1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Util open Names open Univ module UNameMap = Names.Id.Map type uinfo = { uname : Id.t option; uloc : Loc.t option; } module UPairSet = UnivMinim.UPairSet (* 2nd part used to check consistency on the fly. *) type t = { uctx_names : UnivNames.universe_binders * uinfo LMap.t; uctx_local : ContextSet.t; (** The local context of variables *) uctx_seff_univs : LSet.t; (** Local universes used through private constants *) uctx_univ_variables : UnivSubst.universe_opt_subst; (** The local universes that are unification variables *) uctx_univ_algebraic : LSet.t; (** The subset of unification variables that can be instantiated with algebraic universes as they appear in inferred types only. *) uctx_universes : UGraph.t; (** The current graph extended with the local constraints *) uctx_universes_lbound : Univ.Level.t; (** The lower bound on universes (e.g. Set or Prop) *) uctx_initial_universes : UGraph.t; (** The graph at the creation of the evar_map *) uctx_weak_constraints : UPairSet.t } let initial_sprop_cumulative = UGraph.make_sprop_cumulative UGraph.initial_universes let empty = { uctx_names = UNameMap.empty, LMap.empty; uctx_local = ContextSet.empty; uctx_seff_univs = LSet.empty; uctx_univ_variables = LMap.empty; uctx_univ_algebraic = LSet.empty; uctx_universes = initial_sprop_cumulative; uctx_universes_lbound = Univ.Level.set; uctx_initial_universes = initial_sprop_cumulative; uctx_weak_constraints = UPairSet.empty; } let elaboration_sprop_cumul = Goptions.declare_bool_option_and_ref ~depr:false ~name:"SProp cumulativity during elaboration" ~key:["Elaboration";"StrictProp";"Cumulativity"] ~value:true let make ~lbound u = let u = if elaboration_sprop_cumul () then UGraph.make_sprop_cumulative u else u in { empty with uctx_universes = u; uctx_universes_lbound = lbound; uctx_initial_universes = u} let is_empty ctx = ContextSet.is_empty ctx.uctx_local && LMap.is_empty ctx.uctx_univ_variables let uname_union s t = if s == t then s else UNameMap.merge (fun k l r -> match l, r with | Some _, _ -> l | _, _ -> r) s t let union ctx ctx' = if ctx == ctx' then ctx else if is_empty ctx' then ctx else let local = ContextSet.union ctx.uctx_local ctx'.uctx_local in let seff = LSet.union ctx.uctx_seff_univs ctx'.uctx_seff_univs in let names = uname_union (fst ctx.uctx_names) (fst ctx'.uctx_names) in let newus = LSet.diff (ContextSet.levels ctx'.uctx_local) (ContextSet.levels ctx.uctx_local) in let newus = LSet.diff newus (LMap.domain ctx.uctx_univ_variables) in let weak = UPairSet.union ctx.uctx_weak_constraints ctx'.uctx_weak_constraints in let declarenew g = LSet.fold (fun u g -> UGraph.add_universe u ~lbound:ctx.uctx_universes_lbound ~strict:false g) newus g in let names_rev = LMap.lunion (snd ctx.uctx_names) (snd ctx'.uctx_names) in { uctx_names = (names, names_rev); uctx_local = local; uctx_seff_univs = seff; uctx_univ_variables = LMap.subst_union ctx.uctx_univ_variables ctx'.uctx_univ_variables; uctx_univ_algebraic = LSet.union ctx.uctx_univ_algebraic ctx'.uctx_univ_algebraic; uctx_initial_universes = declarenew ctx.uctx_initial_universes; uctx_universes = (if local == ctx.uctx_local then ctx.uctx_universes else let cstrsr = ContextSet.constraints ctx'.uctx_local in UGraph.merge_constraints cstrsr (declarenew ctx.uctx_universes)); uctx_universes_lbound = ctx.uctx_universes_lbound; uctx_weak_constraints = weak} let context_set ctx = ctx.uctx_local let constraints ctx = snd ctx.uctx_local let context ctx = ContextSet.to_context ctx.uctx_local let univ_entry ~poly uctx = let open Entries in if poly then let (binders, _) = uctx.uctx_names in let uctx = context uctx in let nas = UnivNames.compute_instance_binders (UContext.instance uctx) binders in Polymorphic_entry (nas, uctx) else Monomorphic_entry (context_set uctx) let of_context_set ctx = { empty with uctx_local = ctx } let subst ctx = ctx.uctx_univ_variables let ugraph ctx = ctx.uctx_universes let initial_graph ctx = ctx.uctx_initial_universes let algebraics ctx = ctx.uctx_univ_algebraic let add_uctx_names ?loc s l (names, names_rev) = if UNameMap.mem s names then user_err ?loc ~hdr:"add_uctx_names" Pp.(str "Universe " ++ Names.Id.print s ++ str" already bound."); (UNameMap.add s l names, LMap.add l { uname = Some s; uloc = loc } names_rev) let add_uctx_loc l loc (names, names_rev) = match loc with | None -> (names, names_rev) | Some _ -> (names, LMap.add l { uname = None; uloc = loc } names_rev) let of_binders b = let ctx = empty in let rmap = UNameMap.fold (fun id l rmap -> LMap.add l { uname = Some id; uloc = None } rmap) b LMap.empty in { ctx with uctx_names = b, rmap } let invent_name (named,cnt) u = let rec aux i = let na = Id.of_string ("u"^(string_of_int i)) in if Id.Map.mem na named then aux (i+1) else Id.Map.add na u named, i+1 in aux cnt let universe_binders ctx = let named, rev = ctx.uctx_names in let named, _ = LSet.fold (fun u named -> match LMap.find u rev with | exception Not_found -> (* not sure if possible *) invent_name named u | { uname = None } -> invent_name named u | { uname = Some _ } -> named) (ContextSet.levels ctx.uctx_local) (named, 0) in named let instantiate_variable l b v = try v := LMap.set l (Some b) !v with Not_found -> assert false exception UniversesDiffer let drop_weak_constraints = ref false let process_universe_constraints ctx cstrs = let open UnivSubst in let open UnivProblem in let univs = ctx.uctx_universes in let vars = ref ctx.uctx_univ_variables in let weak = ref ctx.uctx_weak_constraints in let normalize u = normalize_univ_variable_opt_subst !vars u in let nf_constraint = function | ULub (u, v) -> ULub (level_subst_of normalize u, level_subst_of normalize v) | UWeak (u, v) -> UWeak (level_subst_of normalize u, level_subst_of normalize v) | UEq (u, v) -> UEq (subst_univs_universe normalize u, subst_univs_universe normalize v) | ULe (u, v) -> ULe (subst_univs_universe normalize u, subst_univs_universe normalize v) in let is_local l = LMap.mem l !vars in let varinfo x = match Universe.level x with | None -> Inl x | Some l -> Inr l in let equalize_variables fo l l' r r' local = (* Assumes l = [l',0] and r = [r',0] *) let () = if is_local l' then instantiate_variable l' r vars else if is_local r' then instantiate_variable r' l vars else if not (UGraph.check_eq_level univs l' r') then (* Two rigid/global levels, none of them being local, one of them being Prop/Set, disallow *) if Level.is_small l' || Level.is_small r' then raise (UniverseInconsistency (Eq, l, r, None)) else if fo then raise UniversesDiffer in enforce_eq_level l' r' local in let equalize_universes l r local = match varinfo l, varinfo r with | Inr l', Inr r' -> equalize_variables false l l' r r' local | Inr l, Inl r | Inl r, Inr l -> let alg = LSet.mem l ctx.uctx_univ_algebraic in let inst = univ_level_rem l r r in if alg && not (LSet.mem l (Universe.levels inst)) then (instantiate_variable l inst vars; local) else let lu = Universe.make l in if univ_level_mem l r then enforce_leq inst lu local else raise (UniverseInconsistency (Eq, lu, r, None)) | Inl _, Inl _ (* both are algebraic *) -> if UGraph.check_eq univs l r then local else raise (UniverseInconsistency (Eq, l, r, None)) in let unify_universes cst local = let cst = nf_constraint cst in if UnivProblem.is_trivial cst then local else match cst with | ULe (l, r) -> begin match Univ.Universe.level r with | None -> if UGraph.check_leq univs l r then local else user_err Pp.(str "Algebraic universe on the right") | Some r' -> if Level.is_small r' then if not (Universe.is_levels l) then (* l contains a +1 and r=r' small so l <= r impossible *) raise (UniverseInconsistency (Le, l, r, None)) else if UGraph.check_leq univs l r then match Univ.Universe.level l with | Some l -> Univ.Constraint.add (l, Le, r') local | None -> local else let levels = Universe.levels l in let fold l' local = let l = Universe.make l' in if Level.is_small l' || is_local l' then equalize_variables false l l' r r' local else raise (UniverseInconsistency (Le, l, r, None)) in LSet.fold fold levels local else match Univ.Universe.level l with | Some l -> Univ.Constraint.add (l, Le, r') local | None -> if UGraph.check_leq univs l r then local else enforce_leq l r local end | ULub (l, r) -> equalize_variables true (Universe.make l) l (Universe.make r) r local | UWeak (l, r) -> if not !drop_weak_constraints then weak := UPairSet.add (l,r) !weak; local | UEq (l, r) -> equalize_universes l r local in let local = UnivProblem.Set.fold unify_universes cstrs Constraint.empty in !vars, !weak, local let add_constraints ctx cstrs = let univs, local = ctx.uctx_local in let cstrs' = Constraint.fold (fun (l,d,r) acc -> let l = Universe.make l and r = Universe.make r in let cstr' = let open UnivProblem in match d with | Lt -> ULe (Universe.super l, r) | Le -> ULe (l, r) | Eq -> UEq (l, r) in UnivProblem.Set.add cstr' acc) cstrs UnivProblem.Set.empty in let vars, weak, local' = process_universe_constraints ctx cstrs' in { ctx with uctx_local = (univs, Constraint.union local local'); uctx_univ_variables = vars; uctx_universes = UGraph.merge_constraints local' ctx.uctx_universes; uctx_weak_constraints = weak; } (* let addconstrkey = CProfile.declare_profile "add_constraints_context";; *) (* let add_constraints_context = CProfile.profile2 addconstrkey add_constraints_context;; *) let add_universe_constraints ctx cstrs = let univs, local = ctx.uctx_local in let vars, weak, local' = process_universe_constraints ctx cstrs in { ctx with uctx_local = (univs, Constraint.union local local'); uctx_univ_variables = vars; uctx_universes = UGraph.merge_constraints local' ctx.uctx_universes; uctx_weak_constraints = weak; } let constrain_variables diff ctx = let univs, local = ctx.uctx_local in let univs, vars, local = LSet.fold (fun l (univs, vars, cstrs) -> try match LMap.find l vars with | Some u -> (LSet.add l univs, LMap.remove l vars, Constraint.add (l, Eq, Option.get (Universe.level u)) cstrs) | None -> (univs, vars, cstrs) with Not_found | Option.IsNone -> (univs, vars, cstrs)) diff (univs, ctx.uctx_univ_variables, local) in { ctx with uctx_local = (univs, local); uctx_univ_variables = vars } let qualid_of_level uctx = let map, map_rev = uctx.uctx_names in fun l -> try Some (Libnames.qualid_of_ident (Option.get (LMap.find l map_rev).uname)) with Not_found | Option.IsNone -> UnivNames.qualid_of_level l let pr_uctx_level uctx l = match qualid_of_level uctx l with | Some qid -> Libnames.pr_qualid qid | None -> Level.pr l type ('a, 'b) gen_universe_decl = { univdecl_instance : 'a; (* Declared universes *) univdecl_extensible_instance : bool; (* Can new universes be added *) univdecl_constraints : 'b; (* Declared constraints *) univdecl_extensible_constraints : bool (* Can new constraints be added *) } type universe_decl = (lident list, Constraint.t) gen_universe_decl let default_univ_decl = { univdecl_instance = []; univdecl_extensible_instance = true; univdecl_constraints = Constraint.empty; univdecl_extensible_constraints = true } let error_unbound_universes left uctx = let n = LSet.cardinal left in let loc = try let info = LMap.find (LSet.choose left) (snd uctx.uctx_names) in info.uloc with Not_found -> None in user_err ?loc ~hdr:"universe_context" ((str(CString.plural n "Universe") ++ spc () ++ LSet.pr (pr_uctx_level uctx) left ++ spc () ++ str (CString.conjugate_verb_to_be n) ++ str" unbound.")) let universe_context ~names ~extensible uctx = let levels = ContextSet.levels uctx.uctx_local in let newinst, left = List.fold_right (fun { CAst.loc; v = id } (newinst, acc) -> let l = try UNameMap.find id (fst uctx.uctx_names) with Not_found -> assert false in (l :: newinst, LSet.remove l acc)) names ([], levels) in if not extensible && not (LSet.is_empty left) then error_unbound_universes left uctx else let left = ContextSet.sort_levels (Array.of_list (LSet.elements left)) in let inst = Array.append (Array.of_list newinst) left in let inst = Instance.of_array inst in let ctx = UContext.make (inst, ContextSet.constraints uctx.uctx_local) in ctx let check_universe_context_set ~names ~extensible uctx = if extensible then () else let left = List.fold_left (fun left { CAst.loc; v = id } -> let l = try UNameMap.find id (fst uctx.uctx_names) with Not_found -> assert false in LSet.remove l left) (ContextSet.levels uctx.uctx_local) names in if not (LSet.is_empty left) then error_unbound_universes left uctx let check_implication uctx cstrs cstrs' = let gr = initial_graph uctx in let grext = UGraph.merge_constraints cstrs gr in if UGraph.check_constraints cstrs' grext then () else CErrors.user_err ~hdr:"check_univ_decl" (str "Universe constraints are not implied by the ones declared.") let check_mono_univ_decl uctx decl = let () = let names = decl.univdecl_instance in let extensible = decl.univdecl_extensible_instance in check_universe_context_set ~names ~extensible uctx in if not decl.univdecl_extensible_constraints then check_implication uctx decl.univdecl_constraints (ContextSet.constraints uctx.uctx_local); uctx.uctx_local let check_univ_decl ~poly uctx decl = let ctx = let names = decl.univdecl_instance in let extensible = decl.univdecl_extensible_instance in if poly then let (binders, _) = uctx.uctx_names in let uctx = universe_context ~names ~extensible uctx in let nas = UnivNames.compute_instance_binders (UContext.instance uctx) binders in Entries.Polymorphic_entry (nas, uctx) else let () = check_universe_context_set ~names ~extensible uctx in Entries.Monomorphic_entry uctx.uctx_local in if not decl.univdecl_extensible_constraints then check_implication uctx decl.univdecl_constraints (ContextSet.constraints uctx.uctx_local); ctx let restrict_universe_context ~lbound (univs, csts) keep = let removed = LSet.diff univs keep in if LSet.is_empty removed then univs, csts else let allunivs = Constraint.fold (fun (u,_,v) all -> LSet.add u (LSet.add v all)) csts univs in let g = UGraph.initial_universes in let g = LSet.fold (fun v g -> if Level.is_small v then g else UGraph.add_universe v ~lbound ~strict:false g) allunivs g in let g = UGraph.merge_constraints csts g in let allkept = LSet.union (UGraph.domain UGraph.initial_universes) (LSet.diff allunivs removed) in let csts = UGraph.constraints_for ~kept:allkept g in let csts = Constraint.filter (fun (l,d,r) -> not ((Level.equal l lbound && d == Le) || (Level.is_prop l && d == Lt && Level.is_set r))) csts in (LSet.inter univs keep, csts) let restrict ctx vars = let vars = LSet.union vars ctx.uctx_seff_univs in let vars = Names.Id.Map.fold (fun na l vars -> LSet.add l vars) (fst ctx.uctx_names) vars in let uctx' = restrict_universe_context ~lbound:ctx.uctx_universes_lbound ctx.uctx_local vars in { ctx with uctx_local = uctx' } type rigid = | UnivRigid | UnivFlexible of bool (** Is substitution by an algebraic ok? *) let univ_rigid = UnivRigid let univ_flexible = UnivFlexible false let univ_flexible_alg = UnivFlexible true (** ~sideff indicates that it is ok to redeclare a universe. ~extend also merges the universe context in the local constraint structures and not only in the graph. This depends if the context we merge comes from a side effect that is already inlined or defined separately. In the later case, there is no extension, see [emit_side_effects] for example. *) let merge ?loc ~sideff rigid uctx ctx' = let levels = ContextSet.levels ctx' in let uctx = match rigid with | UnivRigid -> uctx | UnivFlexible b -> let fold u accu = if LMap.mem u accu then accu else LMap.add u None accu in let uvars' = LSet.fold fold levels uctx.uctx_univ_variables in if b then { uctx with uctx_univ_variables = uvars'; uctx_univ_algebraic = LSet.union uctx.uctx_univ_algebraic levels } else { uctx with uctx_univ_variables = uvars' } in let uctx_local = ContextSet.append ctx' uctx.uctx_local in let declare g = LSet.fold (fun u g -> try UGraph.add_universe ~lbound:uctx.uctx_universes_lbound ~strict:false u g with UGraph.AlreadyDeclared when sideff -> g) levels g in let uctx_names = let fold u accu = let modify _ info = match info.uloc with | None -> { info with uloc = loc } | Some _ -> info in try LMap.modify u modify accu with Not_found -> LMap.add u { uname = None; uloc = loc } accu in (fst uctx.uctx_names, LSet.fold fold levels (snd uctx.uctx_names)) in let initial = declare uctx.uctx_initial_universes in let univs = declare uctx.uctx_universes in let uctx_universes = UGraph.merge_constraints (ContextSet.constraints ctx') univs in { uctx with uctx_names; uctx_local; uctx_universes; uctx_initial_universes = initial } let merge_subst uctx s = { uctx with uctx_univ_variables = LMap.subst_union uctx.uctx_univ_variables s } let demote_seff_univs univs uctx = let seff = LSet.union uctx.uctx_seff_univs univs in { uctx with uctx_seff_univs = seff } let merge_seff uctx ctx' = let levels = ContextSet.levels ctx' in let declare g = LSet.fold (fun u g -> try UGraph.add_universe ~lbound:uctx.uctx_universes_lbound ~strict:false u g with UGraph.AlreadyDeclared -> g) levels g in let initial = declare uctx.uctx_initial_universes in let univs = declare uctx.uctx_universes in let uctx_universes = UGraph.merge_constraints (ContextSet.constraints ctx') univs in { uctx with uctx_universes; uctx_initial_universes = initial } let emit_side_effects eff u = let uctx = Safe_typing.universes_of_private eff in let u = demote_seff_univs (fst uctx) u in merge_seff u uctx let update_sigma_env uctx env = let univs = UGraph.make_sprop_cumulative (Environ.universes env) in let eunivs = { uctx with uctx_initial_universes = univs; uctx_universes = univs } in merge_seff eunivs eunivs.uctx_local let new_univ_variable ?loc rigid name ({ uctx_local = ctx; uctx_univ_variables = uvars; uctx_univ_algebraic = avars} as uctx) = let u = UnivGen.fresh_level () in let ctx' = ContextSet.add_universe u ctx in let uctx', pred = match rigid with | UnivRigid -> uctx, true | UnivFlexible b -> let uvars' = LMap.add u None uvars in if b then {uctx with uctx_univ_variables = uvars'; uctx_univ_algebraic = LSet.add u avars}, false else {uctx with uctx_univ_variables = uvars'}, false in let names = match name with | Some n -> add_uctx_names ?loc n u uctx.uctx_names | None -> add_uctx_loc u loc uctx.uctx_names in let initial = UGraph.add_universe ~lbound:uctx.uctx_universes_lbound ~strict:false u uctx.uctx_initial_universes in let uctx' = {uctx' with uctx_names = names; uctx_local = ctx'; uctx_universes = UGraph.add_universe ~lbound:uctx.uctx_universes_lbound ~strict:false u uctx.uctx_universes; uctx_initial_universes = initial} in uctx', u let make_with_initial_binders ~lbound e us = let uctx = make ~lbound e in List.fold_left (fun uctx { CAst.loc; v = id } -> fst (new_univ_variable ?loc univ_rigid (Some id) uctx)) uctx us let add_global_univ uctx u = let initial = UGraph.add_universe ~lbound:Univ.Level.set ~strict:true u uctx.uctx_initial_universes in let univs = UGraph.add_universe ~lbound:Univ.Level.set ~strict:true u uctx.uctx_universes in { uctx with uctx_local = ContextSet.add_universe u uctx.uctx_local; uctx_initial_universes = initial; uctx_universes = univs } let make_flexible_variable ctx ~algebraic u = let {uctx_local = cstrs; uctx_univ_variables = uvars; uctx_univ_algebraic = avars; uctx_universes=g; } = ctx in assert (try LMap.find u uvars == None with Not_found -> true); match UGraph.choose (fun v -> not (Level.equal u v) && (algebraic || not (LSet.mem v avars))) g u with | Some v -> let uvars' = LMap.add u (Some (Universe.make v)) uvars in { ctx with uctx_univ_variables = uvars'; } | None -> let uvars' = LMap.add u None uvars in let avars' = if algebraic then let uu = Universe.make u in let substu_not_alg u' v = Option.cata (fun vu -> Universe.equal uu vu && not (LSet.mem u' avars)) false v in let has_upper_constraint () = Constraint.exists (fun (l,d,r) -> d == Lt && Level.equal l u) (ContextSet.constraints cstrs) in if not (LMap.exists substu_not_alg uvars || has_upper_constraint ()) then LSet.add u avars else avars else avars in {ctx with uctx_univ_variables = uvars'; uctx_univ_algebraic = avars'} let make_nonalgebraic_variable ctx u = { ctx with uctx_univ_algebraic = LSet.remove u ctx.uctx_univ_algebraic } let make_flexible_nonalgebraic ctx = {ctx with uctx_univ_algebraic = LSet.empty} let is_sort_variable uctx s = match s with | Sorts.Type u -> (match universe_level u with | Some l as x -> if LSet.mem l (ContextSet.levels uctx.uctx_local) then x else None | None -> None) | _ -> None let subst_univs_context_with_def def usubst (ctx, cst) = (LSet.diff ctx def, UnivSubst.subst_univs_constraints usubst cst) let is_trivial_leq (l,d,r) = Level.is_prop l && (d == Le || (d == Lt && Level.is_set r)) (* Prop < i <-> Set+1 <= i <-> Set < i *) let translate_cstr (l,d,r as cstr) = if Level.equal Level.prop l && d == Lt && not (Level.equal Level.set r) then (Level.set, d, r) else cstr let refresh_constraints univs (ctx, cstrs) = let cstrs', univs' = Constraint.fold (fun c (cstrs', univs as acc) -> let c = translate_cstr c in if is_trivial_leq c then acc else (Constraint.add c cstrs', UGraph.enforce_constraint c univs)) cstrs (Constraint.empty, univs) in ((ctx, cstrs'), univs') let normalize_variables uctx = let normalized_variables, def, subst = UnivSubst.normalize_univ_variables uctx.uctx_univ_variables in let ctx_local = subst_univs_context_with_def def (make_subst subst) uctx.uctx_local in let ctx_local', univs = refresh_constraints uctx.uctx_initial_universes ctx_local in subst, { uctx with uctx_local = ctx_local'; uctx_univ_variables = normalized_variables; uctx_universes = univs } let abstract_undefined_variables uctx = let vars' = LMap.fold (fun u v acc -> if v == None then LSet.remove u acc else acc) uctx.uctx_univ_variables uctx.uctx_univ_algebraic in { uctx with uctx_local = ContextSet.empty; uctx_univ_algebraic = vars' } let fix_undefined_variables uctx = let algs', vars' = LMap.fold (fun u v (algs, vars as acc) -> if v == None then (LSet.remove u algs, LMap.remove u vars) else acc) uctx.uctx_univ_variables (uctx.uctx_univ_algebraic, uctx.uctx_univ_variables) in { uctx with uctx_univ_variables = vars'; uctx_univ_algebraic = algs' } let refresh_undefined_univ_variables uctx = let subst, ctx' = UnivGen.fresh_universe_context_set_instance uctx.uctx_local in let subst_fn u = subst_univs_level_level subst u in let alg = LSet.fold (fun u acc -> LSet.add (subst_fn u) acc) uctx.uctx_univ_algebraic LSet.empty in let vars = LMap.fold (fun u v acc -> LMap.add (subst_fn u) (Option.map (subst_univs_level_universe subst) v) acc) uctx.uctx_univ_variables LMap.empty in let weak = UPairSet.fold (fun (u,v) acc -> UPairSet.add (subst_fn u, subst_fn v) acc) uctx.uctx_weak_constraints UPairSet.empty in let lbound = uctx.uctx_universes_lbound in let declare g = LSet.fold (fun u g -> UGraph.add_universe u ~lbound ~strict:false g) (ContextSet.levels ctx') g in let initial = declare uctx.uctx_initial_universes in let univs = declare UGraph.initial_universes in let uctx' = {uctx_names = uctx.uctx_names; uctx_local = ctx'; uctx_seff_univs = uctx.uctx_seff_univs; uctx_univ_variables = vars; uctx_univ_algebraic = alg; uctx_universes = univs; uctx_universes_lbound = lbound; uctx_initial_universes = initial; uctx_weak_constraints = weak; } in uctx', subst let minimize uctx = let open UnivMinim in let lbound = uctx.uctx_universes_lbound in let ((vars',algs'), us') = normalize_context_set ~lbound uctx.uctx_universes uctx.uctx_local uctx.uctx_univ_variables uctx.uctx_univ_algebraic uctx.uctx_weak_constraints in if ContextSet.equal us' uctx.uctx_local then uctx else let us', universes = refresh_constraints uctx.uctx_initial_universes us' in { uctx_names = uctx.uctx_names; uctx_local = us'; uctx_seff_univs = uctx.uctx_seff_univs; (* not sure about this *) uctx_univ_variables = vars'; uctx_univ_algebraic = algs'; uctx_universes = universes; uctx_universes_lbound = lbound; uctx_initial_universes = uctx.uctx_initial_universes; uctx_weak_constraints = UPairSet.empty; (* weak constraints are consumed *) } let universe_of_name uctx s = UNameMap.find s (fst uctx.uctx_names) let pr_weak prl {uctx_weak_constraints=weak} = let open Pp in prlist_with_sep fnl (fun (u,v) -> prl u ++ str " ~ " ++ prl v) (UPairSet.elements weak)