1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Univ open UnivSubst (* To disallow minimization to Set *) let get_set_minimization = Goptions.declare_bool_option_and_ref ~depr:false ~name:"minimization to Set" ~key:["Universe";"Minimization";"ToSet"] ~value:true (** Simplification *) let add_list_map u t map = try let l = LMap.find u map in LMap.set u (t :: l) map with Not_found -> LMap.add u [t] map (** Precondition: flexible <= ctx *) let choose_canonical ctx flexible algs s = let global = LSet.diff s ctx in let flexible, rigid = LSet.partition flexible (LSet.inter s ctx) in (* If there is a global universe in the set, choose it *) if not (LSet.is_empty global) then let canon = LSet.choose global in canon, (LSet.remove canon global, rigid, flexible) else (* No global in the equivalence class, choose a rigid one *) if not (LSet.is_empty rigid) then let canon = LSet.choose rigid in canon, (global, LSet.remove canon rigid, flexible) else (* There are only flexible universes in the equivalence class, choose a non-algebraic. *) let algs, nonalgs = LSet.partition (fun x -> LSet.mem x algs) flexible in if not (LSet.is_empty nonalgs) then let canon = LSet.choose nonalgs in canon, (global, rigid, LSet.remove canon flexible) else let canon = LSet.choose algs in canon, (global, rigid, LSet.remove canon flexible) (* Eq < Le < Lt *) let compare_constraint_type d d' = match d, d' with | Eq, Eq -> 0 | Eq, _ -> -1 | _, Eq -> 1 | Le, Le -> 0 | Le, _ -> -1 | _, Le -> 1 | Lt, Lt -> 0 type lowermap = constraint_type LMap.t let lower_union = let merge k a b = match a, b with | Some _, None -> a | None, Some _ -> b | None, None -> None | Some l, Some r -> if compare_constraint_type l r >= 0 then a else b in LMap.merge merge let lower_add l c m = try let c' = LMap.find l m in if compare_constraint_type c c' > 0 then LMap.add l c m else m with Not_found -> LMap.add l c m let lower_of_list l = List.fold_left (fun acc (d,l) -> LMap.add l d acc) LMap.empty l type lbound = { enforce : bool; alg : bool; lbound: Universe.t; lower : lowermap } exception Found of Level.t * lowermap let find_inst insts v = try LMap.iter (fun k {enforce;alg;lbound=v';lower} -> if not alg && enforce && Universe.equal v' v then raise (Found (k, lower))) insts; raise Not_found with Found (f,l) -> (f,l) let compute_lbound left = (* The universe variable was not fixed yet. Compute its level using its lower bound. *) let sup l lbound = match lbound with | None -> Some l | Some l' -> Some (Universe.sup l l') in List.fold_left (fun lbound (d, l) -> if d == Le (* l <= ?u *) then sup l lbound else (* l < ?u *) (assert (d == Lt); if not (Universe.level l == None) then sup (Universe.super l) lbound else None)) None left let instantiate_with_lbound u lbound lower ~alg ~enforce (ctx, us, algs, insts, cstrs) = if enforce then let inst = Universe.make u in let cstrs' = enforce_leq lbound inst cstrs in (ctx, us, LSet.remove u algs, LMap.add u {enforce;alg;lbound;lower} insts, cstrs'), {enforce; alg; lbound=inst; lower} else (* Actually instantiate *) (Univ.LSet.remove u ctx, Univ.LMap.add u (Some lbound) us, algs, LMap.add u {enforce;alg;lbound;lower} insts, cstrs), {enforce; alg; lbound; lower} type constraints_map = (Univ.constraint_type * Univ.LMap.key) list Univ.LMap.t let _pr_constraints_map (cmap:constraints_map) = let open Pp in LMap.fold (fun l cstrs acc -> Level.pr l ++ str " => " ++ prlist_with_sep spc (fun (d,r) -> pr_constraint_type d ++ Level.pr r) cstrs ++ fnl () ++ acc) cmap (mt ()) let remove_alg l (ctx, us, algs, insts, cstrs) = (ctx, us, LSet.remove l algs, insts, cstrs) let not_lower lower (d,l) = (* We're checking if (d,l) is already implied by the lower constraints on some level u. If it represents l < u (d is Lt or d is Le and i > 0, the i < 0 case is impossible due to invariants of Univ), and the lower constraints only have l <= u then it is not implied. *) Univ.Universe.exists (fun (l,i) -> let d = if i == 0 then d else match d with | Le -> Lt | d -> d in try let d' = LMap.find l lower in (* If d is stronger than the already implied lower * constraints we must keep it. *) compare_constraint_type d d' > 0 with Not_found -> (* No constraint existing on l *) true) l exception UpperBoundedAlg (** [enforce_uppers upper lbound cstrs] interprets [upper] as upper constraints to [lbound], adding them to [cstrs]. @raise UpperBoundedAlg if any [upper] constraints are strict and [lbound] algebraic. *) let enforce_uppers upper lbound cstrs = List.fold_left (fun cstrs (d, r) -> if d == Univ.Le then enforce_leq lbound (Universe.make r) cstrs else match Universe.level lbound with | Some lev -> Constraint.add (lev, d, r) cstrs | None -> raise UpperBoundedAlg) cstrs upper let minimize_univ_variables ctx us algs left right cstrs = let left, lbounds = Univ.LMap.fold (fun r lower (left, lbounds as acc) -> if Univ.LMap.mem r us || not (Univ.LSet.mem r ctx) then acc else (* Fixed universe, just compute its glb for sharing *) let lbounds = match compute_lbound (List.map (fun (d,l) -> d, Universe.make l) lower) with | None -> lbounds | Some lbound -> LMap.add r {enforce=true; alg=false; lbound; lower=lower_of_list lower} lbounds in (Univ.LMap.remove r left, lbounds)) left (left, Univ.LMap.empty) in let rec instance (ctx, us, algs, insts, cstrs as acc) u = let acc, left, lower = match LMap.find u left with | exception Not_found -> acc, [], LMap.empty | l -> let acc, left, newlow, lower = List.fold_left (fun (acc, left, newlow, lower') (d, l) -> let acc', {enforce=enf;alg;lbound=l';lower} = aux acc l in let l' = if enf then Universe.make l else l' in acc', (d, l') :: left, lower_add l d newlow, lower_union lower lower') (acc, [], LMap.empty, LMap.empty) l in let left = CList.uniquize (List.filter (not_lower lower) left) in (acc, left, LMap.lunion newlow lower) in let instantiate_lbound lbound = let alg = LSet.mem u algs in if alg then (* u is algebraic: we instantiate it with its lower bound, if any, or enforce the constraints if it is bounded from the top. *) let lower = LSet.fold LMap.remove (Universe.levels lbound) lower in instantiate_with_lbound u lbound lower ~alg:true ~enforce:false acc else (* u is non algebraic *) match Universe.level lbound with | Some l -> (* The lowerbound is directly a level *) (* u is not algebraic but has no upper bounds, we instantiate it with its lower bound if it is a different level, otherwise we keep it. *) let lower = LMap.remove l lower in if not (Level.equal l u) then (* Should check that u does not have upper constraints that are not already in right *) let acc = remove_alg l acc in instantiate_with_lbound u lbound lower ~alg:false ~enforce:false acc else acc, {enforce=true; alg=false; lbound; lower} | None -> begin match find_inst insts lbound with | can, lower -> (* Another universe represents the same lower bound, we can share them with no harm. *) let lower = LMap.remove can lower in instantiate_with_lbound u (Universe.make can) lower ~alg:false ~enforce:false acc | exception Not_found -> (* We set u as the canonical universe representing lbound *) instantiate_with_lbound u lbound lower ~alg:false ~enforce:true acc end in let enforce_uppers ((ctx,us,algs,insts,cstrs), b as acc) = match LMap.find u right with | exception Not_found -> acc | upper -> let upper = List.filter (fun (d, r) -> not (LMap.mem r us)) upper in let cstrs = enforce_uppers upper b.lbound cstrs in (ctx, us, algs, insts, cstrs), b in if not (LSet.mem u ctx) then enforce_uppers (acc, {enforce=true; alg=false; lbound=Universe.make u; lower}) else let lbound = compute_lbound left in match lbound with | None -> (* Nothing to do *) enforce_uppers (acc, {enforce=true;alg=false;lbound=Universe.make u; lower}) | Some lbound -> try enforce_uppers (instantiate_lbound lbound) with UpperBoundedAlg -> enforce_uppers (acc, {enforce=true; alg=false; lbound=Universe.make u; lower}) and aux (ctx, us, algs, seen, cstrs as acc) u = try acc, LMap.find u seen with Not_found -> instance acc u in LMap.fold (fun u v (ctx, us, algs, seen, cstrs as acc) -> if v == None then fst (aux acc u) else LSet.remove u ctx, us, LSet.remove u algs, seen, cstrs) us (ctx, us, algs, lbounds, cstrs) module UPairs = OrderedType.UnorderedPair(Univ.Level) module UPairSet = Set.Make (UPairs) (* TODO check is_small/sprop *) let normalize_context_set ~lbound g ctx us algs weak = let (ctx, csts) = ContextSet.levels ctx, ContextSet.constraints ctx in (* Keep the Prop/Set <= i constraints separate for minimization *) let smallles, csts = Constraint.partition (fun (l,d,r) -> d == Le && (Level.equal l lbound || Level.is_sprop l)) csts in let smallles = if get_set_minimization () then Constraint.filter (fun (l,d,r) -> LSet.mem r ctx && not (Level.is_sprop l)) smallles else Constraint.empty in let csts, partition = (* We first put constraints in a normal-form: all self-loops are collapsed to equalities. *) let g = LSet.fold (fun v g -> UGraph.add_universe ~lbound ~strict:false v g) ctx UGraph.initial_universes in let add_soft u g = if not (Level.is_small u || LSet.mem u ctx) then try UGraph.add_universe ~lbound ~strict:false u g with UGraph.AlreadyDeclared -> g else g in let g = Constraint.fold (fun (l, d, r) g -> add_soft r (add_soft l g)) csts g in let g = UGraph.merge_constraints csts g in UGraph.constraints_of_universes g in (* We ignore the trivial Prop/Set <= i constraints. *) let noneqs = Constraint.filter (fun (l,d,r) -> not ((d == Le && Level.equal l lbound) || (Level.is_prop l && d == Lt && Level.is_set r))) csts in let noneqs = Constraint.union noneqs smallles in let flex x = LMap.mem x us in let ctx, us, eqs = List.fold_left (fun (ctx, us, cstrs) s -> let canon, (global, rigid, flexible) = choose_canonical ctx flex algs s in (* Add equalities for globals which can't be merged anymore. *) let cstrs = LSet.fold (fun g cst -> Constraint.add (canon, Eq, g) cst) global cstrs in (* Also add equalities for rigid variables *) let cstrs = LSet.fold (fun g cst -> Constraint.add (canon, Eq, g) cst) rigid cstrs in let canonu = Some (Universe.make canon) in let us = LSet.fold (fun f -> LMap.add f canonu) flexible us in (LSet.diff ctx flexible, us, cstrs)) (ctx, us, Constraint.empty) partition in (* Process weak constraints: when one side is flexible and the 2 universes are unrelated unify them. *) let ctx, us, g = UPairSet.fold (fun (u,v) (ctx, us, g as acc) -> let norm = level_subst_of (normalize_univ_variable_opt_subst us) in let u = norm u and v = norm v in let set_to a b = (LSet.remove a ctx, LMap.add a (Some (Universe.make b)) us, UGraph.enforce_constraint (a,Eq,b) g) in if UGraph.check_constraint g (u,Le,v) || UGraph.check_constraint g (v,Le,u) then acc else if LMap.mem u us then set_to u v else if LMap.mem v us then set_to v u else acc) weak (ctx, us, g) in (* Noneqs is now in canonical form w.r.t. equality constraints, and contains only inequality constraints. *) let noneqs = let norm = level_subst_of (normalize_univ_variable_opt_subst us) in Constraint.fold (fun (u,d,v) noneqs -> let u = norm u and v = norm v in if d != Lt && Level.equal u v then noneqs else Constraint.add (u,d,v) noneqs) noneqs Constraint.empty in (* Compute the left and right set of flexible variables, constraints mentioning other variables remain in noneqs. *) let noneqs, ucstrsl, ucstrsr = Constraint.fold (fun (l,d,r as cstr) (noneq, ucstrsl, ucstrsr) -> let lus = LMap.mem l us and rus = LMap.mem r us in let ucstrsl' = if lus then add_list_map l (d, r) ucstrsl else ucstrsl and ucstrsr' = add_list_map r (d, l) ucstrsr in let noneqs = if lus || rus then noneq else Constraint.add cstr noneq in (noneqs, ucstrsl', ucstrsr')) noneqs (Constraint.empty, LMap.empty, LMap.empty) in (* Now we construct the instantiation of each variable. *) let ctx', us, algs, inst, noneqs = minimize_univ_variables ctx us algs ucstrsr ucstrsl noneqs in let us = normalize_opt_subst us in (us, algs), (ctx', Constraint.union noneqs eqs) (* let normalize_conkey = CProfile.declare_profile "normalize_context_set" *) (* let normalize_context_set a b c = CProfile.profile3 normalize_conkey normalize_context_set a b c *)