1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Util open CAst open Names open Nameops open Namegen open Constr open Context open Libnames open Globnames open Impargs open Glob_term open Glob_ops open Patternops open Pretyping open Cases open Constrexpr open Constrexpr_ops open Notation_term open Notation_ops open Notation open Inductiveops open Context.Rel.Declaration (** constr_expr -> glob_constr translation: - it adds holes for implicit arguments - it replaces notations by their value (scopes stuff are here) - it recognizes global vars from local ones - it prepares pattern matching problems (a pattern becomes a tree where nodes are constructor/variable pairs and leafs are variables) All that at once, fasten your seatbelt! *) (* To interpret implicits and arg scopes of variables in inductive types and recursive definitions and of projection names in records *) type var_internalization_type = | Inductive of Id.t list (* list of params *) * bool (* true = check for possible capture *) | Recursive | Method | Variable type var_internalization_data = (* type of the "free" variable, for coqdoc, e.g. while typing the constructor of JMeq, "JMeq" behaves as a variable of type Inductive *) var_internalization_type * (* impargs to automatically add to the variable, e.g. for "JMeq A a B b" in implicit mode, this is [A;B] and this adds (A:=A) and (B:=B) *) Id.t list * (* signature of impargs of the variable *) Impargs.implicit_status list * (* subscopes of the args of the variable *) scope_name option list type internalization_env = (var_internalization_data) Id.Map.t type ltac_sign = { ltac_vars : Id.Set.t; ltac_bound : Id.Set.t; ltac_extra : Genintern.Store.t; } let interning_grammar = ref false (* Historically for parsing grammar rules, but in fact used only for translator, v7 parsing, and unstrict tactic internalization *) let for_grammar f x = interning_grammar := true; let a = f x in interning_grammar := false; a (**********************************************************************) (* Locating reference, possibly via an abbreviation *) let locate_reference qid = Smartlocate.global_of_extended_global (Nametab.locate_extended qid) let is_global id = try let _ = locate_reference (qualid_of_ident id) in true with Not_found -> false (**********************************************************************) (* Internalization errors *) type internalization_error = | VariableCapture of Id.t * Id.t | IllegalMetavariable | NotAConstructor of qualid | UnboundFixName of bool * Id.t | NonLinearPattern of Id.t | BadPatternsNumber of int * int | NotAProjection of qualid | NotAProjectionOf of qualid * qualid | ProjectionsOfDifferentRecords of qualid * qualid exception InternalizationError of internalization_error Loc.located let explain_variable_capture id id' = Id.print id ++ str " is dependent in the type of " ++ Id.print id' ++ strbrk ": cannot interpret both of them with the same type" let explain_illegal_metavariable = str "Metavariables allowed only in patterns" let explain_not_a_constructor qid = str "Unknown constructor: " ++ pr_qualid qid let explain_unbound_fix_name is_cofix id = str "The name" ++ spc () ++ Id.print id ++ spc () ++ str "is not bound in the corresponding" ++ spc () ++ str (if is_cofix then "co" else "") ++ str "fixpoint definition" let explain_non_linear_pattern id = str "The variable " ++ Id.print id ++ str " is bound several times in pattern" let explain_bad_patterns_number n1 n2 = str "Expecting " ++ int n1 ++ str (String.plural n1 " pattern") ++ str " but found " ++ int n2 let explain_field_not_a_projection field_id = pr_qualid field_id ++ str ": Not a projection" let explain_field_not_a_projection_of field_id inductive_id = pr_qualid field_id ++ str ": Not a projection of inductive " ++ pr_qualid inductive_id let explain_projections_of_diff_records inductive1_id inductive2_id = str "This record contains fields of both " ++ pr_qualid inductive1_id ++ str " and " ++ pr_qualid inductive2_id let explain_internalization_error e = let pp = match e with | VariableCapture (id,id') -> explain_variable_capture id id' | IllegalMetavariable -> explain_illegal_metavariable | NotAConstructor ref -> explain_not_a_constructor ref | UnboundFixName (iscofix,id) -> explain_unbound_fix_name iscofix id | NonLinearPattern id -> explain_non_linear_pattern id | BadPatternsNumber (n1,n2) -> explain_bad_patterns_number n1 n2 | NotAProjection field_id -> explain_field_not_a_projection field_id | NotAProjectionOf (field_id, inductive_id) -> explain_field_not_a_projection_of field_id inductive_id | ProjectionsOfDifferentRecords (inductive1_id, inductive2_id) -> explain_projections_of_diff_records inductive1_id inductive2_id in pp ++ str "." let error_bad_inductive_type ?loc = user_err ?loc (str "This should be an inductive type applied to patterns.") let error_parameter_not_implicit ?loc = user_err ?loc (str "The parameters do not bind in patterns;" ++ spc () ++ str "they must be replaced by '_'.") let error_ldots_var ?loc = user_err ?loc (str "Special token " ++ Id.print ldots_var ++ str " is for use in the Notation command.") (**********************************************************************) (* Pre-computing the implicit arguments and arguments scopes needed *) (* for interpretation *) let parsing_explicit = ref false let empty_internalization_env = Id.Map.empty let compute_explicitable_implicit imps = function | Inductive (params,_) -> (* In inductive types, the parameters are fixed implicit arguments *) let sub_impl,_ = List.chop (List.length params) imps in let sub_impl' = List.filter is_status_implicit sub_impl in List.map name_of_implicit sub_impl' | Recursive | Method | Variable -> (* Unable to know in advance what the implicit arguments will be *) [] let compute_internalization_data env sigma ty typ impl = let impl = compute_implicits_with_manual env sigma typ (is_implicit_args()) impl in let expls_impl = compute_explicitable_implicit impl ty in (ty, expls_impl, impl, compute_arguments_scope sigma typ) let compute_internalization_env env sigma ?(impls=empty_internalization_env) ty = List.fold_left3 (fun map id typ impl -> Id.Map.add id (compute_internalization_data env sigma ty typ impl) map) impls (**********************************************************************) (* Contracting "{ _ }" in notations *) let rec wildcards ntn n = if Int.equal n (String.length ntn) then [] else let l = spaces ntn (n+1) in if ntn.[n] == '_' then n::l else l and spaces ntn n = if Int.equal n (String.length ntn) then [] else if ntn.[n] == ' ' then wildcards ntn (n+1) else spaces ntn (n+1) let expand_notation_string ntn n = let pos = List.nth (wildcards ntn 0) n in let hd = if Int.equal pos 0 then "" else String.sub ntn 0 pos in let tl = if Int.equal pos (String.length ntn) then "" else String.sub ntn (pos+1) (String.length ntn - pos -1) in hd ^ "{ _ }" ^ tl (* This contracts the special case of "{ _ }" for sumbool, sumor notations *) (* Remark: expansion of squash at definition is done in metasyntax.ml *) let contract_curly_brackets ntn (l,ll,bl,bll) = match ntn with | InCustomEntryLevel _,_ -> ntn,(l,ll,bl,bll) | InConstrEntrySomeLevel, ntn -> let ntn' = ref ntn in let rec contract_squash n = function | [] -> [] | { CAst.v = CNotation ((InConstrEntrySomeLevel,"{ _ }"),([a],[],[],[])) } :: l -> ntn' := expand_notation_string !ntn' n; contract_squash n (a::l) | a :: l -> a::contract_squash (n+1) l in let l = contract_squash 0 l in (* side effect; don't inline *) (InConstrEntrySomeLevel,!ntn'),(l,ll,bl,bll) let contract_curly_brackets_pat ntn (l,ll) = match ntn with | InCustomEntryLevel _,_ -> ntn,(l,ll) | InConstrEntrySomeLevel, ntn -> let ntn' = ref ntn in let rec contract_squash n = function | [] -> [] | { CAst.v = CPatNotation ((InConstrEntrySomeLevel,"{ _ }"),([a],[]),[]) } :: l -> ntn' := expand_notation_string !ntn' n; contract_squash n (a::l) | a :: l -> a::contract_squash (n+1) l in let l = contract_squash 0 l in (* side effect; don't inline *) (InConstrEntrySomeLevel,!ntn'),(l,ll) type intern_env = { ids: Names.Id.Set.t; unb: bool; tmp_scope: Notation_term.tmp_scope_name option; scopes: Notation_term.scope_name list; impls: internalization_env } (**********************************************************************) (* Remembering the parsing scope of variables in notations *) let make_current_scope tmp scopes = match tmp, scopes with | Some tmp_scope, (sc :: _) when String.equal sc tmp_scope -> scopes | Some tmp_scope, scopes -> tmp_scope :: scopes | None, scopes -> scopes let pr_scope_stack = function | [] -> str "the empty scope stack" | [a] -> str "scope " ++ str a | l -> str "scope stack " ++ str "[" ++ prlist_with_sep pr_comma str l ++ str "]" let error_inconsistent_scope ?loc id scopes1 scopes2 = user_err ?loc ~hdr:"set_var_scope" (Id.print id ++ str " is here used in " ++ pr_scope_stack scopes2 ++ strbrk " while it was elsewhere used in " ++ pr_scope_stack scopes1) let error_expect_binder_notation_type ?loc id = user_err ?loc (Id.print id ++ str " is expected to occur in binding position in the right-hand side.") let set_var_scope ?loc id istermvar (tmp_scope,subscopes as scopes) ntnvars = try let used_as_binder,idscopes,typ = Id.Map.find id ntnvars in if not istermvar then used_as_binder := true; let () = if istermvar then (* scopes have no effect on the interpretation of identifiers *) begin match !idscopes with | None -> idscopes := Some scopes | Some (tmp_scope', subscopes') -> let s' = make_current_scope tmp_scope' subscopes' in let s = make_current_scope tmp_scope subscopes in if not (List.equal String.equal s' s) then error_inconsistent_scope ?loc id s' s end in match typ with | Notation_term.NtnInternTypeOnlyBinder -> if istermvar then error_expect_binder_notation_type ?loc id | Notation_term.NtnInternTypeAny -> () with Not_found -> (* Not in a notation *) () let set_type_scope env = {env with tmp_scope = Notation.current_type_scope_name ()} let reset_tmp_scope env = {env with tmp_scope = None} let set_env_scopes env (scopt,subscopes) = {env with tmp_scope = scopt; scopes = subscopes @ env.scopes} let mkGProd ?loc (na,bk,t) body = DAst.make ?loc @@ GProd (na, bk, t, body) let mkGLambda ?loc (na,bk,t) body = DAst.make ?loc @@ GLambda (na, bk, t, body) (**********************************************************************) (* Utilities for binders *) let build_impls = function |Implicit -> (function |Name id -> Some (id, Impargs.Manual, (true,true)) |Anonymous -> Some (Id.of_string "_", Impargs.Manual, (true,true))) |Explicit -> fun _ -> None let impls_type_list ?(args = []) = let rec aux acc c = match DAst.get c with | GProd (na,bk,_,c) -> aux ((build_impls bk na)::acc) c | _ -> (Variable,[],List.append args (List.rev acc),[]) in aux [] let impls_term_list ?(args = []) = let rec aux acc c = match DAst.get c with | GLambda (na,bk,_,c) -> aux ((build_impls bk na)::acc) c | GRec (fix_kind, nas, args, tys, bds) -> let nb = match fix_kind with |GFix (_, n) -> n | GCoFix n -> n in let acc' = List.fold_left (fun a (na, bk, _, _) -> (build_impls bk na)::a) acc args.(nb) in aux acc' bds.(nb) |_ -> (Variable,[],List.append args (List.rev acc),[]) in aux [] (* Check if in binder "(x1 x2 .. xn : t)", none of x1 .. xn-1 occurs in t *) let rec check_capture ty = let open CAst in function | { loc; v = Name id } :: { v = Name id' } :: _ when occur_glob_constr id ty -> raise (InternalizationError (loc,VariableCapture (id,id'))) | _::nal -> check_capture ty nal | [] -> () let locate_if_hole ?loc na c = match DAst.get c with | GHole (_,naming,arg) -> (try match na with | Name id -> glob_constr_of_notation_constr ?loc (Reserve.find_reserved_type id) | Anonymous -> raise Not_found with Not_found -> DAst.make ?loc @@ GHole (Evar_kinds.BinderType na, naming, arg)) | _ -> c let reset_hidden_inductive_implicit_test env = { env with impls = Id.Map.map (function | (Inductive (params,_),b,c,d) -> (Inductive (params,false),b,c,d) | x -> x) env.impls } let check_hidden_implicit_parameters ?loc id impls = if Id.Map.exists (fun _ -> function | (Inductive (indparams,check),_,_,_) when check -> Id.List.mem id indparams | _ -> false) impls then user_err ?loc (Id.print id ++ strbrk " is already used as name of " ++ strbrk "a parameter of the inductive type; bound variables in " ++ strbrk "the type of a constructor shall use a different name.") let pure_push_name_env (id,implargs) env = {env with ids = Id.Set.add id env.ids; impls = Id.Map.add id implargs env.impls} let push_name_env ntnvars implargs env = let open CAst in function | { loc; v = Anonymous } -> env | { loc; v = Name id } -> check_hidden_implicit_parameters ?loc id env.impls ; if Id.Map.is_empty ntnvars && Id.equal id ldots_var then error_ldots_var ?loc; set_var_scope ?loc id false (env.tmp_scope,env.scopes) ntnvars; Dumpglob.dump_binding ?loc id; pure_push_name_env (id,implargs) env let remember_binders_impargs env bl = List.map_filter (fun (na,_,_,_) -> match na with | Anonymous -> None | Name id -> Some (id,Id.Map.find id env.impls)) bl let restore_binders_impargs env l = List.fold_right pure_push_name_env l env let intern_generalized_binder intern_type ntnvars env {loc;v=na} b' t ty = let ids = (match na with Anonymous -> fun x -> x | Name na -> Id.Set.add na) env.ids in let ty, ids' = if t then ty, ids else Implicit_quantifiers.implicit_application ids ty in let ty' = intern_type {env with ids = ids; unb = true} ty in let fvs = Implicit_quantifiers.generalizable_vars_of_glob_constr ~bound:ids ~allowed:ids' ty' in let env' = List.fold_left (fun env {loc;v=x} -> push_name_env ntnvars (Variable,[],[],[])(*?*) env (make ?loc @@ Name x)) env fvs in let bl = List.map CAst.(map (fun id -> (Name id, Implicit, DAst.make ?loc @@ GHole (Evar_kinds.BinderType (Name id), IntroAnonymous, None)))) fvs in let na = match na with | Anonymous -> let name = let id = match ty with | { v = CApp ((_, { v = CRef (qid,_) } ), _) } when qualid_is_ident qid -> qualid_basename qid | _ -> default_non_dependent_ident in Implicit_quantifiers.make_fresh ids' (Global.env ()) id in Name name | _ -> na in (push_name_env ntnvars (impls_type_list ty')(*?*) env' (make ?loc na)), (make ?loc (na,b',ty')) :: List.rev bl let intern_assumption intern ntnvars env nal bk ty = let intern_type env = intern (set_type_scope env) in match bk with | Default k -> let ty = intern_type env ty in check_capture ty nal; let impls = impls_type_list ty in List.fold_left (fun (env, bl) ({loc;v=na} as locna) -> (push_name_env ntnvars impls env locna, (make ?loc (na,k,locate_if_hole ?loc na ty))::bl)) (env, []) nal | Generalized (b',t) -> let env, b = intern_generalized_binder intern_type ntnvars env (List.hd nal) b' t ty in env, b let glob_local_binder_of_extended = DAst.with_loc_val (fun ?loc -> function | GLocalAssum (na,bk,t) -> (na,bk,None,t) | GLocalDef (na,bk,c,Some t) -> (na,bk,Some c,t) | GLocalDef (na,bk,c,None) -> let t = DAst.make ?loc @@ GHole(Evar_kinds.BinderType na,IntroAnonymous,None) in (na,bk,Some c,t) | GLocalPattern (_,_,_,_) -> Loc.raise ?loc (Stream.Error "pattern with quote not allowed here") ) let intern_cases_pattern_fwd = ref (fun _ -> failwith "intern_cases_pattern_fwd") let intern_letin_binder intern ntnvars env (({loc;v=na} as locna),def,ty) = let term = intern env def in let ty = Option.map (intern env) ty in (push_name_env ntnvars (impls_term_list term) env locna, (na,Explicit,term,ty)) let intern_cases_pattern_as_binder ?loc ntnvars env p = let il,disjpat = let (il, subst_disjpat) = !intern_cases_pattern_fwd ntnvars (None,env.scopes) p in let substl,disjpat = List.split subst_disjpat in if not (List.for_all (fun subst -> Id.Map.equal Id.equal subst Id.Map.empty) substl) then user_err ?loc (str "Unsupported nested \"as\" clause."); il,disjpat in let env = List.fold_right (fun {loc;v=id} env -> push_name_env ntnvars (Variable,[],[],[]) env (make ?loc @@ Name id)) il env in let na = alias_of_pat (List.hd disjpat) in let ienv = Name.fold_right Id.Set.remove na env.ids in let id = Namegen.next_name_away_with_default "pat" na ienv in let na = make ?loc @@ Name id in env,((disjpat,il),id),na let intern_local_binder_aux intern ntnvars (env,bl) = function | CLocalAssum(nal,bk,ty) -> let env, bl' = intern_assumption intern ntnvars env nal bk ty in let bl' = List.map (fun {loc;v=(na,c,t)} -> DAst.make ?loc @@ GLocalAssum (na,c,t)) bl' in env, bl' @ bl | CLocalDef( {loc; v=na} as locna,def,ty) -> let env,(na,bk,def,ty) = intern_letin_binder intern ntnvars env (locna,def,ty) in env, (DAst.make ?loc @@ GLocalDef (na,bk,def,ty)) :: bl | CLocalPattern {loc;v=(p,ty)} -> let tyc = match ty with | Some ty -> ty | None -> CAst.make ?loc @@ CHole(None,IntroAnonymous,None) in let env, ((disjpat,il),id),na = intern_cases_pattern_as_binder ?loc ntnvars env p in let bk = Default Explicit in let _, bl' = intern_assumption intern ntnvars env [na] bk tyc in let {v=(_,bk,t)} = List.hd bl' in (env, (DAst.make ?loc @@ GLocalPattern((disjpat,List.map (fun x -> x.v) il),id,bk,t)) :: bl) let intern_generalization intern env ntnvars loc bk ak c = let c = intern {env with unb = true} c in let fvs = Implicit_quantifiers.generalizable_vars_of_glob_constr ~bound:env.ids c in let env', c' = let abs = let pi = match ak with | Some AbsPi -> true | Some _ -> false | None -> match Notation.current_type_scope_name () with | Some type_scope -> let is_type_scope = match env.tmp_scope with | None -> false | Some sc -> String.equal sc type_scope in is_type_scope || String.List.mem type_scope env.scopes | None -> false in if pi then (fun {loc=loc';v=id} acc -> DAst.make ?loc:(Loc.merge_opt loc' loc) @@ GProd (Name id, bk, DAst.make ?loc:loc' @@ GHole (Evar_kinds.BinderType (Name id), IntroAnonymous, None), acc)) else (fun {loc=loc';v=id} acc -> DAst.make ?loc:(Loc.merge_opt loc' loc) @@ GLambda (Name id, bk, DAst.make ?loc:loc' @@ GHole (Evar_kinds.BinderType (Name id), IntroAnonymous, None), acc)) in List.fold_right (fun ({loc;v=id} as lid) (env, acc) -> let env' = push_name_env ntnvars (Variable,[],[],[]) env CAst.(make @@ Name id) in (env', abs lid acc)) fvs (env,c) in c' let rec expand_binders ?loc mk bl c = match bl with | [] -> c | b :: bl -> match DAst.get b with | GLocalDef (n, bk, b, oty) -> expand_binders ?loc mk bl (DAst.make ?loc @@ GLetIn (n, b, oty, c)) | GLocalAssum (n, bk, t) -> expand_binders ?loc mk bl (mk ?loc (n,bk,t) c) | GLocalPattern ((disjpat,ids), id, bk, ty) -> let tm = DAst.make ?loc (GVar id) in (* Distribute the disjunctive patterns over the shared right-hand side *) let eqnl = List.map (fun pat -> CAst.make ?loc (ids,[pat],c)) disjpat in let c = DAst.make ?loc @@ GCases (LetPatternStyle, None, [tm,(Anonymous,None)], eqnl) in expand_binders ?loc mk bl (mk ?loc (Name id,Explicit,ty) c) (**********************************************************************) (* Syntax extensions *) let option_mem_assoc id = function | Some (id',c) -> Id.equal id id' | None -> false let find_fresh_name renaming (terms,termlists,binders,binderlists) avoid id = let fold1 _ (c, _) accu = Id.Set.union (free_vars_of_constr_expr c) accu in let fold2 _ (l, _) accu = let fold accu c = Id.Set.union (free_vars_of_constr_expr c) accu in List.fold_left fold accu l in let fold3 _ x accu = Id.Set.add x accu in let fvs1 = Id.Map.fold fold1 terms avoid in let fvs2 = Id.Map.fold fold2 termlists fvs1 in let fvs3 = Id.Map.fold fold3 renaming fvs2 in (* TODO binders *) next_ident_away_from id (fun id -> Id.Set.mem id fvs3) let is_patvar c = match DAst.get c with | PatVar _ -> true | _ -> false let is_patvar_store store pat = match DAst.get pat with | PatVar na -> ignore(store na); true | _ -> false let out_patvar pat = match pat.v with | CPatAtom (Some qid) when qualid_is_ident qid -> Name (qualid_basename qid) | CPatAtom None -> Anonymous | _ -> assert false let term_of_name = function | Name id -> DAst.make (GVar id) | Anonymous -> let st = Evar_kinds.Define (not (Program.get_proofs_transparency ())) in DAst.make (GHole (Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with Evar_kinds.qm_obligation=st }, IntroAnonymous, None)) let traverse_binder intern_pat ntnvars (terms,_,binders,_ as subst) avoid (renaming,env) = function | Anonymous -> (renaming,env), None, Anonymous | Name id -> let store,get = set_temporary_memory () in try (* We instantiate binder name with patterns which may be parsed as terms *) let pat = coerce_to_cases_pattern_expr (fst (Id.Map.find id terms)) in let env,((disjpat,ids),id),na = intern_pat ntnvars env pat in let pat, na = match disjpat with | [pat] when is_patvar_store store pat -> let na = get () in None, na | _ -> Some ((List.map (fun x -> x.v) ids,disjpat),id), na.v in (renaming,env), pat, na with Not_found -> try (* Trying to associate a pattern *) let pat,(onlyident,scopes) = Id.Map.find id binders in let env = set_env_scopes env scopes in if onlyident then (* Do not try to interpret a variable as a constructor *) let na = out_patvar pat in let env = push_name_env ntnvars (Variable,[],[],[]) env (make ?loc:pat.loc na) in (renaming,env), None, na else (* Interpret as a pattern *) let env,((disjpat,ids),id),na = intern_pat ntnvars env pat in let pat, na = match disjpat with | [pat] when is_patvar_store store pat -> let na = get () in None, na | _ -> Some ((List.map (fun x -> x.v) ids,disjpat),id), na.v in (renaming,env), pat, na with Not_found -> (* Binders not bound in the notation do not capture variables *) (* outside the notation (i.e. in the substitution) *) let id' = find_fresh_name renaming subst avoid id in let renaming' = if Id.equal id id' then renaming else Id.Map.add id id' renaming in (renaming',env), None, Name id' type binder_action = | AddLetIn of lname * constr_expr * constr_expr option | AddTermIter of (constr_expr * subscopes) Names.Id.Map.t | AddPreBinderIter of Id.t * local_binder_expr (* A binder to be internalized *) | AddBinderIter of Id.t * extended_glob_local_binder (* A binder already internalized - used for generalized binders *) let dmap_with_loc f n = CAst.map_with_loc (fun ?loc c -> f ?loc (DAst.get_thunk c)) n let error_cannot_coerce_wildcard_term ?loc () = user_err ?loc Pp.(str "Cannot turn \"_\" into a term.") let error_cannot_coerce_disjunctive_pattern_term ?loc () = user_err ?loc Pp.(str "Cannot turn a disjunctive pattern into a term.") let terms_of_binders bl = let rec term_of_pat pt = dmap_with_loc (fun ?loc -> function | PatVar (Name id) -> CRef (qualid_of_ident id, None) | PatVar (Anonymous) -> error_cannot_coerce_wildcard_term ?loc () | PatCstr (c,l,_) -> let qid = qualid_of_path ?loc (Nametab.path_of_global (GlobRef.ConstructRef c)) in let hole = CAst.make ?loc @@ CHole (None,IntroAnonymous,None) in let params = List.make (Inductiveops.inductive_nparams (Global.env()) (fst c)) hole in CAppExpl ((None,qid,None),params @ List.map term_of_pat l)) pt in let rec extract_variables l = match l with | bnd :: l -> let loc = bnd.loc in begin match DAst.get bnd with | GLocalAssum (Name id,_,_) -> (CAst.make ?loc @@ CRef (qualid_of_ident ?loc id, None)) :: extract_variables l | GLocalDef (Name id,_,_,_) -> extract_variables l | GLocalDef (Anonymous,_,_,_) | GLocalAssum (Anonymous,_,_) -> user_err Pp.(str "Cannot turn \"_\" into a term.") | GLocalPattern (([u],_),_,_,_) -> term_of_pat u :: extract_variables l | GLocalPattern ((_,_),_,_,_) -> error_cannot_coerce_disjunctive_pattern_term ?loc () end | [] -> [] in extract_variables bl let flatten_generalized_binders_if_any y l = match List.rev l with | [] -> assert false | a::l -> a, List.map (fun a -> AddBinderIter (y,a)) l (* if l not empty, this means we had a generalized binder *) let flatten_binders bl = let dispatch = function | CLocalAssum (nal,bk,t) -> List.map (fun na -> CLocalAssum ([na],bk,t)) nal | a -> [a] in List.flatten (List.map dispatch bl) let instantiate_notation_constr loc intern intern_pat ntnvars subst infos c = let (terms,termlists,binders,binderlists) = subst in (* when called while defining a notation, avoid capturing the private binders of the expression by variables bound by the notation (see #3892) *) let avoid = Id.Map.domain ntnvars in let rec aux (terms,binderopt,iteropt as subst') (renaming,env) c = let subinfos = renaming,{env with tmp_scope = None} in match c with | NVar id when Id.equal id ldots_var -> let rec aux_letin env = function | [],terminator,_ -> aux (terms,None,None) (renaming,env) terminator | AddPreBinderIter (y,binder)::rest,terminator,iter -> let env,binders = intern_local_binder_aux intern ntnvars (env,[]) binder in let binder,extra = flatten_generalized_binders_if_any y binders in aux (terms,Some (y,binder),Some (extra@rest,terminator,iter)) (renaming,env) iter | AddBinderIter (y,binder)::rest,terminator,iter -> aux (terms,Some (y,binder),Some (rest,terminator,iter)) (renaming,env) iter | AddTermIter nterms::rest,terminator,iter -> aux (nterms,None,Some (rest,terminator,iter)) (renaming,env) iter | AddLetIn (na,c,t)::rest,terminator,iter -> let env,(na,_,c,t) = intern_letin_binder intern ntnvars env (na,c,t) in DAst.make ?loc (GLetIn (na,c,t,aux_letin env (rest,terminator,iter))) in aux_letin env (Option.get iteropt) | NVar id -> subst_var subst' (renaming, env) id | NList (x,y,iter,terminator,revert) -> let l,(scopt,subscopes) = (* All elements of the list are in scopes (scopt,subscopes) *) try let l,scopes = Id.Map.find x termlists in (if revert then List.rev l else l),scopes with Not_found -> try let (bl,(scopt,subscopes)) = Id.Map.find x binderlists in let env,bl' = List.fold_left (intern_local_binder_aux intern ntnvars) (env,[]) bl in terms_of_binders (if revert then bl' else List.rev bl'),(None,[]) with Not_found -> anomaly (Pp.str "Inconsistent substitution of recursive notation.") in let l = List.map (fun a -> AddTermIter ((Id.Map.add y (a,(scopt,subscopes)) terms))) l in aux (terms,None,Some (l,terminator,iter)) subinfos (NVar ldots_var) | NHole (knd, naming, arg) -> let knd = match knd with | Evar_kinds.BinderType (Name id as na) -> let na = try (coerce_to_name (fst (Id.Map.find id terms))).v with Not_found -> try Name (Id.Map.find id renaming) with Not_found -> na in Evar_kinds.BinderType na | _ -> knd in let arg = match arg with | None -> None | Some arg -> let mk_env id (c, (tmp_scope, subscopes)) map = let nenv = {env with tmp_scope; scopes = subscopes @ env.scopes} in try let gc = intern nenv c in Id.Map.add id (gc, None) map with Nametab.GlobalizationError _ -> map in let mk_env' (c, (onlyident,(tmp_scope,subscopes))) = let nenv = {env with tmp_scope; scopes = subscopes @ env.scopes} in if onlyident then let na = out_patvar c in term_of_name na, None else let _,((disjpat,_),_),_ = intern_pat ntnvars nenv c in match disjpat with | [pat] -> (glob_constr_of_cases_pattern (Global.env()) pat, None) | _ -> error_cannot_coerce_disjunctive_pattern_term ?loc:c.loc () in let terms = Id.Map.fold mk_env terms Id.Map.empty in let binders = Id.Map.map mk_env' binders in let bindings = Id.Map.fold Id.Map.add terms binders in Some (Genintern.generic_substitute_notation bindings arg) in DAst.make ?loc @@ GHole (knd, naming, arg) | NBinderList (x,y,iter,terminator,revert) -> (try (* All elements of the list are in scopes (scopt,subscopes) *) let (bl,(scopt,subscopes)) = Id.Map.find x binderlists in (* We flatten binders so that we can interpret them at substitution time *) let bl = flatten_binders bl in let bl = if revert then List.rev bl else bl in (* We isolate let-ins which do not contribute to the repeated pattern *) let l = List.map (function | CLocalDef (na,c,t) -> AddLetIn (na,c,t) | binder -> AddPreBinderIter (y,binder)) bl in (* We stack the binders to iterate or let-ins to insert *) aux (terms,None,Some (l,terminator,iter)) subinfos (NVar ldots_var) with Not_found -> anomaly (Pp.str "Inconsistent substitution of recursive notation.")) | NProd (Name id, NHole _, c') when option_mem_assoc id binderopt -> let binder = snd (Option.get binderopt) in expand_binders ?loc mkGProd [binder] (aux subst' (renaming,env) c') | NLambda (Name id,NHole _,c') when option_mem_assoc id binderopt -> let binder = snd (Option.get binderopt) in expand_binders ?loc mkGLambda [binder] (aux subst' (renaming,env) c') (* Two special cases to keep binder name synchronous with BinderType *) | NProd (na,NHole(Evar_kinds.BinderType na',naming,arg),c') when Name.equal na na' -> let subinfos,disjpat,na = traverse_binder intern_pat ntnvars subst avoid subinfos na in let ty = DAst.make ?loc @@ GHole (Evar_kinds.BinderType na,naming,arg) in DAst.make ?loc @@ GProd (na,Explicit,ty,Option.fold_right apply_cases_pattern disjpat (aux subst' subinfos c')) | NLambda (na,NHole(Evar_kinds.BinderType na',naming,arg),c') when Name.equal na na' -> let subinfos,disjpat,na = traverse_binder intern_pat ntnvars subst avoid subinfos na in let ty = DAst.make ?loc @@ GHole (Evar_kinds.BinderType na,naming,arg) in DAst.make ?loc @@ GLambda (na,Explicit,ty,Option.fold_right apply_cases_pattern disjpat (aux subst' subinfos c')) | t -> glob_constr_of_notation_constr_with_binders ?loc (traverse_binder intern_pat ntnvars subst avoid) (aux subst') subinfos t and subst_var (terms, binderopt, _terminopt) (renaming, env) id = (* subst remembers the delimiters stack in the interpretation *) (* of the notations *) try let (a,(scopt,subscopes)) = Id.Map.find id terms in intern {env with tmp_scope = scopt; scopes = subscopes @ env.scopes} a with Not_found -> try let pat,(onlyident,scopes) = Id.Map.find id binders in let env = set_env_scopes env scopes in (* We deactivate impls to avoid the check on hidden parameters *) (* and since we are only interested in the pattern as a term *) let env = reset_hidden_inductive_implicit_test env in if onlyident then term_of_name (out_patvar pat) else let env,((disjpat,ids),id),na = intern_pat ntnvars env pat in match disjpat with | [pat] -> glob_constr_of_cases_pattern (Global.env()) pat | _ -> user_err Pp.(str "Cannot turn a disjunctive pattern into a term.") with Not_found -> try match binderopt with | Some (x,binder) when Id.equal x id -> let terms = terms_of_binders [binder] in assert (List.length terms = 1); intern env (List.hd terms) | _ -> raise Not_found with Not_found -> DAst.make ?loc ( try GVar (Id.Map.find id renaming) with Not_found -> (* Happens for local notation joint with inductive/fixpoint defs *) GVar id) in aux (terms,None,None) infos c (* Turning substitution coming from parsing and based on production into a substitution for interpretation and based on binding/constr distinction *) let cases_pattern_of_name {loc;v=na} = let atom = match na with Name id -> Some (qualid_of_ident ?loc id) | Anonymous -> None in CAst.make ?loc (CPatAtom atom) let split_by_type ids subst = let bind id scl l s = match l with | [] -> assert false | a::l -> l, Id.Map.add id (a,scl) s in let (terms,termlists,binders,binderlists),subst = List.fold_left (fun ((terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists')) (id,((_,scl),typ)) -> match typ with | NtnTypeConstr -> let terms,terms' = bind id scl terms terms' in (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists') | NtnTypeBinder NtnBinderParsedAsConstr (AsIdentOrPattern | AsStrictPattern) -> let a,terms = match terms with a::terms -> a,terms | _ -> assert false in let binders' = Id.Map.add id (coerce_to_cases_pattern_expr a,(false,scl)) binders' in (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists') | NtnTypeBinder NtnBinderParsedAsConstr AsIdent -> let a,terms = match terms with a::terms -> a,terms | _ -> assert false in let binders' = Id.Map.add id (cases_pattern_of_name (coerce_to_name a),(true,scl)) binders' in (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists') | NtnTypeBinder (NtnParsedAsIdent | NtnParsedAsPattern _ as x) -> let onlyident = (x = NtnParsedAsIdent) in let binders,binders' = bind id (onlyident,scl) binders binders' in (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists') | NtnTypeConstrList -> let termlists,termlists' = bind id scl termlists termlists' in (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists') | NtnTypeBinderList -> let binderlists,binderlists' = bind id scl binderlists binderlists' in (terms,termlists,binders,binderlists),(terms',termlists',binders',binderlists')) (subst,(Id.Map.empty,Id.Map.empty,Id.Map.empty,Id.Map.empty)) ids in assert (terms = [] && termlists = [] && binders = [] && binderlists = []); subst let split_by_type_pat ?loc ids subst = let bind id (_,scopes) l s = match l with | [] -> assert false | a::l -> l, Id.Map.add id (a,scopes) s in let (terms,termlists),subst = List.fold_left (fun ((terms,termlists),(terms',termlists')) (id,(scl,typ)) -> match typ with | NtnTypeConstr | NtnTypeBinder _ -> let terms,terms' = bind id scl terms terms' in (terms,termlists),(terms',termlists') | NtnTypeConstrList -> let termlists,termlists' = bind id scl termlists termlists' in (terms,termlists),(terms',termlists') | NtnTypeBinderList -> error_invalid_pattern_notation ?loc ()) (subst,(Id.Map.empty,Id.Map.empty)) ids in assert (terms = [] && termlists = []); subst let make_subst ids l = let fold accu (id, scopes) a = Id.Map.add id (a, scopes) accu in List.fold_left2 fold Id.Map.empty ids l let intern_notation intern env ntnvars loc ntn fullargs = (* Adjust to parsing of { } *) let ntn,fullargs = contract_curly_brackets ntn fullargs in (* Recover interpretation { } *) let ((ids,c),df) = interp_notation ?loc ntn (env.tmp_scope,env.scopes) in Dumpglob.dump_notation_location (ntn_loc ?loc fullargs ntn) ntn df; (* Dispatch parsing substitution to an interpretation substitution *) let subst = split_by_type ids fullargs in (* Instantiate the notation *) instantiate_notation_constr loc intern intern_cases_pattern_as_binder ntnvars subst (Id.Map.empty, env) c (**********************************************************************) (* Discriminating between bound variables and global references *) let string_of_ty = function | Inductive _ -> "ind" | Recursive -> "def" | Method -> "meth" | Variable -> "var" let gvar (loc, id) us = match us with | None -> DAst.make ?loc @@ GVar id | Some _ -> user_err ?loc (str "Variable " ++ Id.print id ++ str " cannot have a universe instance") let intern_var env (ltacvars,ntnvars) namedctx loc id us = (* Is [id] a notation variable *) if Id.Map.mem id ntnvars then begin if not (Id.Map.mem id env.impls) then set_var_scope ?loc id true (env.tmp_scope,env.scopes) ntnvars; gvar (loc,id) us, [], [], [] end else (* Is [id] registered with implicit arguments *) try let ty,expl_impls,impls,argsc = Id.Map.find id env.impls in let expl_impls = List.map (fun id -> CAst.make ?loc @@ CRef (qualid_of_ident ?loc id,None), Some (make ?loc @@ ExplByName id)) expl_impls in let tys = string_of_ty ty in Dumpglob.dump_reference ?loc "<>" (Id.to_string id) tys; gvar (loc,id) us, make_implicits_list impls, argsc, expl_impls with Not_found -> (* Is [id] bound in current term or is an ltac var bound to constr *) if Id.Set.mem id env.ids || Id.Set.mem id ltacvars.ltac_vars then gvar (loc,id) us, [], [], [] else if Id.equal id ldots_var (* Is [id] the special variable for recursive notations? *) then if Id.Map.is_empty ntnvars then error_ldots_var ?loc else gvar (loc,id) us, [], [], [] else if Id.Set.mem id ltacvars.ltac_bound then (* Is [id] bound to a free name in ltac (this is an ltac error message) *) user_err ?loc ~hdr:"intern_var" (str "variable " ++ Id.print id ++ str " should be bound to a term.") else (* Is [id] a goal or section variable *) let _ = Environ.lookup_named_ctxt id namedctx in try (* [id] a section variable *) (* Redundant: could be done in intern_qualid *) let ref = GlobRef.VarRef id in let impls = implicits_of_global ref in let scopes = find_arguments_scope ref in Dumpglob.dump_secvar ?loc id; (* this raises Not_found when not a section variable *) (* Someday we should stop relying on Dumglob raising exceptions *) DAst.make ?loc @@ GRef (ref, us), impls, scopes, [] with e when CErrors.noncritical e -> (* [id] a goal variable *) gvar (loc,id) us, [], [], [] let find_appl_head_data c = match DAst.get c with | GRef (ref,_) -> let impls = implicits_of_global ref in let scopes = find_arguments_scope ref in c, impls, scopes, [] | GApp (r, l) -> begin match DAst.get r with | GRef (ref,_) when l != [] -> let n = List.length l in let impls = implicits_of_global ref in let scopes = find_arguments_scope ref in c, List.map (drop_first_implicits n) impls, List.skipn_at_least n scopes,[] | _ -> c,[],[],[] end | _ -> c,[],[],[] let error_not_enough_arguments ?loc = user_err ?loc (str "Abbreviation is not applied enough.") let check_no_explicitation l = let is_unset (a, b) = match b with None -> false | Some _ -> true in let l = List.filter is_unset l in match l with | [] -> () | (_, None) :: _ -> assert false | (_, Some {loc}) :: _ -> user_err ?loc (str"Unexpected explicitation of the argument of an abbreviation.") let dump_extended_global loc = function | TrueGlobal ref -> (*feedback_global loc ref;*) Dumpglob.add_glob ?loc ref | SynDef sp -> Dumpglob.add_glob_kn ?loc sp let intern_extended_global_of_qualid qid = let r = Nametab.locate_extended qid in dump_extended_global qid.CAst.loc r; r let intern_reference qid = let r = try intern_extended_global_of_qualid qid with Not_found -> Nametab.error_global_not_found qid in Smartlocate.global_of_extended_global r let glob_sort_of_level (level: glob_level) : glob_sort = match level with | UAnonymous {rigid} -> UAnonymous {rigid} | UNamed id -> UNamed [id,0] (* Is it a global reference or a syntactic definition? *) let intern_qualid ?(no_secvar=false) qid intern env ntnvars us args = let loc = qid.loc in match intern_extended_global_of_qualid qid with | TrueGlobal (GlobRef.VarRef _) when no_secvar -> (* Rule out section vars since these should have been found by intern_var *) raise Not_found | TrueGlobal ref -> (DAst.make ?loc @@ GRef (ref, us)), Some ref, args | SynDef sp -> let (ids,c) = Syntax_def.search_syntactic_definition ?loc sp in let nids = List.length ids in if List.length args < nids then error_not_enough_arguments ?loc; let args1,args2 = List.chop nids args in check_no_explicitation args1; let terms = make_subst ids (List.map fst args1) in let subst = (terms, Id.Map.empty, Id.Map.empty, Id.Map.empty) in let infos = (Id.Map.empty, env) in let c = instantiate_notation_constr loc intern intern_cases_pattern_as_binder ntnvars subst infos c in let loc = c.loc in let err () = user_err ?loc (str "Notation " ++ pr_qualid qid ++ str " cannot have a universe instance," ++ str " its expanded head does not start with a reference") in let c = match us, DAst.get c with | None, _ -> c | Some _, GRef (ref, None) -> DAst.make ?loc @@ GRef (ref, us) | Some _, GApp (r, arg) -> let loc' = r.CAst.loc in begin match DAst.get r with | GRef (ref, None) -> DAst.make ?loc @@ GApp (DAst.make ?loc:loc' @@ GRef (ref, us), arg) | _ -> err () end | Some [s], GSort (UAnonymous {rigid=true}) -> DAst.make ?loc @@ GSort (glob_sort_of_level s) | Some [_old_level], GSort _new_sort -> (* TODO: add old_level and new_sort to the error message *) user_err ?loc (str "Cannot change universe level of notation " ++ pr_qualid qid) | Some _, _ -> err () in c, None, args2 let warn_nonprimitive_projection = CWarnings.create ~name:"nonprimitive-projection-syntax" ~category:"syntax" ~default:CWarnings.Disabled Pp.(fun f -> pr_qualid f ++ str " used as a primitive projection but is not one.") let error_nonprojection_syntax ?loc qid = CErrors.user_err ?loc ~hdr:"nonprojection-syntax" Pp.(pr_qualid qid ++ str" is not a projection.") let check_applied_projection isproj realref qid = match isproj with | None -> () | Some projargs -> let open GlobRef in let is_prim = match realref with | None | Some (IndRef _ | ConstructRef _ | VarRef _) -> false | Some (ConstRef c) -> if Recordops.is_primitive_projection c then true else if Recordops.is_projection c then false else error_nonprojection_syntax ?loc:qid.loc qid (* TODO check projargs, note we will need implicit argument info *) in if not is_prim then warn_nonprimitive_projection ?loc:qid.loc qid let intern_applied_reference ~isproj intern env namedctx (_, ntnvars as lvar) us args qid = let loc = qid.CAst.loc in if qualid_is_ident qid then try let res = intern_var env lvar namedctx loc (qualid_basename qid) us in check_applied_projection isproj None qid; res, args with Not_found -> try let r, realref, args2 = intern_qualid ~no_secvar:true qid intern env ntnvars us args in check_applied_projection isproj realref qid; let x, imp, scopes, l = find_appl_head_data r in (x,imp,scopes,l), args2 with Not_found -> (* Extra allowance for non globalizing functions *) if !interning_grammar || env.unb then (* check_applied_projection ?? *) (gvar (loc,qualid_basename qid) us, [], [], []), args else Nametab.error_global_not_found qid else let r,realref,args2 = try intern_qualid qid intern env ntnvars us args with Not_found -> Nametab.error_global_not_found qid in check_applied_projection isproj realref qid; let x, imp, scopes, l = find_appl_head_data r in (x,imp,scopes,l), args2 let interp_reference vars r = let (r,_,_,_),_ = intern_applied_reference ~isproj:None (fun _ -> error_not_enough_arguments ?loc:None) {ids = Id.Set.empty; unb = false ; tmp_scope = None; scopes = []; impls = empty_internalization_env} Environ.empty_named_context_val (vars, Id.Map.empty) None [] r in r (**********************************************************************) (** {5 Cases } *) (** Private internalization patterns *) type 'a raw_cases_pattern_expr_r = | RCPatAlias of 'a raw_cases_pattern_expr * lname | RCPatCstr of GlobRef.t * 'a raw_cases_pattern_expr list * 'a raw_cases_pattern_expr list (** [RCPatCstr (loc, c, l1, l2)] represents [((@ c l1) l2)] *) | RCPatAtom of (lident * (Notation_term.tmp_scope_name option * Notation_term.scope_name list)) option | RCPatOr of 'a raw_cases_pattern_expr list and 'a raw_cases_pattern_expr = ('a raw_cases_pattern_expr_r, 'a) DAst.t (** {6 Elementary bricks } *) let apply_scope_env env = function | [] -> {env with tmp_scope = None}, [] | sc::scl -> {env with tmp_scope = sc}, scl let rec simple_adjust_scopes n scopes = (* Note: they can be less scopes than arguments but also more scopes *) (* than arguments because extra scopes are used in the presence of *) (* coercions to funclass *) if Int.equal n 0 then [] else match scopes with | [] -> None :: simple_adjust_scopes (n-1) [] | sc::scopes -> sc :: simple_adjust_scopes (n-1) scopes let find_remaining_scopes pl1 pl2 ref = let impls_st = implicits_of_global ref in let len_pl1 = List.length pl1 in let len_pl2 = List.length pl2 in let impl_list = if Int.equal len_pl1 0 then select_impargs_size len_pl2 impls_st else List.skipn_at_least len_pl1 (select_stronger_impargs impls_st) in let allscs = find_arguments_scope ref in let scope_list = List.skipn_at_least len_pl1 allscs in let rec aux = function |[],l -> l |_,[] -> [] |h::t,_::tt when is_status_implicit h -> aux (t,tt) |_::t,h::tt -> h :: aux (t,tt) in ((try List.firstn len_pl1 allscs with Failure _ -> simple_adjust_scopes len_pl1 allscs), simple_adjust_scopes len_pl2 (aux (impl_list,scope_list))) (* @return the first variable that occurs twice in a pattern naive n^2 algo *) let rec has_duplicate = function | [] -> None | x::l -> if Id.List.mem x l then (Some x) else has_duplicate l let loc_of_multiple_pattern pl = Loc.merge_opt (cases_pattern_expr_loc (List.hd pl)) (cases_pattern_expr_loc (List.last pl)) let loc_of_lhs lhs = Loc.merge_opt (loc_of_multiple_pattern (List.hd lhs)) (loc_of_multiple_pattern (List.last lhs)) let check_linearity lhs ids = match has_duplicate ids with | Some id -> raise (InternalizationError (loc_of_lhs lhs,NonLinearPattern id)) | None -> () (* Match the number of pattern against the number of matched args *) let check_number_of_pattern loc n l = let p = List.length l in if not (Int.equal n p) then raise (InternalizationError (loc,BadPatternsNumber (n,p))) let check_or_pat_variables loc ids idsl = let eq_id {v=id} {v=id'} = Id.equal id id' in (* Collect remaining patterns which do not have the same variables as the first pattern *) let idsl = List.filter (fun ids' -> not (List.eq_set eq_id ids ids')) idsl in match idsl with | ids'::_ -> (* Look for an [id] which is either in [ids] and not in [ids'] or in [ids'] and not in [ids] *) let ids'' = List.subtract eq_id ids ids' in let ids'' = if ids'' = [] then List.subtract eq_id ids' ids else ids'' in user_err ?loc (strbrk "The components of this disjunctive pattern must bind the same variables (" ++ Id.print (List.hd ids'').v ++ strbrk " is not bound in all patterns).") | [] -> () (** Use only when params were NOT asked to the user. @return if letin are included *) let check_constructor_length env loc cstr len_pl pl0 = let n = len_pl + List.length pl0 in if Int.equal n (Inductiveops.constructor_nallargs env cstr) then false else (Int.equal n (Inductiveops.constructor_nalldecls env cstr) || (error_wrong_numarg_constructor ?loc env cstr (Inductiveops.constructor_nrealargs env cstr))) open Declarations (* Similar to Cases.adjust_local_defs but on RCPat *) let insert_local_defs_in_pattern (ind,j) l = let (mib,mip) = Global.lookup_inductive ind in if mip.mind_consnrealdecls.(j-1) = mip.mind_consnrealargs.(j-1) then (* Optimisation *) l else let (ctx, _) = mip.mind_nf_lc.(j-1) in let decls = List.skipn (Context.Rel.length mib.mind_params_ctxt) (List.rev ctx) in let rec aux decls args = match decls, args with | Context.Rel.Declaration.LocalDef _ :: decls, args -> (DAst.make @@ RCPatAtom None) :: aux decls args | _, [] -> [] (* In particular, if there were trailing local defs, they have been inserted *) | Context.Rel.Declaration.LocalAssum _ :: decls, a :: args -> a :: aux decls args | _ -> assert false in aux decls l let add_local_defs_and_check_length loc env g pl args = let open GlobRef in match g with | ConstructRef cstr -> (* We consider that no variables corresponding to local binders have been given in the "explicit" arguments, which come from a "@C args" notation or from a custom user notation *) let pl' = insert_local_defs_in_pattern cstr pl in let maxargs = Inductiveops.constructor_nalldecls env cstr in if List.length pl' + List.length args > maxargs then error_wrong_numarg_constructor ?loc env cstr (Inductiveops.constructor_nrealargs env cstr); (* Two possibilities: either the args are given with explicit variables for local definitions, then we give the explicit args extended with local defs, so that there is nothing more to be added later on; or the args are not enough to have all arguments, which a priori means local defs to add in the [args] part, so we postpone the insertion of local defs in the explicit args *) (* Note: further checks done later by check_constructor_length *) if List.length pl' + List.length args = maxargs then pl' else pl | _ -> pl let add_implicits_check_length fail nargs nargs_with_letin impls_st len_pl1 pl2 = let impl_list = if Int.equal len_pl1 0 then select_impargs_size (List.length pl2) impls_st else List.skipn_at_least len_pl1 (select_stronger_impargs impls_st) in let remaining_args = List.fold_left (fun i x -> if is_status_implicit x then i else succ i) in let rec aux i = function |[],l -> let args_len = List.length l + List.length impl_list + len_pl1 in ((if Int.equal args_len nargs then false else Int.equal args_len nargs_with_letin || (fst (fail (nargs - List.length impl_list + i)))) ,l) |imp::q as il,[] -> if is_status_implicit imp && maximal_insertion_of imp then let (b,out) = aux i (q,[]) in (b,(DAst.make @@ RCPatAtom None)::out) else fail (remaining_args (len_pl1+i) il) |imp::q,(hh::tt as l) -> if is_status_implicit imp then let (b,out) = aux i (q,l) in (b,(DAst.make @@ RCPatAtom None)::out) else let (b,out) = aux (succ i) (q,tt) in (b,hh::out) in aux 0 (impl_list,pl2) let add_implicits_check_constructor_length env loc c len_pl1 pl2 = let nargs = Inductiveops.constructor_nallargs env c in let nargs' = Inductiveops.constructor_nalldecls env c in let impls_st = implicits_of_global (GlobRef.ConstructRef c) in add_implicits_check_length (error_wrong_numarg_constructor ?loc env c) nargs nargs' impls_st len_pl1 pl2 let add_implicits_check_ind_length env loc c len_pl1 pl2 = let nallargs = inductive_nallargs env c in let nalldecls = inductive_nalldecls env c in let impls_st = implicits_of_global (GlobRef.IndRef c) in add_implicits_check_length (error_wrong_numarg_inductive ?loc env c) nallargs nalldecls impls_st len_pl1 pl2 (** Do not raise NotEnoughArguments thanks to preconditions*) let chop_params_pattern loc ind args with_letin = let nparams = if with_letin then Inductiveops.inductive_nparamdecls (Global.env()) ind else Inductiveops.inductive_nparams (Global.env()) ind in assert (nparams <= List.length args); let params,args = List.chop nparams args in List.iter (fun c -> match DAst.get c with | PatVar Anonymous -> () | PatVar _ | PatCstr(_,_,_) -> error_parameter_not_implicit ?loc:c.CAst.loc) params; args let find_constructor loc add_params ref = let open GlobRef in let (ind,_ as cstr) = match ref with | ConstructRef cstr -> cstr | IndRef _ -> let error = str "There is an inductive name deep in a \"in\" clause." in user_err ?loc ~hdr:"find_constructor" error | ConstRef _ | VarRef _ -> let error = str "This reference is not a constructor." in user_err ?loc ~hdr:"find_constructor" error in cstr, match add_params with | Some nb_args -> let env = Global.env () in let nb = if Int.equal nb_args (Inductiveops.constructor_nrealdecls env cstr) then Inductiveops.inductive_nparamdecls env ind else Inductiveops.inductive_nparams env ind in List.make nb ([], [(Id.Map.empty, DAst.make @@ PatVar Anonymous)]) | None -> [] let find_pattern_variable qid = if qualid_is_ident qid then qualid_basename qid else raise (InternalizationError(qid.CAst.loc,NotAConstructor qid)) let check_duplicate ?loc fields = let eq (ref1, _) (ref2, _) = qualid_eq ref1 ref2 in let dups = List.duplicates eq fields in match dups with | [] -> () | (r, _) :: _ -> user_err ?loc (str "This record defines several times the field " ++ pr_qualid r ++ str ".") let inductive_of_record loc record = let inductive = GlobRef.IndRef (inductive_of_constructor record.Recordops.s_CONST) in Nametab.shortest_qualid_of_global ?loc Id.Set.empty inductive (** [sort_fields ~complete loc fields completer] expects a list [fields] of field assignments [f = e1; g = e2; ...], where [f, g] are fields of a record and [e1] are "values" (either terms, when interning a record construction, or patterns, when intering record pattern-matching). It will sort the fields according to the record declaration order (which is important when type-checking them in presence of dependencies between fields). If the parameter [complete] is true, we require the assignment to be complete: all the fields of the record must be present in the assignment. Otherwise the record assignment may be partial (in a pattern, we may match on some fields only), and we call the function [completer] to fill the missing fields; the returned field assignment list is always complete. *) let sort_fields ~complete loc fields completer = match fields with | [] -> None | (first_field_ref, first_field_value):: other_fields -> let (first_field_glob_ref, record) = try let gr = locate_reference first_field_ref in (gr, Recordops.find_projection gr) with Not_found -> raise (InternalizationError(loc, NotAProjection first_field_ref)) in (* the number of parameters *) let nparams = record.Recordops.s_EXPECTEDPARAM in (* the reference constructor of the record *) let base_constructor = let global_record_id = GlobRef.ConstructRef record.Recordops.s_CONST in try Nametab.shortest_qualid_of_global ?loc Id.Set.empty global_record_id with Not_found -> anomaly (str "Environment corruption for records.") in let () = check_duplicate ?loc fields in let (end_index, (* one past the last field index *) first_field_index, (* index of the first field of the record *) proj_list) (* list of projections *) = (* eliminate the first field from the projections, but keep its index *) let rec build_proj_list projs proj_kinds idx ~acc_first_idx acc = match projs with | [] -> (idx, acc_first_idx, acc) | (Some field_glob_id) :: projs -> let field_glob_ref = GlobRef.ConstRef field_glob_id in let first_field = GlobRef.equal field_glob_ref first_field_glob_ref in begin match proj_kinds with | [] -> anomaly (Pp.str "Number of projections mismatch.") | { Recordops.pk_true_proj = regular } :: proj_kinds -> (* "regular" is false when the field is defined by a let-in in the record declaration (its value is fixed from other fields). *) if first_field && not regular && complete then user_err ?loc (str "No local fields allowed in a record construction.") else if first_field then build_proj_list projs proj_kinds (idx+1) ~acc_first_idx:idx acc else if not regular && complete then (* skip non-regular fields *) build_proj_list projs proj_kinds idx ~acc_first_idx acc else build_proj_list projs proj_kinds (idx+1) ~acc_first_idx ((idx, field_glob_id) :: acc) end | None :: projs -> if complete then (* we don't want anonymous fields *) user_err ?loc (str "This record contains anonymous fields.") else (* anonymous arguments don't appear in proj_kinds *) build_proj_list projs proj_kinds (idx+1) ~acc_first_idx acc in build_proj_list record.Recordops.s_PROJ record.Recordops.s_PROJKIND 1 ~acc_first_idx:0 [] in (* now we want to have all fields assignments indexed by their place in the constructor *) let rec index_fields fields remaining_projs acc = match fields with | (field_ref, field_value) :: fields -> let field_glob_ref = try locate_reference field_ref with Not_found -> user_err ?loc ~hdr:"intern" (str "The field \"" ++ pr_qualid field_ref ++ str "\" does not exist.") in let this_field_record = try Recordops.find_projection field_glob_ref with Not_found -> let inductive_ref = inductive_of_record loc record in raise (InternalizationError(loc, NotAProjectionOf (field_ref, inductive_ref))) in let remaining_projs, (field_index, _) = let the_proj (idx, glob_id) = GlobRef.equal field_glob_ref (GlobRef.ConstRef glob_id) in try CList.extract_first the_proj remaining_projs with Not_found -> let ind1 = inductive_of_record loc record in let ind2 = inductive_of_record loc this_field_record in raise (InternalizationError(loc, ProjectionsOfDifferentRecords (ind1, ind2))) in index_fields fields remaining_projs ((field_index, field_value) :: acc) | [] -> (* the order does not matter as we sort them next, List.rev_* is just for efficiency *) let remaining_fields = let complete_field (idx, field_ref) = (idx, completer idx field_ref record.Recordops.s_CONST) in List.rev_map complete_field remaining_projs in List.rev_append remaining_fields acc in let unsorted_indexed_fields = index_fields other_fields proj_list [(first_field_index, first_field_value)] in let sorted_indexed_fields = let cmp_by_index (i, _) (j, _) = Int.compare i j in List.sort cmp_by_index unsorted_indexed_fields in let sorted_fields = List.map snd sorted_indexed_fields in Some (nparams, base_constructor, sorted_fields) (** {6 Manage multiple aliases} *) type alias = { alias_ids : lident list; alias_map : Id.t Id.Map.t; } let empty_alias = { alias_ids = []; alias_map = Id.Map.empty; } (* [merge_aliases] returns the sets of all aliases encountered at this point and a substitution mapping extra aliases to the first one *) let merge_aliases aliases {loc;v=na} = match na with | Anonymous -> aliases | Name id -> let alias_ids = aliases.alias_ids @ [make ?loc id] in let alias_map = match aliases.alias_ids with | [] -> aliases.alias_map | {v=id'} :: _ -> Id.Map.add id id' aliases.alias_map in { alias_ids; alias_map; } let alias_of als = match als.alias_ids with | [] -> Anonymous | {v=id} :: _ -> Name id (** {6 Expanding notations } @returns a raw_case_pattern_expr : - no notations and syntactic definition - global reference and identifier instead of reference *) let is_zero s = let rec aux i = Int.equal (String.length s) i || ((s.[i] == '0' || s.[i] == '_') && aux (i+1)) in aux 0 let is_zero n = is_zero n.NumTok.int && is_zero n.NumTok.frac let merge_subst s1 s2 = Id.Map.fold Id.Map.add s1 s2 let product_of_cases_patterns aliases idspl = (* each [pl] is a disjunction of patterns over common identifiers [ids] *) (* We stepwise build a disjunction of patterns [ptaill] over common [ids'] *) List.fold_right (fun (ids,pl) (ids',ptaill) -> (ids @ ids', (* Cartesian prod of the or-pats for the nth arg and the tail args *) List.flatten ( List.map (fun (subst,p) -> List.map (fun (subst',ptail) -> (merge_subst subst subst',p::ptail)) ptaill) pl))) idspl (aliases.alias_ids,[aliases.alias_map,[]]) let rec subst_pat_iterator y t = DAst.(map (function | RCPatAtom id as p -> begin match id with Some ({v=x},_) when Id.equal x y -> DAst.get t | _ -> p end | RCPatCstr (id,l1,l2) -> RCPatCstr (id,List.map (subst_pat_iterator y t) l1, List.map (subst_pat_iterator y t) l2) | RCPatAlias (p,a) -> RCPatAlias (subst_pat_iterator y t p,a) | RCPatOr pl -> RCPatOr (List.map (subst_pat_iterator y t) pl))) let is_non_zero c = match c with | { CAst.v = CPrim (Numeral (SPlus, p)) } -> not (is_zero p) | _ -> false let is_non_zero_pat c = match c with | { CAst.v = CPatPrim (Numeral (SPlus, p)) } -> not (is_zero p) | _ -> false let get_asymmetric_patterns = Goptions.declare_bool_option_and_ref ~depr:false ~name:"no parameters in constructors" ~key:["Asymmetric";"Patterns"] ~value:false let drop_notations_pattern looked_for genv = (* At toplevel, Constructors and Inductives are accepted, in recursive calls only constructor are allowed *) let ensure_kind top loc g = try if top then looked_for g else match g with GlobRef.ConstructRef _ -> () | _ -> raise Not_found with Not_found -> error_invalid_pattern_notation ?loc () in let test_kind top = if top then looked_for else function GlobRef.ConstructRef _ -> () | _ -> raise Not_found in (* [rcp_of_glob] : from [glob_constr] to [raw_cases_pattern_expr] *) let rec rcp_of_glob scopes x = DAst.(map (function | GVar id -> RCPatAtom (Some (CAst.make ?loc:x.loc id,scopes)) | GHole (_,_,_) -> RCPatAtom (None) | GRef (g,_) -> RCPatCstr (g,[],[]) | GApp (r, l) -> begin match DAst.get r with | GRef (g,_) -> let allscs = find_arguments_scope g in let allscs = simple_adjust_scopes (List.length l) allscs in (* TO CHECK *) RCPatCstr (g, List.map2 (fun sc a -> rcp_of_glob (sc,snd scopes) a) allscs l,[]) | _ -> CErrors.anomaly Pp.(str "Invalid return pattern from Notation.interp_prim_token_cases_pattern_expr.") end | _ -> CErrors.anomaly Pp.(str "Invalid return pattern from Notation.interp_prim_token_cases_pattern_expr."))) x in let rec drop_syndef top scopes qid pats = try match Nametab.locate_extended qid with | SynDef sp -> let filter (vars,a) = try match a with | NRef g -> (* Convention: do not deactivate implicit arguments and scopes for further arguments *) test_kind top g; let () = assert (List.is_empty vars) in let (_,argscs) = find_remaining_scopes [] pats g in Some (g, [], List.map2 (in_pat_sc scopes) argscs pats) | NApp (NRef g,[]) -> (* special case: Syndef for @Cstr, this deactivates *) test_kind top g; let () = assert (List.is_empty vars) in Some (g, List.map (in_pat false scopes) pats, []) | NApp (NRef g,args) -> (* Convention: do not deactivate implicit arguments and scopes for further arguments *) test_kind top g; let nvars = List.length vars in if List.length pats < nvars then error_not_enough_arguments ?loc:qid.loc; let pats1,pats2 = List.chop nvars pats in let subst = make_subst vars pats1 in let idspl1 = List.map (in_not false qid.loc scopes (subst, Id.Map.empty) []) args in let (_,argscs) = find_remaining_scopes pats1 pats2 g in Some (g, idspl1, List.map2 (in_pat_sc scopes) argscs pats2) | _ -> raise Not_found with Not_found -> None in Syntax_def.search_filtered_syntactic_definition filter sp | TrueGlobal g -> test_kind top g; Dumpglob.add_glob ?loc:qid.loc g; let (_,argscs) = find_remaining_scopes [] pats g in Some (g,[],List.map2 (fun x -> in_pat false (x,snd scopes)) argscs pats) with Not_found -> None and in_pat top scopes pt = let open CAst in let loc = pt.loc in match pt.v with | CPatAlias (p, id) -> DAst.make ?loc @@ RCPatAlias (in_pat top scopes p, id) | CPatRecord l -> let sorted_fields = sort_fields ~complete:false loc l (fun _idx fieldname constructor -> CAst.make ?loc @@ CPatAtom None) in begin match sorted_fields with | None -> DAst.make ?loc @@ RCPatAtom None | Some (n, head, pl) -> let pl = if get_asymmetric_patterns () then pl else let pars = List.make n (CAst.make ?loc @@ CPatAtom None) in List.rev_append pars pl in match drop_syndef top scopes head pl with | Some (a,b,c) -> DAst.make ?loc @@ RCPatCstr(a, b, c) | None -> raise (InternalizationError (loc,NotAConstructor head)) end | CPatCstr (head, None, pl) -> begin match drop_syndef top scopes head pl with | Some (a,b,c) -> DAst.make ?loc @@ RCPatCstr(a, b, c) | None -> raise (InternalizationError (loc,NotAConstructor head)) end | CPatCstr (qid, Some expl_pl, pl) -> let g = try Nametab.locate qid with Not_found -> raise (InternalizationError (loc,NotAConstructor qid)) in if expl_pl == [] then (* Convention: (@r) deactivates all further implicit arguments and scopes *) DAst.make ?loc @@ RCPatCstr (g, List.map (in_pat false scopes) pl, []) else (* Convention: (@r expl_pl) deactivates implicit arguments in expl_pl and in pl *) (* but not scopes in expl_pl *) let (argscs1,_) = find_remaining_scopes expl_pl pl g in DAst.make ?loc @@ RCPatCstr (g, List.map2 (in_pat_sc scopes) argscs1 expl_pl @ List.map (in_pat false scopes) pl, []) | CPatNotation ((InConstrEntrySomeLevel,"- _"),([a],[]),[]) when is_non_zero_pat a -> let p = match a.CAst.v with CPatPrim (Numeral (_, p)) -> p | _ -> assert false in let pat, _df = Notation.interp_prim_token_cases_pattern_expr ?loc (ensure_kind false loc) (Numeral (SMinus,p)) scopes in rcp_of_glob scopes pat | CPatNotation ((InConstrEntrySomeLevel,"( _ )"),([a],[]),[]) -> in_pat top scopes a | CPatNotation (ntn,fullargs,extrargs) -> let ntn,(terms,termlists) = contract_curly_brackets_pat ntn fullargs in let ((ids',c),df) = Notation.interp_notation ?loc ntn scopes in let (terms,termlists) = split_by_type_pat ?loc ids' (terms,termlists) in Dumpglob.dump_notation_location (patntn_loc ?loc fullargs ntn) ntn df; in_not top loc scopes (terms,termlists) extrargs c | CPatDelimiters (key, e) -> in_pat top (None,find_delimiters_scope ?loc key::snd scopes) e | CPatPrim p -> let pat, _df = Notation.interp_prim_token_cases_pattern_expr ?loc (test_kind false) p scopes in rcp_of_glob scopes pat | CPatAtom (Some id) -> begin match drop_syndef top scopes id [] with | Some (a,b,c) -> DAst.make ?loc @@ RCPatCstr (a, b, c) | None -> DAst.make ?loc @@ RCPatAtom (Some ((make ?loc @@ find_pattern_variable id),scopes)) end | CPatAtom None -> DAst.make ?loc @@ RCPatAtom None | CPatOr pl -> DAst.make ?loc @@ RCPatOr (List.map (in_pat top scopes) pl) | CPatCast (_,_) -> (* We raise an error if the pattern contains a cast, due to current restrictions on casts in patterns. Cast in patterns are supported only in local binders and only at top level. The only reason they are in the [cases_pattern_expr] type is that the parser needs to factor the "c : t" notation with user defined notations. In the long term, we will try to support such casts everywhere, and perhaps use them to print the domains of lambdas in the encoding of match in constr. This check is here and not in the parser because it would require duplicating the levels of the [pattern] rule. *) CErrors.user_err ?loc ~hdr:"drop_notations_pattern" (Pp.strbrk "Casts are not supported in this pattern.") and in_pat_sc scopes x = in_pat false (x,snd scopes) and in_not top loc scopes (subst,substlist as fullsubst) args = function | NVar id -> let () = assert (List.is_empty args) in begin (* subst remembers the delimiters stack in the interpretation *) (* of the notations *) try let (a,(scopt,subscopes)) = Id.Map.find id subst in in_pat top (scopt,subscopes@snd scopes) a with Not_found -> if Id.equal id ldots_var then DAst.make ?loc @@ RCPatAtom (Some ((make ?loc id),scopes)) else anomaly (str "Unbound pattern notation variable: " ++ Id.print id ++ str ".") end | NRef g -> ensure_kind top loc g; let (_,argscs) = find_remaining_scopes [] args g in DAst.make ?loc @@ RCPatCstr (g, [], List.map2 (in_pat_sc scopes) argscs args) | NApp (NRef g,pl) -> ensure_kind top loc g; let (argscs1,argscs2) = find_remaining_scopes pl args g in let pl = List.map2 (fun x -> in_not false loc (x,snd scopes) fullsubst []) argscs1 pl in let pl = add_local_defs_and_check_length loc genv g pl args in DAst.make ?loc @@ RCPatCstr (g, pl @ List.map (in_pat false scopes) args, []) | NList (x,y,iter,terminator,revert) -> if not (List.is_empty args) then user_err ?loc (strbrk "Application of arguments to a recursive notation not supported in patterns."); (try (* All elements of the list are in scopes (scopt,subscopes) *) let (l,(scopt,subscopes)) = Id.Map.find x substlist in let termin = in_not top loc scopes fullsubst [] terminator in List.fold_right (fun a t -> let nsubst = Id.Map.add y (a, (scopt, subscopes)) subst in let u = in_not false loc scopes (nsubst, substlist) [] iter in subst_pat_iterator ldots_var t u) (if revert then List.rev l else l) termin with Not_found -> anomaly (Pp.str "Inconsistent substitution of recursive notation.")) | NHole _ -> let () = assert (List.is_empty args) in DAst.make ?loc @@ RCPatAtom None | t -> error_invalid_pattern_notation ?loc () in in_pat true let rec intern_pat genv ntnvars aliases pat = let intern_cstr_with_all_args loc c with_letin idslpl1 pl2 = let idslpl2 = List.map (intern_pat genv ntnvars empty_alias) pl2 in let (ids',pll) = product_of_cases_patterns aliases (idslpl1@idslpl2) in let pl' = List.map (fun (asubst,pl) -> (asubst, DAst.make ?loc @@ PatCstr (c,chop_params_pattern loc (fst c) pl with_letin,alias_of aliases))) pll in ids',pl' in let loc = pat.loc in match DAst.get pat with | RCPatAlias (p, id) -> let aliases' = merge_aliases aliases id in intern_pat genv ntnvars aliases' p | RCPatCstr (head, expl_pl, pl) -> if get_asymmetric_patterns () then let len = if List.is_empty expl_pl then Some (List.length pl) else None in let c,idslpl1 = find_constructor loc len head in let with_letin = check_constructor_length genv loc c (List.length idslpl1 + List.length expl_pl) pl in intern_cstr_with_all_args loc c with_letin idslpl1 (expl_pl@pl) else let c,idslpl1 = find_constructor loc None head in let with_letin, pl2 = add_implicits_check_constructor_length genv loc c (List.length idslpl1 + List.length expl_pl) pl in intern_cstr_with_all_args loc c with_letin idslpl1 (expl_pl@pl2) | RCPatAtom (Some ({loc;v=id},scopes)) -> let aliases = merge_aliases aliases (make ?loc @@ Name id) in set_var_scope ?loc id false scopes ntnvars; (aliases.alias_ids,[aliases.alias_map, DAst.make ?loc @@ PatVar (alias_of aliases)]) (* TO CHECK: aura-t-on id? *) | RCPatAtom (None) -> let { alias_ids = ids; alias_map = asubst; } = aliases in (ids, [asubst, DAst.make ?loc @@ PatVar (alias_of aliases)]) | RCPatOr pl -> assert (not (List.is_empty pl)); let pl' = List.map (intern_pat genv ntnvars aliases) pl in let (idsl,pl') = List.split pl' in let ids = List.hd idsl in check_or_pat_variables loc ids (List.tl idsl); (ids,List.flatten pl') let intern_cases_pattern genv ntnvars scopes aliases pat = intern_pat genv ntnvars aliases (drop_notations_pattern (function GlobRef.ConstructRef _ -> () | _ -> raise Not_found) genv scopes pat) let _ = intern_cases_pattern_fwd := fun ntnvars scopes p -> intern_cases_pattern (Global.env ()) ntnvars scopes empty_alias p let intern_ind_pattern genv ntnvars scopes pat = let no_not = try drop_notations_pattern (function (GlobRef.IndRef _ | GlobRef.ConstructRef _) -> () | _ -> raise Not_found) genv scopes pat with InternalizationError(loc,NotAConstructor _) -> error_bad_inductive_type ?loc in let loc = no_not.CAst.loc in match DAst.get no_not with | RCPatCstr (head, expl_pl, pl) -> let c = (function GlobRef.IndRef ind -> ind | _ -> error_bad_inductive_type ?loc) head in let with_letin, pl2 = add_implicits_check_ind_length genv loc c (List.length expl_pl) pl in let idslpl = List.map (intern_pat genv ntnvars empty_alias) (expl_pl@pl2) in (with_letin, match product_of_cases_patterns empty_alias idslpl with | ids,[asubst,pl] -> (c,ids,asubst,chop_params_pattern loc c pl with_letin) | _ -> error_bad_inductive_type ?loc) | x -> error_bad_inductive_type ?loc (**********************************************************************) (* Utilities for application *) let merge_impargs l args = let test x = function | (_, Some {v=y}) -> explicitation_eq x y | _ -> false in List.fold_right (fun a l -> match a with | (_, Some {v=ExplByName id as x}) when List.exists (test x) args -> l | _ -> a::l) l args let get_implicit_name n imps = Some (Impargs.name_of_implicit (List.nth imps (n-1))) let set_hole_implicit i b c = let loc = c.CAst.loc in match DAst.get c with | GRef (r, _) -> Loc.tag ?loc (Evar_kinds.ImplicitArg (r,i,b),IntroAnonymous,None) | GApp (r, _) -> let loc = r.CAst.loc in begin match DAst.get r with | GRef (r, _) -> Loc.tag ?loc (Evar_kinds.ImplicitArg (r,i,b),IntroAnonymous,None) | _ -> anomaly (Pp.str "Only refs have implicits.") end | GVar id -> Loc.tag ?loc (Evar_kinds.ImplicitArg (GlobRef.VarRef id,i,b),IntroAnonymous,None) | _ -> anomaly (Pp.str "Only refs have implicits.") let exists_implicit_name id = List.exists (fun imp -> is_status_implicit imp && Id.equal id (name_of_implicit imp)) let extract_explicit_arg imps args = let rec aux = function | [] -> Id.Map.empty, [] | (a,e)::l -> let (eargs,rargs) = aux l in match e with | None -> (eargs,a::rargs) | Some {loc;v=pos} -> let id = match pos with | ExplByName id -> if not (exists_implicit_name id imps) then user_err ?loc (str "Wrong argument name: " ++ Id.print id ++ str "."); if Id.Map.mem id eargs then user_err ?loc (str "Argument name " ++ Id.print id ++ str " occurs more than once."); id | ExplByPos (p,_id) -> let id = try let imp = List.nth imps (p-1) in if not (is_status_implicit imp) then failwith "imp"; name_of_implicit imp with Failure _ (* "nth" | "imp" *) -> user_err ?loc (str"Wrong argument position: " ++ int p ++ str ".") in if Id.Map.mem id eargs then user_err ?loc (str"Argument at position " ++ int p ++ str " is mentioned more than once."); id in (Id.Map.add id (loc, a) eargs, rargs) in aux args (**********************************************************************) (* Main loop *) let internalize globalenv env pattern_mode (_, ntnvars as lvar) c = let rec intern env = CAst.with_loc_val (fun ?loc -> function | CRef (ref,us) -> let (c,imp,subscopes,l),_ = intern_applied_reference ~isproj:None intern env (Environ.named_context_val globalenv) lvar us [] ref in apply_impargs c env imp subscopes l loc | CFix ({ CAst.loc = locid; v = iddef}, dl) -> let lf = List.map (fun ({CAst.v = id},_,_,_,_) -> id) dl in let dl = Array.of_list dl in let n = try List.index0 Id.equal iddef lf with Not_found -> raise (InternalizationError (locid,UnboundFixName (false,iddef))) in let idl_temp = Array.map (fun (id,recarg,bl,ty,_) -> let recarg = Option.map (function { CAst.v = v } -> match v with | CStructRec i -> i | _ -> anomaly Pp.(str "Non-structural recursive argument in non-program fixpoint")) recarg in let before, after = split_at_annot bl recarg in let (env',rbefore) = List.fold_left intern_local_binder (env,[]) before in let n = Option.map (fun _ -> List.count (fun c -> match DAst.get c with | GLocalAssum _ -> true | _ -> false (* remove let-ins *)) rbefore) recarg in let (env',rbl) = List.fold_left intern_local_binder (env',rbefore) after in let bl = List.rev (List.map glob_local_binder_of_extended rbl) in let bl_impls = remember_binders_impargs env' bl in (n, bl, intern_type env' ty, bl_impls)) dl in (* We add the recursive functions to the environment *) let env_rec = List.fold_left_i (fun i en name -> let (_,bli,tyi,_) = idl_temp.(i) in let fix_args = (List.map (fun (na, bk, _, _) -> build_impls bk na) bli) in push_name_env ntnvars (impls_type_list ~args:fix_args tyi) en (CAst.make @@ Name name)) 0 env lf in let idl = Array.map2 (fun (_,_,_,_,bd) (n,bl,ty,before_impls) -> (* We add the binders common to body and type to the environment *) let env_body = restore_binders_impargs env_rec before_impls in (n,bl,ty,intern {env_body with tmp_scope = None} bd)) dl idl_temp in DAst.make ?loc @@ GRec (GFix (Array.map (fun (ro,_,_,_) -> ro) idl,n), Array.of_list lf, Array.map (fun (_,bl,_,_) -> bl) idl, Array.map (fun (_,_,ty,_) -> ty) idl, Array.map (fun (_,_,_,bd) -> bd) idl) | CCoFix ({ CAst.loc = locid; v = iddef }, dl) -> let lf = List.map (fun ({CAst.v = id},_,_,_) -> id) dl in let dl = Array.of_list dl in let n = try List.index0 Id.equal iddef lf with Not_found -> raise (InternalizationError (locid,UnboundFixName (true,iddef))) in let idl_tmp = Array.map (fun ({ CAst.loc; v = id },bl,ty,_) -> let (env',rbl) = List.fold_left intern_local_binder (env,[]) bl in let bl = List.rev (List.map glob_local_binder_of_extended rbl) in let bl_impls = remember_binders_impargs env' bl in (bl,intern_type env' ty,bl_impls)) dl in let env_rec = List.fold_left_i (fun i en name -> let (bli,tyi,_) = idl_tmp.(i) in let cofix_args = List.map (fun (na, bk, _, _) -> build_impls bk na) bli in push_name_env ntnvars (impls_type_list ~args:cofix_args tyi) en (CAst.make @@ Name name)) 0 env lf in let idl = Array.map2 (fun (_,_,_,bd) (b,c,bl_impls) -> (* We add the binders common to body and type to the environment *) let env_body = restore_binders_impargs env_rec bl_impls in (b,c,intern {env_body with tmp_scope = None} bd)) dl idl_tmp in DAst.make ?loc @@ GRec (GCoFix n, Array.of_list lf, Array.map (fun (bl,_,_) -> bl) idl, Array.map (fun (_,ty,_) -> ty) idl, Array.map (fun (_,_,bd) -> bd) idl) | CProdN ([],c2) -> anomaly (Pp.str "The AST is malformed, found prod without binders.") | CProdN (bl,c2) -> let (env',bl) = List.fold_left intern_local_binder (env,[]) bl in expand_binders ?loc mkGProd bl (intern_type env' c2) | CLambdaN ([],c2) -> anomaly (Pp.str "The AST is malformed, found lambda without binders.") | CLambdaN (bl,c2) -> let (env',bl) = List.fold_left intern_local_binder (reset_tmp_scope env,[]) bl in expand_binders ?loc mkGLambda bl (intern env' c2) | CLetIn (na,c1,t,c2) -> let inc1 = intern (reset_tmp_scope env) c1 in let int = Option.map (intern_type env) t in DAst.make ?loc @@ GLetIn (na.CAst.v, inc1, int, intern (push_name_env ntnvars (impls_term_list inc1) env na) c2) | CNotation ((InConstrEntrySomeLevel,"- _"), ([a],[],[],[])) when is_non_zero a -> let p = match a.CAst.v with CPrim (Numeral (_, p)) -> p | _ -> assert false in intern env (CAst.make ?loc @@ CPrim (Numeral (SMinus,p))) | CNotation ((InConstrEntrySomeLevel,"( _ )"),([a],[],[],[])) -> intern env a | CNotation (ntn,args) -> intern_notation intern env ntnvars loc ntn args | CGeneralization (b,a,c) -> intern_generalization intern env ntnvars loc b a c | CPrim p -> fst (Notation.interp_prim_token ?loc p (env.tmp_scope,env.scopes)) | CDelimiters (key, e) -> intern {env with tmp_scope = None; scopes = find_delimiters_scope ?loc key :: env.scopes} e | CAppExpl ((isproj,ref,us), args) -> let (f,_,args_scopes,_),args = let args = List.map (fun a -> (a,None)) args in intern_applied_reference ~isproj intern env (Environ.named_context_val globalenv) lvar us args ref in (* Rem: GApp(_,f,[]) stands for @f *) if args = [] then DAst.make ?loc @@ GApp (f,[]) else smart_gapp f loc (intern_args env args_scopes (List.map fst args)) | CApp ((isproj,f), args) -> let isproj,f,args = match f.CAst.v with (* Compact notations like "t.(f args') args" *) | CApp ((Some _ as isproj',f), args') when not (Option.has_some isproj) -> isproj',f,args'@args (* Don't compact "(f args') args" to resolve implicits separately *) | _ -> isproj,f,args in let (c,impargs,args_scopes,l),args = match f.CAst.v with | CRef (ref,us) -> intern_applied_reference ~isproj intern env (Environ.named_context_val globalenv) lvar us args ref | CNotation (ntn,([],[],[],[])) -> assert (Option.is_empty isproj); let c = intern_notation intern env ntnvars loc ntn ([],[],[],[]) in let x, impl, scopes, l = find_appl_head_data c in (x,impl,scopes,l), args | _ -> assert (Option.is_empty isproj); (intern env f,[],[],[]), args in apply_impargs c env impargs args_scopes (merge_impargs l args) loc | CRecord fs -> let st = Evar_kinds.Define (not (Program.get_proofs_transparency ())) in let fields = sort_fields ~complete:true loc fs (fun _idx fieldname constructorname -> let open Evar_kinds in let fieldinfo : Evar_kinds.record_field = {fieldname=fieldname; recordname=inductive_of_constructor constructorname} in CAst.make ?loc @@ CHole (Some (Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with Evar_kinds.qm_obligation=st; Evar_kinds.qm_record_field=Some fieldinfo }) , IntroAnonymous, None)) in begin match fields with | None -> user_err ?loc ~hdr:"intern" (str"No constructor inference.") | Some (n, constrname, args) -> let pars = List.make n (CAst.make ?loc @@ CHole (None, IntroAnonymous, None)) in let app = CAst.make ?loc @@ CAppExpl ((None, constrname,None), List.rev_append pars args) in intern env app end | CCases (sty, rtnpo, tms, eqns) -> let as_in_vars = List.fold_left (fun acc (_,na,inb) -> (Option.fold_left (fun acc { CAst.v = y } -> Name.fold_right Id.Set.add y acc) acc na)) Id.Set.empty tms in (* as, in & return vars *) let forbidden_vars = Option.cata free_vars_of_constr_expr as_in_vars rtnpo in let tms,ex_ids,aliases,match_from_in = List.fold_right (fun citm (inds,ex_ids,asubst,matchs) -> let ((tm,ind),extra_id,(ind_ids,alias_subst,match_td)) = intern_case_item env forbidden_vars citm in (tm,ind)::inds, Id.Set.union ind_ids (Option.fold_right Id.Set.add extra_id ex_ids), merge_subst alias_subst asubst, List.rev_append match_td matchs) tms ([],Id.Set.empty,Id.Map.empty,[]) in let env' = Id.Set.fold (fun var bli -> push_name_env ntnvars (Variable,[],[],[]) bli (CAst.make @@ Name var)) (Id.Set.union ex_ids as_in_vars) (reset_hidden_inductive_implicit_test env) in (* PatVars before a real pattern do not need to be matched *) let stripped_match_from_in = let rec aux = function | [] -> [] | (_, c) :: q when is_patvar c -> aux q | l -> l in aux match_from_in in let rtnpo = Option.map (replace_vars_constr_expr aliases) rtnpo in let rtnpo = match stripped_match_from_in with | [] -> Option.map (intern_type env') rtnpo (* Only PatVar in "in" clauses *) | l -> (* Build a return predicate by expansion of the patterns of the "in" clause *) let thevars, thepats = List.split l in let sub_rtn = (* Some (GSort (Loc.ghost,GType None)) *) None in let sub_tms = List.map (fun id -> (DAst.make @@ GVar id),(Name id,None)) thevars (* "match v1,..,vn" *) in let main_sub_eqn = CAst.make @@ ([],thepats, (* "|p1,..,pn" *) Option.cata (intern_type env') (DAst.make ?loc @@ GHole(Evar_kinds.CasesType false,IntroAnonymous,None)) rtnpo) (* "=> P" if there were a return predicate P, and "=> _" otherwise *) in let catch_all_sub_eqn = if List.for_all (irrefutable globalenv) thepats then [] else [CAst.make @@ ([],List.make (List.length thepats) (DAst.make @@ PatVar Anonymous), (* "|_,..,_" *) DAst.make @@ GHole(Evar_kinds.ImpossibleCase,IntroAnonymous,None))] (* "=> _" *) in Some (DAst.make @@ GCases(RegularStyle,sub_rtn,sub_tms,main_sub_eqn::catch_all_sub_eqn)) in let eqns' = List.map (intern_eqn (List.length tms) env) eqns in DAst.make ?loc @@ GCases (sty, rtnpo, tms, List.flatten eqns') | CLetTuple (nal, (na,po), b, c) -> let env' = reset_tmp_scope env in (* "in" is None so no match to add *) let ((b',(na',_)),_,_) = intern_case_item env' Id.Set.empty (b,na,None) in let p' = Option.map (fun u -> let env'' = push_name_env ntnvars (Variable,[],[],[]) (reset_hidden_inductive_implicit_test env') (CAst.make na') in intern_type env'' u) po in DAst.make ?loc @@ GLetTuple (List.map (fun { CAst.v } -> v) nal, (na', p'), b', intern (List.fold_left (push_name_env ntnvars (Variable,[],[],[])) (reset_hidden_inductive_implicit_test env) nal) c) | CIf (c, (na,po), b1, b2) -> let env' = reset_tmp_scope env in let ((c',(na',_)),_,_) = intern_case_item env' Id.Set.empty (c,na,None) in (* no "in" no match to ad too *) let p' = Option.map (fun p -> let env'' = push_name_env ntnvars (Variable,[],[],[]) (reset_hidden_inductive_implicit_test env) (CAst.make na') in intern_type env'' p) po in DAst.make ?loc @@ GIf (c', (na', p'), intern env b1, intern env b2) | CHole (k, naming, solve) -> let k = match k with | None -> let st = Evar_kinds.Define (not (Program.get_proofs_transparency ())) in (match naming with | IntroIdentifier id -> Evar_kinds.NamedHole id | _ -> Evar_kinds.QuestionMark { Evar_kinds.default_question_mark with Evar_kinds.qm_obligation=st; }) | Some k -> k in let solve = match solve with | None -> None | Some gen -> let (ltacvars, ntnvars) = lvar in (* Preventively declare notation variables in ltac as non-bindings *) Id.Map.iter (fun x (used_as_binder,_,_) -> used_as_binder := false) ntnvars; let extra = ltacvars.ltac_extra in (* We inform ltac that the interning vars and the notation vars are bound *) (* but we could instead rely on the "intern_sign" *) let lvars = Id.Set.union ltacvars.ltac_bound ltacvars.ltac_vars in let lvars = Id.Set.union lvars (Id.Map.domain ntnvars) in let ltacvars = Id.Set.union lvars env.ids in (* Propagating enough information for mutual interning with tac-in-term *) let intern_sign = { Genintern.intern_ids = env.ids; Genintern.notation_variable_status = ntnvars } in let ist = { Genintern.genv = globalenv; ltacvars; extra; intern_sign; } in let (_, glb) = Genintern.generic_intern ist gen in Some glb in DAst.make ?loc @@ GHole (k, naming, solve) (* Parsing pattern variables *) | CPatVar n when pattern_mode -> DAst.make ?loc @@ GPatVar (Evar_kinds.SecondOrderPatVar n) | CEvar (n, []) when pattern_mode -> DAst.make ?loc @@ GPatVar (Evar_kinds.FirstOrderPatVar n) (* end *) (* Parsing existential variables *) | CEvar (n, l) -> DAst.make ?loc @@ GEvar (n, List.map (on_snd (intern env)) l) | CPatVar _ -> raise (InternalizationError (loc,IllegalMetavariable)) (* end *) | CSort s -> DAst.make ?loc @@ GSort s | CCast (c1, c2) -> DAst.make ?loc @@ GCast (intern env c1, map_cast_type (intern_type env) c2) ) and intern_type env = intern (set_type_scope env) and intern_local_binder env bind : intern_env * Glob_term.extended_glob_local_binder list = intern_local_binder_aux intern ntnvars env bind (* Expands a multiple pattern into a disjunction of multiple patterns *) and intern_multiple_pattern env n pl = let idsl_pll = List.map (intern_cases_pattern globalenv ntnvars (None,env.scopes) empty_alias) pl in let loc = loc_of_multiple_pattern pl in check_number_of_pattern loc n pl; product_of_cases_patterns empty_alias idsl_pll (* Expands a disjunction of multiple pattern *) and intern_disjunctive_multiple_pattern env loc n mpl = assert (not (List.is_empty mpl)); let mpl' = List.map (intern_multiple_pattern env n) mpl in let (idsl,mpl') = List.split mpl' in let ids = List.hd idsl in check_or_pat_variables loc ids (List.tl idsl); (ids,List.flatten mpl') (* Expands a pattern-matching clause [lhs => rhs] *) and intern_eqn n env {loc;v=(lhs,rhs)} = let eqn_ids,pll = intern_disjunctive_multiple_pattern env loc n lhs in (* Linearity implies the order in ids is irrelevant *) let eqn_ids = List.map (fun x -> x.v) eqn_ids in check_linearity lhs eqn_ids; let env_ids = List.fold_right Id.Set.add eqn_ids env.ids in List.map (fun (asubst,pl) -> let rhs = replace_vars_constr_expr asubst rhs in let rhs' = intern {env with ids = env_ids} rhs in CAst.make ?loc (eqn_ids,pl,rhs')) pll and intern_case_item env forbidden_names_for_gen (tm,na,t) = (* the "match" part *) let tm' = intern env tm in (* the "as" part *) let extra_id,na = let loc = tm'.CAst.loc in match DAst.get tm', na with | GVar id, None when not (Id.Map.mem id (snd lvar)) -> Some id, CAst.make ?loc @@ Name id | GRef (GlobRef.VarRef id, _), None -> Some id, CAst.make ?loc @@ Name id | _, None -> None, CAst.make Anonymous | _, Some ({ CAst.loc; v = na } as lna) -> None, lna in (* the "in" part *) let match_td,typ = match t with | Some t -> let with_letin,(ind,ind_ids,alias_subst,l) = intern_ind_pattern globalenv ntnvars (None,env.scopes) t in let (mib,mip) = Inductive.lookup_mind_specif globalenv ind in let nparams = (List.length (mib.Declarations.mind_params_ctxt)) in (* for "in Vect n", we answer (["n","n"],[(loc,"n")]) for "in Vect (S n)", we answer ((match over "m", relevant branch is "S n"), abstract over "m") = ([("m","S n")],[(loc,"m")]) where "m" is generated from the canonical name of the inductive and outside of {forbidden_names_for_gen} *) let (match_to_do,nal) = let rec canonize_args case_rel_ctxt arg_pats forbidden_names match_acc var_acc = let add_name l = function | { CAst.v = Anonymous } -> l | { CAst.loc; v = (Name y as x) } -> (y, DAst.make ?loc @@ PatVar x) :: l in match case_rel_ctxt,arg_pats with (* LetIn in the rel_context *) | LocalDef _ :: t, l when not with_letin -> canonize_args t l forbidden_names match_acc ((CAst.make Anonymous)::var_acc) | [],[] -> (add_name match_acc na, var_acc) | (LocalAssum (cano_name,ty) | LocalDef (cano_name,_,ty)) :: t, c::tt -> begin match DAst.get c with | PatVar x -> let loc = c.CAst.loc in canonize_args t tt forbidden_names (add_name match_acc CAst.(make ?loc x)) (CAst.make ?loc x::var_acc) | _ -> let fresh = Namegen.next_name_away_with_default_using_types "iV" cano_name.binder_name forbidden_names (EConstr.of_constr ty) in canonize_args t tt (Id.Set.add fresh forbidden_names) ((fresh,c)::match_acc) ((CAst.make ?loc:(cases_pattern_loc c) @@ Name fresh)::var_acc) end | _ -> assert false in let _,args_rel = List.chop nparams (List.rev mip.Declarations.mind_arity_ctxt) in canonize_args args_rel l forbidden_names_for_gen [] [] in (Id.Set.of_list (List.map (fun id -> id.CAst.v) ind_ids),alias_subst,match_to_do), Some (CAst.make ?loc:(cases_pattern_expr_loc t) (ind,List.rev_map (fun x -> x.v) nal)) | None -> (Id.Set.empty,Id.Map.empty,[]), None in (tm',(na.CAst.v, typ)), extra_id, match_td and intern_impargs c env l subscopes args = let eargs, rargs = extract_explicit_arg l args in if !parsing_explicit then if Id.Map.is_empty eargs then intern_args env subscopes rargs else user_err Pp.(str "Arguments given by name or position not supported in explicit mode.") else let rec aux n impl subscopes eargs rargs = let (enva,subscopes') = apply_scope_env env subscopes in match (impl,rargs) with | (imp::impl', rargs) when is_status_implicit imp -> begin try let id = name_of_implicit imp in let (_,a) = Id.Map.find id eargs in let eargs' = Id.Map.remove id eargs in intern enva a :: aux (n+1) impl' subscopes' eargs' rargs with Not_found -> if List.is_empty rargs && Id.Map.is_empty eargs && not (maximal_insertion_of imp) then (* Less regular arguments than expected: complete *) (* with implicit arguments if maximal insertion is set *) [] else (DAst.map_from_loc (fun ?loc (a,b,c) -> GHole(a,b,c)) (set_hole_implicit (n,get_implicit_name n l) (force_inference_of imp) c) ) :: aux (n+1) impl' subscopes' eargs rargs end | (imp::impl', a::rargs') -> intern enva a :: aux (n+1) impl' subscopes' eargs rargs' | (imp::impl', []) -> if not (Id.Map.is_empty eargs) then (let (id,(loc,_)) = Id.Map.choose eargs in user_err ?loc (str "Not enough non implicit \ arguments to accept the argument bound to " ++ Id.print id ++ str".")); [] | ([], rargs) -> assert (Id.Map.is_empty eargs); intern_args env subscopes rargs in aux 1 l subscopes eargs rargs and apply_impargs c env imp subscopes l loc = let imp = select_impargs_size (List.length (List.filter (fun (_,x) -> x == None) l)) imp in let l = intern_impargs c env imp subscopes l in smart_gapp c loc l and smart_gapp f loc = function | [] -> f | l -> let loc' = f.CAst.loc in match DAst.get f with | GApp (g, args) -> DAst.make ?loc:(Loc.merge_opt loc' loc) @@ GApp (g, args@l) | _ -> DAst.make ?loc:(Loc.merge_opt (loc_of_glob_constr f) loc) @@ GApp (f, l) and intern_args env subscopes = function | [] -> [] | a::args -> let (enva,subscopes) = apply_scope_env env subscopes in (intern enva a) :: (intern_args env subscopes args) in try intern env c with InternalizationError (loc,e) -> user_err ?loc ~hdr:"internalize" (explain_internalization_error e) (**************************************************************************) (* Functions to translate constr_expr into glob_constr *) (**************************************************************************) let extract_ids env = List.fold_right Id.Set.add (Termops.ids_of_rel_context (Environ.rel_context env)) Id.Set.empty let scope_of_type_kind sigma = function | IsType -> Notation.current_type_scope_name () | OfType typ -> compute_type_scope sigma typ | WithoutTypeConstraint -> None let empty_ltac_sign = { ltac_vars = Id.Set.empty; ltac_bound = Id.Set.empty; ltac_extra = Genintern.Store.empty; } let intern_gen kind env sigma ?(impls=empty_internalization_env) ?(pattern_mode=false) ?(ltacvars=empty_ltac_sign) c = let tmp_scope = scope_of_type_kind sigma kind in internalize env {ids = extract_ids env; unb = false; tmp_scope = tmp_scope; scopes = []; impls = impls} pattern_mode (ltacvars, Id.Map.empty) c let intern_constr env sigma c = intern_gen WithoutTypeConstraint env sigma c let intern_type env sigma c = intern_gen IsType env sigma c let intern_pattern globalenv patt = try intern_cases_pattern globalenv Id.Map.empty (None,[]) empty_alias patt with InternalizationError (loc,e) -> user_err ?loc ~hdr:"internalize" (explain_internalization_error e) (*********************************************************************) (* Functions to parse and interpret constructions *) (* All evars resolved *) let interp_gen kind env sigma ?(impls=empty_internalization_env) c = let c = intern_gen kind ~impls env sigma c in understand ~expected_type:kind env sigma c let interp_constr env sigma ?(impls=empty_internalization_env) c = interp_gen WithoutTypeConstraint env sigma c let interp_type env sigma ?(impls=empty_internalization_env) c = interp_gen IsType env sigma ~impls c let interp_casted_constr env sigma ?(impls=empty_internalization_env) c typ = interp_gen (OfType typ) env sigma ~impls c (* Not all evars expected to be resolved *) let interp_open_constr env sigma c = understand_tcc env sigma (intern_constr env sigma c) (* Not all evars expected to be resolved and computation of implicit args *) let interp_constr_evars_gen_impls ?(program_mode=false) env sigma ?(impls=empty_internalization_env) expected_type c = let c = intern_gen expected_type ~impls env sigma c in let imps = Implicit_quantifiers.implicits_of_glob_constr ~with_products:(expected_type == IsType) c in let flags = { Pretyping.all_no_fail_flags with program_mode } in let sigma, c = understand_tcc ~flags env sigma ~expected_type c in sigma, (c, imps) let interp_constr_evars_impls ?program_mode env sigma ?(impls=empty_internalization_env) c = interp_constr_evars_gen_impls ?program_mode env sigma ~impls WithoutTypeConstraint c let interp_casted_constr_evars_impls ?program_mode env evdref ?(impls=empty_internalization_env) c typ = interp_constr_evars_gen_impls ?program_mode env evdref ~impls (OfType typ) c let interp_type_evars_impls ?program_mode env sigma ?(impls=empty_internalization_env) c = interp_constr_evars_gen_impls ?program_mode env sigma ~impls IsType c (* Not all evars expected to be resolved, with side-effect on evars *) let interp_constr_evars_gen ?(program_mode=false) env sigma ?(impls=empty_internalization_env) expected_type c = let c = intern_gen expected_type ~impls env sigma c in let flags = { Pretyping.all_no_fail_flags with program_mode } in understand_tcc ~flags env sigma ~expected_type c let interp_constr_evars ?program_mode env evdref ?(impls=empty_internalization_env) c = interp_constr_evars_gen ?program_mode env evdref WithoutTypeConstraint ~impls c let interp_casted_constr_evars ?program_mode env sigma ?(impls=empty_internalization_env) c typ = interp_constr_evars_gen ?program_mode env sigma ~impls (OfType typ) c let interp_type_evars ?program_mode env sigma ?(impls=empty_internalization_env) c = interp_constr_evars_gen ?program_mode env sigma IsType ~impls c (* Miscellaneous *) let intern_constr_pattern env sigma ?(as_type=false) ?(ltacvars=empty_ltac_sign) c = let c = intern_gen (if as_type then IsType else WithoutTypeConstraint) ~pattern_mode:true ~ltacvars env sigma c in pattern_of_glob_constr c let intern_core kind env sigma ?(pattern_mode=false) ?(ltacvars=empty_ltac_sign) { Genintern.intern_ids = ids; Genintern.notation_variable_status = vl } c = let tmp_scope = scope_of_type_kind sigma kind in let impls = empty_internalization_env in internalize env {ids; unb = false; tmp_scope; scopes = []; impls} pattern_mode (ltacvars, vl) c let interp_notation_constr env ?(impls=empty_internalization_env) nenv a = let ids = extract_ids env in (* [vl] is intended to remember the scope of the free variables of [a] *) let vl = Id.Map.map (fun typ -> (ref false, ref None, typ)) nenv.ninterp_var_type in let impls = Id.Map.fold (fun id _ impls -> Id.Map.remove id impls) nenv.ninterp_var_type impls in let c = internalize env {ids; unb = false; tmp_scope = None; scopes = []; impls} false (empty_ltac_sign, vl) a in (* Splits variables into those that are binding, bound, or both *) (* Translate and check that [c] has all its free variables bound in [vars] *) let a, reversible = notation_constr_of_glob_constr nenv c in (* binding and bound *) let out_scope = function None -> None,[] | Some (a,l) -> a,l in let unused = match reversible with NonInjective ids -> ids | _ -> [] in let vars = Id.Map.mapi (fun id (used_as_binder, sc, typ) -> (!used_as_binder && not (List.mem_f Id.equal id unused), out_scope !sc)) vl in (* Returns [a] and the ordered list of variables with their scopes *) vars, a, reversible (* Interpret binders and contexts *) let interp_binder env sigma na t = let t = intern_gen IsType env sigma t in let t' = locate_if_hole ?loc:(loc_of_glob_constr t) na t in understand ~expected_type:IsType env sigma t' let interp_binder_evars env sigma na t = let t = intern_gen IsType env sigma t in let t' = locate_if_hole ?loc:(loc_of_glob_constr t) na t in understand_tcc env sigma ~expected_type:IsType t' let my_intern_constr env lvar acc c = internalize env acc false lvar c let intern_context env impl_env binders = try let lvar = (empty_ltac_sign, Id.Map.empty) in let lenv, bl = List.fold_left (fun (lenv, bl) b -> let (env, bl) = intern_local_binder_aux (my_intern_constr env lvar) Id.Map.empty (lenv, bl) b in (env, bl)) ({ids = extract_ids env; unb = false; tmp_scope = None; scopes = []; impls = impl_env}, []) binders in (lenv.impls, List.map glob_local_binder_of_extended bl) with InternalizationError (loc,e) -> user_err ?loc ~hdr:"internalize" (explain_internalization_error e) let interp_glob_context_evars ?(program_mode=false) env sigma k bl = let open EConstr in let flags = { Pretyping.all_no_fail_flags with program_mode } in let env, sigma, par, _, impls = List.fold_left (fun (env,sigma,params,n,impls) (na, k, b, t) -> let t' = if Option.is_empty b then locate_if_hole ?loc:(loc_of_glob_constr t) na t else t in let sigma, t = understand_tcc ~flags env sigma ~expected_type:IsType t' in match b with None -> let r = Retyping.relevance_of_type env sigma t in let d = LocalAssum (make_annot na r,t) in let impls = if k == Implicit then CAst.make (Some (na,true)) :: impls else CAst.make None :: impls in (push_rel d env, sigma, d::params, succ n, impls) | Some b -> let sigma, c = understand_tcc ~flags env sigma ~expected_type:(OfType t) b in let r = Retyping.relevance_of_type env sigma t in let d = LocalDef (make_annot na r, c, t) in (push_rel d env, sigma, d::params, n, impls)) (env,sigma,[],k+1,[]) (List.rev bl) in sigma, ((env, par), List.rev impls) let interp_context_evars ?program_mode ?(impl_env=empty_internalization_env) ?(shift=0) env sigma params = let int_env,bl = intern_context env impl_env params in let sigma, x = interp_glob_context_evars ?program_mode env sigma shift bl in sigma, (int_env, x)