1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Sorts open Util open Pp open Constr open Univ let enforce_univ_constraint (u,d,v) = match d with | Eq -> enforce_eq u v | Le -> enforce_leq u v | Lt -> enforce_leq (super u) v let subst_univs_level fn l = try Some (fn l) with Not_found -> None let subst_univs_constraint fn (u,d,v as c) cstrs = let u' = subst_univs_level fn u in let v' = subst_univs_level fn v in match u', v' with | None, None -> Constraint.add c cstrs | Some u, None -> enforce_univ_constraint (u,d,Universe.make v) cstrs | None, Some v -> enforce_univ_constraint (Universe.make u,d,v) cstrs | Some u, Some v -> enforce_univ_constraint (u,d,v) cstrs let subst_univs_constraints subst csts = Constraint.fold (fun c cstrs -> subst_univs_constraint subst c cstrs) csts Constraint.empty let level_subst_of f = fun l -> try let u = f l in match Universe.level u with | None -> l | Some l -> l with Not_found -> l let subst_univs_fn_constr f c = let changed = ref false in let fu = Univ.subst_univs_universe f in let fi = Univ.Instance.subst_fn (level_subst_of f) in let rec aux t = match kind t with | Sort (Sorts.Type u) -> let u' = fu u in if u' == u then t else (changed := true; mkSort (Sorts.sort_of_univ u')) | Const (c, u) -> let u' = fi u in if u' == u then t else (changed := true; mkConstU (c, u')) | Ind (i, u) -> let u' = fi u in if u' == u then t else (changed := true; mkIndU (i, u')) | Construct (c, u) -> let u' = fi u in if u' == u then t else (changed := true; mkConstructU (c, u')) | _ -> map aux t in let c' = aux c in if !changed then c' else c let subst_univs_constr subst c = if Univ.is_empty_subst subst then c else let f = Univ.make_subst subst in subst_univs_fn_constr f c let subst_univs_constr = if Flags.profile then let subst_univs_constr_key = CProfile.declare_profile "subst_univs_constr" in CProfile.profile2 subst_univs_constr_key subst_univs_constr else subst_univs_constr let normalize_univ_variable ~find = let rec aux cur = let b = find cur in let b' = subst_univs_universe aux b in if Universe.equal b' b then b else b' in aux let normalize_univ_variable_opt_subst ectx = let find l = match Univ.LMap.find l ectx with | Some b -> b | None -> raise Not_found in normalize_univ_variable ~find let normalize_univ_variable_subst subst = let find l = Univ.LMap.find l subst in normalize_univ_variable ~find let normalize_universe_opt_subst subst = let normlevel = normalize_univ_variable_opt_subst subst in subst_univs_universe normlevel let normalize_universe_subst subst = let normlevel = normalize_univ_variable_subst subst in subst_univs_universe normlevel let normalize_opt_subst ctx = let normalize = normalize_universe_opt_subst ctx in Univ.LMap.mapi (fun u -> function | None -> None | Some v -> Some (normalize v)) ctx type universe_opt_subst = Universe.t option universe_map let subst_univs_fn_puniverses f (c, u as cu) = let u' = Instance.subst_fn f u in if u' == u then cu else (c, u') let nf_evars_and_universes_opt_subst f subst = let subst = normalize_univ_variable_opt_subst subst in let lsubst = level_subst_of subst in let rec aux c = match kind c with | Evar (evk, args) -> let args = Array.map aux args in (match try f (evk, args) with Not_found -> None with | None -> mkEvar (evk, args) | Some c -> aux c) | Const pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkConstU pu' | Ind pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkIndU pu' | Construct pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkConstructU pu' | Sort (Type u) -> let u' = Univ.subst_univs_universe subst u in if u' == u then c else mkSort (sort_of_univ u') | _ -> Constr.map aux c in aux let make_opt_subst s = fun x -> (match Univ.LMap.find x s with | Some u -> u | None -> raise Not_found) let subst_opt_univs_constr s = let f = make_opt_subst s in subst_univs_fn_constr f let normalize_univ_variables ctx = let ctx = normalize_opt_subst ctx in let def, subst = Univ.LMap.fold (fun u v (def, subst) -> match v with | None -> (def, subst) | Some b -> (Univ.LSet.add u def, Univ.LMap.add u b subst)) ctx (Univ.LSet.empty, Univ.LMap.empty) in ctx, def, subst let pr_universe_body = function | None -> mt () | Some v -> str" := " ++ Univ.Universe.pr v let pr_universe_opt_subst = Univ.LMap.pr pr_universe_body