)
      else
        let c,idslpl1 = find_constructor loc None head in
        let with_letin, pl2 =
          add_implicits_check_constructor_length genv loc c (List.length idslpl1 + List.length expl_pl) pl in
        intern_cstr_with_all_args loc c with_letin idslpl1 (expl_pl@pl2)
    | RCPatAtom (Some ({loc;v=id},scopes)) ->
      let aliases = merge_aliases aliases (make ?loc @@ Name id) in
      set_var_scope ?loc id false scopes ntnvars;
      (aliases.alias_ids,[aliases.alias_map, DAst.make ?loc @@ PatVar (alias_of aliases)]) (* TO CHECK: aura-t-on id? *)
    | RCPatAtom (None) ->
      let { alias_ids = ids; alias_map = asubst; } = aliases in
      (ids, [asubst, DAst.make ?loc @@ PatVar (alias_of aliases)])
    | RCPatOr pl ->
      assert (not (List.is_empty pl));
      let pl' = List.map (intern_pat genv ntnvars aliases) pl in
      let (idsl,pl') = List.split pl' in
      let ids = List.hd idsl in
      check_or_pat_variables loc ids (List.tl idsl);
      (ids,List.flatten pl')

let intern_cases_pattern genv ntnvars scopes aliases pat =
  intern_pat genv ntnvars aliases
    (drop_notations_pattern (function GlobRef.ConstructRef _ -> () | _ -> raise Not_found) genv scopes pat)

let _ =
  intern_cases_pattern_fwd :=
    fun ntnvars scopes p -> intern_cases_pattern (Global.env ()) ntnvars scopes empty_alias p

let intern_ind_pattern genv ntnvars scopes pat =
  let no_not =
    try
      drop_notations_pattern (function (GlobRef.IndRef _ | GlobRef.ConstructRef _) -> () | _ -> raise Not_found) genv scopes pat
    with InternalizationError(loc,NotAConstructor _) -> error_bad_inductive_type ?loc
  in
  let loc = no_not.CAst.loc in
  match DAst.get no_not with
    | RCPatCstr (head, expl_pl, pl) ->
      let c = (function GlobRef.IndRef ind -> ind | _ -> error_bad_inductive_type ?loc) head in
      let with_letin, pl2 = add_implicits_check_ind_length genv loc c
        (List.length expl_pl) pl in
      let idslpl = List.map (intern_pat genv ntnvars empty_alias) (expl_pl@pl2) in
      (with_letin,
       match product_of_cases_patterns empty_alias idslpl with
       | ids,[asubst,pl] -> (c,ids,asubst,chop_params_pattern loc c pl with_letin)
       | _ -> error_bad_inductive_type ?loc)
    | x -> error_bad_inductive_type ?loc

(**********************************************************************)
(* Utilities for application                                          *)

let merge_impargs l args =
  let test x = function
  | (_, Some {v=y}) -> explicitation_eq x y
  | _ -> false
  in
  List.fold_right (fun a l ->
    match a with
      | (_, Some {v=ExplByName id as x}) when
          List.exists (test x) args -> l
      | _ -> a::l)
    l args

let get_implicit_name n imps =
  Some (Impargs.name_of_implicit (List.nth imps (n-1)))

let set_hole_implicit i b c =
  let loc = c.CAst.loc in
  match DAst.get c with
  | GRef (r, _) -> Loc.tag ?loc (Evar_kinds.ImplicitArg (r,i,b),IntroAnonymous,None)
  | GApp (r, _) ->
    let loc = r.CAst.loc in
    begin match DAst.get r with
    | GRef (r, _) ->
      Loc.tag ?loc (Evar_kinds.ImplicitArg (r,i,b),IntroAnonymous,None)
    | _ -> anomaly (Pp.str "Only refs have implicits.")
    end
  | GVar id -> Loc.tag ?loc (Evar_kinds.ImplicitArg (GlobRef.VarRef id,i,b),IntroAnonymous,None)
  | _ -> anomaly (Pp.str "Only refs have implicits.")

let exists_implicit_name id =
  List.exists (fun imp -> is_status_implicit imp && Id.equal id (name_of_implicit imp))

let extract_explicit_arg imps args =
  let rec aux = function
  | [] -> Id.Map.empty, []
  | (a,e)::l ->
      let (eargs,rargs) = aux l in
      match e with
      | None -> (eargs,a::rargs)
      | Some {loc;v=pos} ->
          let id = match pos with
          | ExplByName id ->
              if not (exists_implicit_name id imps) then
                user_err ?loc 
                  (str "Wrong argument name: " ++ Id.print id ++ str ".");
              if Id.Map.mem id eargs then
                user_err ?loc  (str "Argument name " ++ Id.print id
                ++ str " occurs more than once.");
              id
          | ExplByPos (p,_id) ->
              let id =
                try
                  let imp = List.nth imps (p-1) in
                  if not (is_status_implicit imp) then failwith "imp";
                  name_of_implicit imp
                with Failure _ (* "nth" | "imp" *) ->
                  user_err ?loc 
                    (str"Wrong argument position: " ++ int p ++ str ".")
              in
              if Id.Map.mem id eargs then
                user_err ?loc  (str"Argument at position " ++ int p ++
                  str " is mentioned more than once.");
              id in
          (Id.Map.add id (loc, a) eargs, rargs)
  in aux args

(**********************************************************************)
(* Main loop                                                          *)

let internalize globalenv env pattern_mode (_, ntnvars as lvar) c =
  let rec intern env = CAst.with_loc_val (fun ?loc -> function
    | CRef (ref,us) ->
        let (c,imp,subscopes,l),_ =
          intern_applied_reference ~isproj:None intern env (Environ.named_context_val globalenv)
            lvar us [] ref
        in
          apply_impargs c env imp subscopes l loc

    | CFix ({ CAst.loc = locid; v = iddef}, dl) ->
        let lf = List.map (fun ({CAst.v = id},_,_,_,_) -> id) dl in
        let dl = Array.of_list dl in
        let n =
          try List.index0 Id.equal iddef lf
          with Not_found ->
            raise (InternalizationError (locid,UnboundFixName (false,iddef)))
        in
        let idl_temp = Array.map
            (fun (id,recarg,bl,ty,_) ->
               let recarg = Option.map (function { CAst.v = v } -> match v with
                 | CStructRec i -> i
                 | _ -> anomaly Pp.(str "Non-structural recursive argument in non-program fixpoint")) recarg
               in
               let before, after = split_at_annot bl recarg in
               let (env',rbefore) = List.fold_left intern_local_binder (env,[]) before in
               let n = Option.map (fun _ -> List.count (fun c -> match DAst.get c with
                   | GLocalAssum _ -> true
                   | _ -> false (* remove let-ins *))
                   rbefore) recarg in
               let (env',rbl) = List.fold_left intern_local_binder (env',rbefore) after in
               let bl = List.rev (List.map glob_local_binder_of_extended rbl) in
               let bl_impls = remember_binders_impargs env' bl in
               (n, bl, intern_type env' ty, bl_impls)) dl in
        (* We add the recursive functions to the environment *)
        let env_rec = List.fold_left_i (fun i en name ->
           let (_,bli,tyi,_) = idl_temp.(i) in
           let fix_args = (List.map (fun (na, bk, _, _) -> build_impls bk na) bli) in
           push_name_env ntnvars (impls_type_list ~args:fix_args tyi)
           en (CAst.make @@ Name name)) 0 env lf in
        let idl = Array.map2 (fun (_,_,_,_,bd) (n,bl,ty,before_impls) ->
            (* We add the binders common to body and type to the environment *)
            let env_body = restore_binders_impargs env_rec before_impls in
            (n,bl,ty,intern {env_body with tmp_scope = None} bd)) dl idl_temp in
        DAst.make ?loc @@
        GRec (GFix
                (Array.map (fun (ro,_,_,_) -> ro) idl,n),
              Array.of_list lf,
              Array.map (fun (_,bl,_,_) -> bl) idl,
              Array.map (fun (_,_,ty,_) -> ty) idl,
              Array.map (fun (_,_,_,bd) -> bd) idl)

    | CCoFix ({ CAst.loc = locid; v = iddef }, dl) ->
        let lf = List.map (fun ({CAst.v = id},_,_,_) -> id) dl in
        let dl = Array.of_list dl in
        let n =
          try List.index0 Id.equal iddef lf
          with Not_found ->
            raise (InternalizationError (locid,UnboundFixName (true,iddef)))
        in
        let idl_tmp = Array.map
          (fun ({ CAst.loc; v = id },bl,ty,_) ->
            let (env',rbl) = List.fold_left intern_local_binder (env,[]) bl in
            let bl = List.rev (List.map glob_local_binder_of_extended rbl) in
            let bl_impls = remember_binders_impargs env' bl in
            (bl,intern_type env' ty,bl_impls)) dl in
        let env_rec = List.fold_left_i (fun i en name ->
          let (bli,tyi,_) = idl_tmp.(i) in
          let cofix_args =  List.map (fun (na, bk, _, _) -> build_impls bk na) bli in
          push_name_env ntnvars (impls_type_list ~args:cofix_args tyi)
            en (CAst.make @@ Name name)) 0 env lf in
        let idl = Array.map2 (fun (_,_,_,bd) (b,c,bl_impls) ->
          (* We add the binders common to body and type to the environment *)
          let env_body = restore_binders_impargs env_rec bl_impls in
          (b,c,intern {env_body with tmp_scope = None} bd)) dl idl_tmp in
        DAst.make ?loc @@
        GRec (GCoFix n,
              Array.of_list lf,
              Array.map (fun (bl,_,_) -> bl) idl,
              Array.map (fun (_,ty,_) -> ty) idl,
              Array.map (fun (_,_,bd) -> bd) idl)
    | CProdN ([],c2) -> anomaly (Pp.str "The AST is malformed, found prod without binders.")
    | CProdN (bl,c2) ->
        let (env',bl) = List.fold_left intern_local_binder (env,[]) bl in
        expand_binders ?loc mkGProd bl (intern_type env' c2)
    | CLambdaN ([],c2) -> anomaly (Pp.str "The AST is malformed, found lambda without binders.")
    | CLambdaN (bl,c2) ->
        let (env',bl) = List.fold_left intern_local_binder (reset_tmp_scope env,[]) bl in
        expand_binders ?loc mkGLambda bl (intern env' c2)
    | CLetIn (na,c1,t,c2) ->
        let inc1 = intern (reset_tmp_scope env) c1 in
        let int = Option.map (intern_type env) t in
        DAst.make ?loc @@
        GLetIn (na.CAst.v, inc1, int,
          intern (push_name_env ntnvars (impls_term_list inc1) env na) c2)
    | CNotation ((InConstrEntrySomeLevel,"- _"), ([a],[],[],[])) when is_non_zero a ->
      let p = match a.CAst.v with CPrim (Numeral (_, p)) -> p | _ -> assert false in
       intern env (CAst.make ?loc @@ CPrim (Numeral (SMinus,p)))
    | CNotation ((InConstrEntrySomeLevel,"( _ )"),([a],[],[],[])) -> intern env a
    | CNotation (ntn,args) ->
        intern_notation intern env ntnvars loc ntn args
    | CGeneralization (b,a,c) ->
        intern_generalization intern env ntnvars loc b a c
    | CPrim p ->
        fst (Notation.interp_prim_token ?loc p (env.tmp_scope,env.scopes))
    | CDelimiters (key, e) ->
        intern {env with tmp_scope = None;
                  scopes = find_delimiters_scope ?loc key :: env.scopes} e
    | CAppExpl ((isproj,ref,us), args) ->
        let (f,_,args_scopes,_),args =
          let args = List.map (fun a -> (a,None)) args in
          intern_applied_reference ~isproj intern env (Environ.named_context_val globalenv)
            lvar us args ref
        in
        (* Rem: GApp(_,f,[]) stands for @f *)
        if args = [] then DAst.make ?loc @@ GApp (f,[]) else
          smart_gapp f loc (intern_args env args_scopes (List.map fst args))

    | CApp ((isproj,f), args) ->
        let isproj,f,args = match f.CAst.v with
          (* Compact notations like "t.(f args') args" *)
          | CApp ((Some _ as isproj',f), args') when not (Option.has_some isproj) ->
            isproj',f,args'@args
          (* Don't compact "(f args') args" to resolve implicits separately *)
          | _ -> isproj,f,args in
        let (c,impargs,args_scopes,l),args =
          match f.CAst.v with
            | CRef (ref,us) -> 
               intern_applied_reference ~isproj intern env
                 (Environ.named_context_val globalenv) lvar us args ref
            | CNotation (ntn,([],[],[],[])) ->
                assert (Option.is_empty isproj);
                let c = intern_notation intern env ntnvars loc ntn ([],[],[],[]) in
                let x, impl, scopes, l = find_appl_head_data c in
                  (x,impl,scopes,l), args
            | _ -> assert (Option.is_empty isproj); (intern env f,[],[],[]), args in
          apply_impargs c env impargs args_scopes
            (merge_impargs l args) loc

    | CRecord fs ->
       let st = Evar_kinds.Define (not (Program.get_proofs_transparency ())) in
       let fields =
         sort_fields ~complete:true loc fs
                     (fun _idx fieldname constructorname ->
                         let open Evar_kinds in
                         let fieldinfo : Evar_kinds.record_field =
                             {fieldname=fieldname; recordname=inductive_of_constructor constructorname}
                             in
                         CAst.make ?loc @@ CHole (Some
                 (Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with
                     Evar_kinds.qm_obligation=st;
                     Evar_kinds.qm_record_field=Some fieldinfo
                }) , IntroAnonymous, None))
       in
       begin
          match fields with
            | None -> user_err ?loc ~hdr:"intern" (str"No constructor inference.")
            | Some (n, constrname, args) ->
                let pars = List.make n (CAst.make ?loc @@ CHole (None, IntroAnonymous, None)) in
                let app = CAst.make ?loc @@ CAppExpl ((None, constrname,None), List.rev_append pars args) in
          intern env app
        end
    | CCases (sty, rtnpo, tms, eqns) ->
        let as_in_vars = List.fold_left (fun acc (_,na,inb) ->
          (Option.fold_left (fun acc { CAst.v = y } -> Name.fold_right Id.Set.add y acc) acc na))
          Id.Set.empty tms in
        (* as, in & return vars *)
        let forbidden_vars = Option.cata free_vars_of_constr_expr as_in_vars rtnpo in
        let tms,ex_ids,aliases,match_from_in = List.fold_right
          (fun citm (inds,ex_ids,asubst,matchs) ->
            let ((tm,ind),extra_id,(ind_ids,alias_subst,match_td)) =
              intern_case_item env forbidden_vars citm in
            (tm,ind)::inds,
            Id.Set.union ind_ids (Option.fold_right Id.Set.add extra_id ex_ids),
            merge_subst alias_subst asubst,
            List.rev_append match_td matchs)
          tms ([],Id.Set.empty,Id.Map.empty,[]) in
        let env' = Id.Set.fold
          (fun var bli -> push_name_env ntnvars (Variable,[],[],[]) bli (CAst.make @@ Name var))
          (Id.Set.union ex_ids as_in_vars) (reset_hidden_inductive_implicit_test env) in
        (* PatVars before a real pattern do not need to be matched *)
        let stripped_match_from_in =
          let rec aux = function
            | [] -> []
            | (_, c) :: q when is_patvar c -> aux q
            | l -> l
          in aux match_from_in in
        let rtnpo = Option.map (replace_vars_constr_expr aliases) rtnpo in
        let rtnpo = match stripped_match_from_in with
          | [] -> Option.map (intern_type env') rtnpo (* Only PatVar in "in" clauses *)
          | l ->
             (* Build a return predicate by expansion of the patterns of the "in" clause *)
             let thevars, thepats = List.split l in
             let sub_rtn = (* Some (GSort (Loc.ghost,GType None)) *) None in
             let sub_tms = List.map (fun id -> (DAst.make @@ GVar id),(Name id,None)) thevars (* "match v1,..,vn" *) in
             let main_sub_eqn = CAst.make @@
               ([],thepats, (* "|p1,..,pn" *)
                Option.cata (intern_type env')
                  (DAst.make ?loc @@ GHole(Evar_kinds.CasesType false,IntroAnonymous,None))
                  rtnpo) (* "=> P" if there were a return predicate P, and "=> _" otherwise *) in
             let catch_all_sub_eqn =
               if List.for_all (irrefutable globalenv) thepats then [] else
                  [CAst.make @@ ([],List.make (List.length thepats) (DAst.make @@ PatVar Anonymous), (* "|_,..,_" *)
                   DAst.make @@ GHole(Evar_kinds.ImpossibleCase,IntroAnonymous,None))]   (* "=> _" *) in
             Some (DAst.make @@ GCases(RegularStyle,sub_rtn,sub_tms,main_sub_eqn::catch_all_sub_eqn))
        in
        let eqns' = List.map (intern_eqn (List.length tms) env) eqns in
        DAst.make ?loc @@
        GCases (sty, rtnpo, tms, List.flatten eqns')
    | CLetTuple (nal, (na,po), b, c) ->
        let env' = reset_tmp_scope env in
        (* "in" is None so no match to add *)
        let ((b',(na',_)),_,_) = intern_case_item env' Id.Set.empty (b,na,None) in
        let p' = Option.map (fun u ->
          let env'' = push_name_env ntnvars (Variable,[],[],[]) (reset_hidden_inductive_implicit_test env')
            (CAst.make na') in
          intern_type env'' u) po in
        DAst.make ?loc @@
        GLetTuple (List.map (fun { CAst.v } -> v) nal, (na', p'), b',
                   intern (List.fold_left (push_name_env ntnvars (Variable,[],[],[])) (reset_hidden_inductive_implicit_test env) nal) c)
    | CIf (c, (na,po), b1, b2) ->
      let env' = reset_tmp_scope env in
      let ((c',(na',_)),_,_) = intern_case_item env' Id.Set.empty (c,na,None) in (* no "in" no match to ad too *)
      let p' = Option.map (fun p ->
          let env'' = push_name_env ntnvars (Variable,[],[],[]) (reset_hidden_inductive_implicit_test env)
            (CAst.make na') in
          intern_type env'' p) po in
        DAst.make ?loc @@
        GIf (c', (na', p'), intern env b1, intern env b2)
    | CHole (k, naming, solve) ->
        let k = match k with
        | None ->
           let st = Evar_kinds.Define (not (Program.get_proofs_transparency ())) in
           (match naming with
           | IntroIdentifier id -> Evar_kinds.NamedHole id
           | _ -> Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with Evar_kinds.qm_obligation=st; })
        | Some k -> k
        in
        let solve = match solve with
        | None -> None
        | Some gen ->
          let (ltacvars, ntnvars) = lvar in
          (* Preventively declare notation variables in ltac as non-bindings *)
          Id.Map.iter (fun x (used_as_binder,_,_) -> used_as_binder := false) ntnvars;
          let extra = ltacvars.ltac_extra in
          (* We inform ltac that the interning vars and the notation vars are bound *)
          (* but we could instead rely on the "intern_sign" *)
          let lvars = Id.Set.union ltacvars.ltac_bound ltacvars.ltac_vars in
          let lvars = Id.Set.union lvars (Id.Map.domain ntnvars) in
          let ltacvars = Id.Set.union lvars env.ids in
          (* Propagating enough information for mutual interning with tac-in-term *)
          let intern_sign = {
            Genintern.intern_ids = env.ids;
            Genintern.notation_variable_status = ntnvars
          } in
          let ist = {
            Genintern.genv = globalenv;
            ltacvars;
            extra;
            intern_sign;
          } in
          let (_, glb) = Genintern.generic_intern ist gen in
          Some glb
        in
        DAst.make ?loc @@
        GHole (k, naming, solve)
    (* Parsing pattern variables *)
    | CPatVar n when pattern_mode ->
        DAst.make ?loc @@
        GPatVar (Evar_kinds.SecondOrderPatVar n)
    | CEvar (n, []) when pattern_mode ->
        DAst.make ?loc @@
        GPatVar (Evar_kinds.FirstOrderPatVar n)
    (* end *)
    (* Parsing existential variables *)
    | CEvar (n, l) ->
        DAst.make ?loc @@
        GEvar (n, List.map (on_snd (intern env)) l)
    | CPatVar _ ->
        raise (InternalizationError (loc,IllegalMetavariable))
    (* end *)
    | CSort s ->
        DAst.make ?loc @@
        GSort s
    | CCast (c1, c2) ->
        DAst.make ?loc @@
        GCast (intern env c1, map_cast_type (intern_type env) c2)
    )
  and intern_type env = intern (set_type_scope env)

  and intern_local_binder env bind : intern_env * Glob_term.extended_glob_local_binder list =
    intern_local_binder_aux intern ntnvars env bind

  (* Expands a multiple pattern into a disjunction of multiple patterns *)
  and intern_multiple_pattern env n pl =
    let idsl_pll = List.map (intern_cases_pattern globalenv ntnvars (None,env.scopes) empty_alias) pl in
    let loc = loc_of_multiple_pattern pl in
    check_number_of_pattern loc n pl;
    product_of_cases_patterns empty_alias idsl_pll

  (* Expands a disjunction of multiple pattern *)
  and intern_disjunctive_multiple_pattern env loc n mpl =
    assert (not (List.is_empty mpl));
    let mpl' = List.map (intern_multiple_pattern env n) mpl in
    let (idsl,mpl') = List.split mpl' in
    let ids = List.hd idsl in
    check_or_pat_variables loc ids (List.tl idsl);
    (ids,List.flatten mpl')

  (* Expands a pattern-matching clause [lhs => rhs] *)
  and intern_eqn n env {loc;v=(lhs,rhs)} =
    let eqn_ids,pll = intern_disjunctive_multiple_pattern env loc n lhs in
    (* Linearity implies the order in ids is irrelevant *)
    let eqn_ids = List.map (fun x -> x.v) eqn_ids in
    check_linearity lhs eqn_ids;
    let env_ids = List.fold_right Id.Set.add eqn_ids env.ids in
    List.map (fun (asubst,pl) ->
      let rhs = replace_vars_constr_expr asubst rhs in
      let rhs' = intern {env with ids = env_ids} rhs in
      CAst.make ?loc (eqn_ids,pl,rhs')) pll

  and intern_case_item env forbidden_names_for_gen (tm,na,t) =
    (* the "match" part *)
    let tm' = intern env tm in
    (* the "as" part *)
    let extra_id,na =
      let loc = tm'.CAst.loc in
      match DAst.get tm', na with
      | GVar id, None when not (Id.Map.mem id (snd lvar)) -> Some id, CAst.make ?loc @@ Name id
      | GRef (GlobRef.VarRef id, _), None -> Some id, CAst.make ?loc @@ Name id
      | _, None -> None, CAst.make Anonymous
      | _, Some ({ CAst.loc; v = na } as lna) -> None, lna in
    (* the "in" part *)
    let match_td,typ = match t with
    | Some t ->
        let with_letin,(ind,ind_ids,alias_subst,l) =
          intern_ind_pattern globalenv ntnvars (None,env.scopes) t in
        let (mib,mip) = Inductive.lookup_mind_specif globalenv ind in
        let nparams = (List.length (mib.Declarations.mind_params_ctxt)) in
        (* for "in Vect n", we answer (["n","n"],[(loc,"n")])

           for "in Vect (S n)", we answer ((match over "m", relevant branch is "S
           n"), abstract over "m") = ([("m","S n")],[(loc,"m")]) where "m" is
           generated from the canonical name of the inductive and outside of
           {forbidden_names_for_gen} *)
        let (match_to_do,nal) =
          let rec canonize_args case_rel_ctxt arg_pats forbidden_names match_acc var_acc =
            let add_name l = function
              | { CAst.v = Anonymous } -> l
              | { CAst.loc; v = (Name y as x) } -> (y, DAst.make ?loc @@ PatVar x) :: l in
            match case_rel_ctxt,arg_pats with
              (* LetIn in the rel_context *)
              | LocalDef _ :: t, l when not with_letin ->
                canonize_args t l forbidden_names match_acc ((CAst.make Anonymous)::var_acc)
              | [],[] ->
                (add_name match_acc na, var_acc)
              | (LocalAssum (cano_name,ty) | LocalDef (cano_name,_,ty)) :: t, c::tt ->
                begin match DAst.get c with
                | PatVar x ->
                  let loc = c.CAst.loc in
                  canonize_args t tt forbidden_names
                    (add_name match_acc CAst.(make ?loc x)) (CAst.make ?loc x::var_acc)
                | _ ->
                  let fresh =
                    Namegen.next_name_away_with_default_using_types "iV" cano_name.binder_name forbidden_names (EConstr.of_constr ty) in
                  canonize_args t tt (Id.Set.add fresh forbidden_names)
                    ((fresh,c)::match_acc) ((CAst.make ?loc:(cases_pattern_loc c) @@ Name fresh)::var_acc)
                end
              | _ -> assert false in
          let _,args_rel =
            List.chop nparams (List.rev mip.Declarations.mind_arity_ctxt) in
          canonize_args args_rel l forbidden_names_for_gen [] [] in
        (Id.Set.of_list (List.map (fun id -> id.CAst.v) ind_ids),alias_subst,match_to_do),
        Some (CAst.make ?loc:(cases_pattern_expr_loc t) (ind,List.rev_map (fun x -> x.v) nal))
    | None ->
      (Id.Set.empty,Id.Map.empty,[]), None in
    (tm',(na.CAst.v, typ)), extra_id, match_td

  and intern_impargs c env l subscopes args =
    let eargs, rargs = extract_explicit_arg l args in
    if !parsing_explicit then
      if Id.Map.is_empty eargs then intern_args env subscopes rargs
      else user_err Pp.(str "Arguments given by name or position not supported in explicit mode.")
    else
    let rec aux n impl subscopes eargs rargs =
      let (enva,subscopes') = apply_scope_env env subscopes in
      match (impl,rargs) with
      | (imp::impl', rargs) when is_status_implicit imp ->
          begin try
            let id = name_of_implicit imp in
            let (_,a) = Id.Map.find id eargs in
            let eargs' = Id.Map.remove id eargs in
            intern enva a :: aux (n+1) impl' subscopes' eargs' rargs
          with Not_found ->
          if List.is_empty rargs && Id.Map.is_empty eargs && not (maximal_insertion_of imp) then
            (* Less regular arguments than expected: complete *)
            (* with implicit arguments if maximal insertion is set *)
            []
          else
              (DAst.map_from_loc (fun ?loc (a,b,c) -> GHole(a,b,c))
                (set_hole_implicit (n,get_implicit_name n l) (force_inference_of imp) c)
              ) :: aux (n+1) impl' subscopes' eargs rargs
          end
      | (imp::impl', a::rargs') ->
          intern enva a :: aux (n+1) impl' subscopes' eargs rargs'
      | (imp::impl', []) ->
          if not (Id.Map.is_empty eargs) then
            (let (id,(loc,_)) = Id.Map.choose eargs in
               user_err ?loc (str "Not enough non implicit \
            arguments to accept the argument bound to " ++
                 Id.print id ++ str"."));
          []
      | ([], rargs) ->
          assert (Id.Map.is_empty eargs);
          intern_args env subscopes rargs
    in aux 1 l subscopes eargs rargs

  and apply_impargs c env imp subscopes l loc =
    let imp = select_impargs_size (List.length (List.filter (fun (_,x) -> x == None) l)) imp in
    let l = intern_impargs c env imp subscopes l in
      smart_gapp c loc l

  and smart_gapp f loc = function
    | [] -> f
    | l ->
      let loc' = f.CAst.loc in
      match DAst.get f with
      | GApp (g, args) -> DAst.make ?loc:(Loc.merge_opt loc' loc) @@ GApp (g, args@l)
      | _ -> DAst.make ?loc:(Loc.merge_opt (loc_of_glob_constr f) loc) @@ GApp (f, l)

  and intern_args env subscopes = function
    | [] -> []
    | a::args ->
        let (enva,subscopes) = apply_scope_env env subscopes in
        (intern enva a) :: (intern_args env subscopes args)

  in
  try
    intern env c
  with
      InternalizationError (loc,e) ->
        user_err ?loc ~hdr:"internalize"
          (explain_internalization_error e)

(**************************************************************************)
(* Functions to translate constr_expr into glob_constr                    *)
(**************************************************************************)

let extract_ids env =
  List.fold_right Id.Set.add
    (Termops.ids_of_rel_context (Environ.rel_context env))
    Id.Set.empty

let scope_of_type_kind sigma = function
  | IsType -> Notation.current_type_scope_name ()
  | OfType typ -> compute_type_scope sigma typ
  | WithoutTypeConstraint -> None

let empty_ltac_sign = {
  ltac_vars = Id.Set.empty;
  ltac_bound = Id.Set.empty;
  ltac_extra = Genintern.Store.empty;
}

let intern_gen kind env sigma
               ?(impls=empty_internalization_env) ?(pattern_mode=false) ?(ltacvars=empty_ltac_sign)
               c =
  let tmp_scope = scope_of_type_kind sigma kind in
  internalize env {ids = extract_ids env; unb = false;
                         tmp_scope = tmp_scope; scopes = [];
                         impls = impls}
    pattern_mode (ltacvars, Id.Map.empty) c

let intern_constr env sigma c = intern_gen WithoutTypeConstraint env sigma c
let intern_type env sigma c = intern_gen IsType env sigma c
let intern_pattern globalenv patt =
  try
    intern_cases_pattern globalenv Id.Map.empty (None,[]) empty_alias patt
  with
      InternalizationError (loc,e) ->
        user_err ?loc ~hdr:"internalize" (explain_internalization_error e)


(*********************************************************************)
(* Functions to parse and interpret constructions *)

(* All evars resolved *)

let interp_gen kind env sigma ?(impls=empty_internalization_env) c =
  let c = intern_gen kind ~impls env sigma c in
  understand ~expected_type:kind env sigma c

let interp_constr env sigma ?(impls=empty_internalization_env) c =
  interp_gen WithoutTypeConstraint env sigma c

let interp_type env sigma ?(impls=empty_internalization_env) c =
  interp_gen IsType env sigma ~impls c

let interp_casted_constr env sigma ?(impls=empty_internalization_env) c typ =
  interp_gen (OfType typ) env sigma ~impls c

(* Not all evars expected to be resolved *)

let interp_open_constr env sigma c =
  understand_tcc env sigma (intern_constr env sigma c)

(* Not all evars expected to be resolved and computation of implicit args *)

let interp_constr_evars_gen_impls ?(program_mode=false) env sigma
    ?(impls=empty_internalization_env) expected_type c =
  let c = intern_gen expected_type ~impls env sigma c in
  let imps = Implicit_quantifiers.implicits_of_glob_constr ~with_products:(expected_type == IsType) c in
  let flags = { Pretyping.all_no_fail_flags with program_mode } in
  let sigma, c = understand_tcc ~flags env sigma ~expected_type c in
  sigma, (c, imps)

let interp_constr_evars_impls ?program_mode env sigma ?(impls=empty_internalization_env) c =
  interp_constr_evars_gen_impls ?program_mode env sigma ~impls WithoutTypeConstraint c

let interp_casted_constr_evars_impls ?program_mode env evdref ?(impls=empty_internalization_env) c typ =
  interp_constr_evars_gen_impls ?program_mode env evdref ~impls (OfType typ) c

let interp_type_evars_impls ?program_mode env sigma ?(impls=empty_internalization_env) c =
  interp_constr_evars_gen_impls ?program_mode env sigma ~impls IsType c

(* Not all evars expected to be resolved, with side-effect on evars *)

let interp_constr_evars_gen ?(program_mode=false) env sigma ?(impls=empty_internalization_env) expected_type c =
  let c = intern_gen expected_type ~impls env sigma c in
  let flags = { Pretyping.all_no_fail_flags with program_mode } in
  understand_tcc ~flags env sigma ~expected_type c

let interp_constr_evars ?program_mode env evdref ?(impls=empty_internalization_env) c =
  interp_constr_evars_gen ?program_mode env evdref WithoutTypeConstraint ~impls c

let interp_casted_constr_evars ?program_mode env sigma ?(impls=empty_internalization_env) c typ =
  interp_constr_evars_gen ?program_mode env sigma ~impls (OfType typ) c

let interp_type_evars ?program_mode env sigma ?(impls=empty_internalization_env) c =
  interp_constr_evars_gen ?program_mode env sigma IsType ~impls c

(* Miscellaneous *)

let intern_constr_pattern env sigma ?(as_type=false) ?(ltacvars=empty_ltac_sign) c =
  let c = intern_gen (if as_type then IsType else WithoutTypeConstraint)
            ~pattern_mode:true ~ltacvars env sigma c in
  pattern_of_glob_constr c

let intern_core kind env sigma ?(pattern_mode=false) ?(ltacvars=empty_ltac_sign)
      { Genintern.intern_ids = ids; Genintern.notation_variable_status = vl } c =
  let tmp_scope = scope_of_type_kind sigma kind in
  let impls = empty_internalization_env in
  internalize env {ids; unb = false; tmp_scope; scopes = []; impls}
    pattern_mode (ltacvars, vl) c

let interp_notation_constr env ?(impls=empty_internalization_env) nenv a =
  let ids = extract_ids env in
  (* [vl] is intended to remember the scope of the free variables of [a] *)
  let vl = Id.Map.map (fun typ -> (ref false, ref None, typ)) nenv.ninterp_var_type in
  let impls = Id.Map.fold (fun id _ impls -> Id.Map.remove id impls) nenv.ninterp_var_type impls in
  let c = internalize env {ids; unb = false; tmp_scope = None; scopes = []; impls}
    false (empty_ltac_sign, vl) a in
  (* Splits variables into those that are binding, bound, or both *)
  (* Translate and check that [c] has all its free variables bound in [vars] *)
  let a, reversible = notation_constr_of_glob_constr nenv c in
  (* binding and bound *)
  let out_scope = function None -> None,[] | Some (a,l) -> a,l in
  let unused = match reversible with NonInjective ids -> ids | _ -> [] in
  let vars = Id.Map.mapi (fun id (used_as_binder, sc, typ) ->
    (!used_as_binder && not (List.mem_f Id.equal id unused), out_scope !sc)) vl in
  (* Returns [a] and the ordered list of variables with their scopes *)
  vars, a, reversible

(* Interpret binders and contexts  *)

let interp_binder env sigma na t =
  let t = intern_gen IsType env sigma t in
  let t' = locate_if_hole ?loc:(loc_of_glob_constr t) na t in
  understand ~expected_type:IsType env sigma t'

let interp_binder_evars env sigma na t =
  let t = intern_gen IsType env sigma t in
  let t' = locate_if_hole ?loc:(loc_of_glob_constr t) na t in
  understand_tcc env sigma ~expected_type:IsType t'

let my_intern_constr env lvar acc c =
  internalize env acc false lvar c

let intern_context env impl_env binders =
  try
  let lvar = (empty_ltac_sign, Id.Map.empty) in
  let lenv, bl = List.fold_left
            (fun (lenv, bl) b ->
               let (env, bl) = intern_local_binder_aux (my_intern_constr env lvar) Id.Map.empty (lenv, bl) b in
               (env, bl))
            ({ids = extract_ids env; unb = false;
              tmp_scope = None; scopes = []; impls = impl_env}, []) binders in
  (lenv.impls, List.map glob_local_binder_of_extended bl)
  with InternalizationError (loc,e) ->
    user_err ?loc ~hdr:"internalize" (explain_internalization_error e)

let interp_glob_context_evars ?(program_mode=false) env sigma k bl =
  let open EConstr in
  let flags = { Pretyping.all_no_fail_flags with program_mode } in
  let env, sigma, par, _, impls =
    List.fold_left
      (fun (env,sigma,params,n,impls) (na, k, b, t) ->
       let t' =
         if Option.is_empty b then locate_if_hole ?loc:(loc_of_glob_constr t) na t
         else t
       in
       let sigma, t = understand_tcc ~flags env sigma ~expected_type:IsType t' in
        match b with
          None ->
              let r = Retyping.relevance_of_type env sigma t in
              let d = LocalAssum (make_annot na r,t) in
              let impls =
                if k == Implicit then CAst.make (Some (na,true)) :: impls
                else CAst.make None :: impls
              in
                (push_rel d env, sigma, d::params, succ n, impls)
          | Some b ->
              let sigma, c = understand_tcc ~flags env sigma ~expected_type:(OfType t) b in
              let r = Retyping.relevance_of_type env sigma t in
              let d = LocalDef (make_annot na r, c, t) in
                (push_rel d env, sigma, d::params, n, impls))
      (env,sigma,[],k+1,[]) (List.rev bl)
  in sigma, ((env, par), List.rev impls)

let interp_context_evars ?program_mode ?(impl_env=empty_internalization_env) ?(shift=0) env sigma params =
  let int_env,bl = intern_context env impl_env params in
  let sigma, x = interp_glob_context_evars ?program_mode env sigma shift bl in
  sigma, (int_env, x)