1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Pp
open CErrors
open Util
open Names
open Nameops
open Term
open Constr
open Context
open Vars
open Environ

module RelDecl = Context.Rel.Declaration
module NamedDecl = Context.Named.Declaration
module CompactedDecl = Context.Compacted.Declaration

module Internal = struct

let debug_print_constr c = Constr.debug_print EConstr.Unsafe.(to_constr c)
let debug_print_constr_env env sigma c = Constr.debug_print EConstr.(to_constr sigma c)
let term_printer = ref debug_print_constr_env

let print_constr_env env sigma t = !term_printer (env:env) sigma (t:Evd.econstr)
let set_print_constr f = term_printer := f

module EvMap = Evar.Map

let evar_suggested_name evk sigma =
  let open Evd in
  let base_id evk' evi =
  match evar_ident evk' sigma with
  | Some id -> id
  | None -> match evi.evar_source with
  | _,Evar_kinds.ImplicitArg (c,(n,Some id),b) -> id
  | _,Evar_kinds.VarInstance id -> id
  | _,Evar_kinds.QuestionMark {Evar_kinds.qm_name = Name id} -> id
  | _,Evar_kinds.GoalEvar -> Id.of_string "Goal"
  | _ ->
      let env = reset_with_named_context evi.evar_hyps (Global.env()) in
      Namegen.id_of_name_using_hdchar env sigma evi.evar_concl Anonymous
  in
  let names = EvMap.mapi base_id (undefined_map sigma) in
  let id = EvMap.find evk names in
  let fold evk' id' (seen, n) =
    if seen then (seen, n)
    else if Evar.equal evk evk' then (true, n)
    else if Id.equal id id' then (seen, succ n)
    else (seen, n)
  in
  let (_, n) = EvMap.fold fold names (false, 0) in
  if n = 0 then id else Nameops.add_suffix id (string_of_int (pred n))

let pr_existential_key sigma evk =
let open Evd in
match evar_ident evk sigma with
| None ->
  str "?" ++ Id.print (evar_suggested_name evk sigma)
| Some id ->
  str "?" ++ Id.print id

let pr_instance_status (sc,typ) =
  let open Evd in
  begin match sc with
  | IsSubType -> str " [or a subtype of it]"
  | IsSuperType -> str " [or a supertype of it]"
  | Conv -> mt ()
  end ++
  begin match typ with
  | CoerceToType -> str " [up to coercion]"
  | TypeNotProcessed -> mt ()
  | TypeProcessed -> str " [type is checked]"
  end

let protect f x =
  try f x
  with e -> str "EXCEPTION: " ++ str (Printexc.to_string e)

let print_kconstr env sigma a =
  protect (fun c -> print_constr_env env sigma c) a

let pr_meta_map env sigma =
  let open Evd in
  let print_constr = print_kconstr in
  let pr_name = function
      Name id -> str"[" ++ Id.print id ++ str"]"
    | _ -> mt() in
  let pr_meta_binding = function
    | (mv,Cltyp (na,b)) ->
              hov 0
          (pr_meta mv ++ pr_name na ++ str " : " ++
           print_constr env sigma b.rebus ++ fnl ())
    | (mv,Clval(na,(b,s),t)) ->
              hov 0
          (pr_meta mv ++ pr_name na ++ str " := " ++
           print_constr env sigma b.rebus ++
           str " : " ++ print_constr env sigma t.rebus ++
           spc () ++ pr_instance_status s ++ fnl ())
  in
  prlist pr_meta_binding (meta_list sigma)

let pr_decl env sigma (decl,ok) =
  let open NamedDecl in
  let print_constr = print_kconstr in
  match decl with
  | LocalAssum ({binder_name=id},_) -> if ok then Id.print id else (str "{" ++ Id.print id ++ str "}")
  | LocalDef ({binder_name=id},c,_) -> str (if ok then "(" else "{") ++ Id.print id ++ str ":=" ++
                           print_constr env sigma c ++ str (if ok then ")" else "}")

let pr_evar_source env sigma = function
  | Evar_kinds.NamedHole id -> Id.print id
  | Evar_kinds.QuestionMark _ -> str "underscore"
  | Evar_kinds.CasesType false -> str "pattern-matching return predicate"
  | Evar_kinds.CasesType true ->
      str "subterm of pattern-matching return predicate"
  | Evar_kinds.BinderType (Name id) -> str "type of " ++ Id.print id
  | Evar_kinds.BinderType Anonymous -> str "type of anonymous binder"
  | Evar_kinds.ImplicitArg (c,(n,ido),b) ->
      let open Globnames in
      let print_constr = print_kconstr in
      let id = Option.get ido in
      str "parameter " ++ Id.print id ++ spc () ++ str "of" ++
      spc () ++ print_constr env sigma (EConstr.of_constr @@ printable_constr_of_global c)
  | Evar_kinds.InternalHole -> str "internal placeholder"
  | Evar_kinds.TomatchTypeParameter (ind,n) ->
      let print_constr = print_kconstr in
      pr_nth n ++ str " argument of type " ++ print_constr env sigma (EConstr.mkInd ind)
  | Evar_kinds.GoalEvar -> str "goal evar"
  | Evar_kinds.ImpossibleCase -> str "type of impossible pattern-matching clause"
  | Evar_kinds.MatchingVar _ -> str "matching variable"
  | Evar_kinds.VarInstance id -> str "instance of " ++ Id.print id
  | Evar_kinds.SubEvar (where,evk) ->
     (match where with
     | None -> str "subterm of "
     | Some Evar_kinds.Body -> str "body of "
     | Some Evar_kinds.Domain -> str "domain of "
     | Some Evar_kinds.Codomain -> str "codomain of ") ++ Evar.print evk

let pr_evar_info env sigma evi =
  let open Evd in
  let print_constr = print_kconstr in
  let phyps =
    try
      let decls = match Filter.repr (evar_filter evi) with
      | None -> List.map (fun c -> (c, true)) (evar_context evi)
      | Some filter -> List.combine (evar_context evi) filter
      in
      prlist_with_sep spc (pr_decl env sigma) (List.rev decls)
    with Invalid_argument _ -> str "Ill-formed filtered context" in
  let pty = print_constr env sigma evi.evar_concl in
  let pb =
    match evi.evar_body with
      | Evar_empty -> mt ()
      | Evar_defined c -> spc() ++ str"=> "  ++ print_constr env sigma c
  in
  let candidates =
    match evi.evar_body, evi.evar_candidates with
      | Evar_empty, Some l ->
           spc () ++ str "{" ++
           prlist_with_sep (fun () -> str "|") (print_constr env sigma) l ++ str "}"
      | _ ->
          mt ()
  in
  let src = str "(" ++ pr_evar_source env sigma (snd evi.evar_source) ++ str ")" in
  hov 2
    (str"["  ++ phyps ++ spc () ++ str"|- "  ++ pty ++ pb ++ str"]" ++
       candidates ++ spc() ++ src)

let compute_evar_dependency_graph sigma =
  let open Evd in
  (* Compute the map binding ev to the evars whose body depends on ev *)
  let fold evk evi acc =
    let fold_ev evk' acc =
      let tab =
        try EvMap.find evk' acc
        with Not_found -> Evar.Set.empty
      in
      EvMap.add evk' (Evar.Set.add evk tab) acc
    in
    match evar_body evi with
    | Evar_empty -> acc
    | Evar_defined c -> Evar.Set.fold fold_ev (evars_of_term sigma c) acc
  in
  Evd.fold fold sigma EvMap.empty

let evar_dependency_closure n sigma =
  let open Evd in
  (* Create the DAG of depth [n] representing the recursive dependencies of
     undefined evars. *)
  let graph = compute_evar_dependency_graph sigma in
  let rec aux n curr accu =
    if Int.equal n 0 then Evar.Set.union curr accu
    else
      let fold evk accu =
        try
          let deps = EvMap.find evk graph in
          Evar.Set.union deps accu
        with Not_found -> accu
      in
      (* Consider only the newly added evars *)
      let ncurr = Evar.Set.fold fold curr Evar.Set.empty in
      (* Merge the others *)
      let accu = Evar.Set.union curr accu in
      aux (n - 1) ncurr accu
  in
  let undef = EvMap.domain (undefined_map sigma) in
  aux n undef Evar.Set.empty

let evar_dependency_closure n sigma =
  let open Evd in
  let deps = evar_dependency_closure n sigma in
  let map = EvMap.bind (fun ev -> find sigma ev) deps in
  EvMap.bindings map

let has_no_evar sigma =
  try let () = Evd.fold (fun _ _ () -> raise Exit) sigma () in true
  with Exit -> false

let pr_evd_level sigma = UState.pr_uctx_level (Evd.evar_universe_context sigma)
let reference_of_level sigma l = UState.qualid_of_level (Evd.evar_universe_context sigma) l

let pr_evar_universe_context ctx =
  let open UState in
  let prl = pr_uctx_level ctx in
  if UState.is_empty ctx then mt ()
  else
    (str"UNIVERSES:"++brk(0,1)++ 
       h 0 (Univ.pr_universe_context_set prl (UState.context_set ctx)) ++ fnl () ++
     str"ALGEBRAIC UNIVERSES:"++brk(0,1)++
     h 0 (Univ.LSet.pr prl (UState.algebraics ctx)) ++ fnl() ++
     str"UNDEFINED UNIVERSES:"++brk(0,1)++
     h 0 (UnivSubst.pr_universe_opt_subst (UState.subst ctx)) ++ fnl() ++
     str "WEAK CONSTRAINTS:"++brk(0,1)++
     h 0 (UState.pr_weak prl ctx) ++ fnl ())

let print_env_short env sigma =
  let print_constr = print_kconstr in
  let pr_rel_decl = function
    | RelDecl.LocalAssum (n,_) -> Name.print n.binder_name
    | RelDecl.LocalDef (n,b,_) -> str "(" ++ Name.print n.binder_name ++ str " := "
                                  ++ print_constr env sigma (EConstr.of_constr b) ++ str ")"
  in
  let pr_named_decl = NamedDecl.to_rel_decl %> pr_rel_decl in
  let nc = List.rev (named_context env) in
  let rc = List.rev (rel_context env) in
    str "[" ++ pr_sequence pr_named_decl nc ++ str "]" ++ spc () ++
    str "[" ++ pr_sequence pr_rel_decl rc ++ str "]"

let pr_evar_constraints sigma pbs =
  let pr_evconstr (pbty, env, t1, t2) =
    let env =
      (* We currently allow evar instances to refer to anonymous de
         Bruijn indices, so we protect the error printing code in this
         case by giving names to every de Bruijn variable in the
         rel_context of the conversion problem. MS: we should rather
         stop depending on anonymous variables, they can be used to
         indicate independency. Also, this depends on a strategy for
         naming/renaming. *)
      Namegen.make_all_name_different env sigma
    in
    print_env_short env sigma ++ spc () ++ str "|-" ++ spc () ++
      protect (print_constr_env env sigma) t1 ++ spc () ++
      str (match pbty with
            | Reduction.CONV -> "=="
            | Reduction.CUMUL -> "<=") ++
      spc () ++ protect (print_constr_env env @@ Evd.from_env env) t2
  in
  prlist_with_sep fnl pr_evconstr pbs

let pr_evar_map_gen with_univs pr_evars env sigma =
  let uvs = Evd.evar_universe_context sigma in
  let (_, conv_pbs) = Evd.extract_all_conv_pbs sigma in
  let evs = if has_no_evar sigma then mt () else pr_evars sigma ++ fnl ()
  and svs = if with_univs then pr_evar_universe_context uvs else mt ()
  and cstrs =
    if List.is_empty conv_pbs then mt ()
    else
    str "CONSTRAINTS:" ++ brk (0, 1) ++
      pr_evar_constraints sigma conv_pbs ++ fnl ()
  and typeclasses =
    let evars = Evd.get_typeclass_evars sigma in
    if Evar.Set.is_empty evars then mt ()
    else
      str "TYPECLASSES:" ++ brk (0, 1) ++
      prlist_with_sep spc Evar.print (Evar.Set.elements evars) ++ fnl ()
  and obligations =
    let evars = Evd.get_obligation_evars sigma in
    if Evar.Set.is_empty evars then mt ()
    else
      str "OBLIGATIONS:" ++ brk (0, 1) ++
      prlist_with_sep spc Evar.print (Evar.Set.elements evars) ++ fnl ()
  and metas =
    if List.is_empty (Evd.meta_list sigma) then mt ()
    else
      str "METAS:" ++ brk (0, 1) ++ pr_meta_map env sigma
  in
  evs ++ svs ++ cstrs ++ typeclasses ++ obligations ++ metas

let pr_evar_list env sigma l =
  let open Evd in
  let pr_restrict ev =
    match is_restricted_evar sigma ev with
    | None -> mt ()
    | Some ev' -> str " (restricted to " ++ Evar.print ev' ++ str ")"
  in
  let pr (ev, evi) =
    h 0 (Evar.print ev ++
      str "==" ++ pr_evar_info env sigma evi ++
      pr_restrict ev ++
      (if evi.evar_body == Evar_empty
       then str " {" ++ pr_existential_key sigma ev ++ str "}"
       else mt ()))
  in
  h 0 (prlist_with_sep fnl pr l)

let to_list d =
  let open Evd in
  (* Workaround for change in Map.fold behavior in ocaml 3.08.4 *)
  let l = ref [] in
  let fold_def evk evi () = match evi.evar_body with
    | Evar_defined _ -> l := (evk, evi) :: !l
    | Evar_empty -> ()
  in
  let fold_undef evk evi () = match evi.evar_body with
    | Evar_empty -> l := (evk, evi) :: !l
    | Evar_defined _ -> ()
  in
  Evd.fold fold_def d ();
  Evd.fold fold_undef d ();
  !l

let pr_evar_by_depth depth env sigma = match depth with
| None ->
  (* Print all evars *)
  str"EVARS:" ++ brk(0,1) ++ pr_evar_list env sigma (to_list sigma) ++ fnl()
| Some n ->
  (* Print closure of undefined evars *)
  str"UNDEFINED EVARS:"++
  (if Int.equal n 0 then mt() else str" (+level "++int n++str" closure):")++
  brk(0,1)++
  pr_evar_list env sigma (evar_dependency_closure n sigma) ++ fnl()

let pr_evar_by_filter filter env sigma =
  let open Evd in
  let elts = Evd.fold (fun evk evi accu -> (evk, evi) :: accu) sigma [] in
  let elts = List.rev elts in
  let is_def (_, evi) = match evi.evar_body with
  | Evar_defined _ -> true
  | Evar_empty -> false
  in
  let (defined, undefined) = List.partition is_def elts in
  let filter (evk, evi) = filter evk evi in
  let defined = List.filter filter defined in
  let undefined = List.filter filter undefined in
  let prdef =
    if List.is_empty defined then mt ()
    else str "DEFINED EVARS:" ++ brk (0, 1) ++
      pr_evar_list env sigma defined
  in
  let prundef =
    if List.is_empty undefined then mt ()
    else str "UNDEFINED EVARS:" ++ brk (0, 1) ++
      pr_evar_list env sigma undefined
  in
  prdef ++ prundef

let pr_evar_map ?(with_univs=true) depth env sigma =
  pr_evar_map_gen with_univs (fun sigma -> pr_evar_by_depth depth env sigma) env sigma

let pr_evar_map_filter ?(with_univs=true) filter env sigma =
  pr_evar_map_gen with_univs (fun sigma -> pr_evar_by_filter filter env sigma) env sigma

let pr_metaset metas =
  str "[" ++ pr_sequence pr_meta (Evd.Metaset.elements metas) ++ str "]"

let pr_var_decl env decl =
  let open NamedDecl in
  let sigma = Evd.from_env env in
  let pbody = match decl with
    | LocalAssum _ ->  mt ()
    | LocalDef (_,c,_) ->
        (* Force evaluation *)
        let c = EConstr.of_constr c in
        let pb = print_constr_env env sigma c in
          (str" := " ++ pb ++ cut () ) in
  let pt = print_constr_env env sigma (EConstr.of_constr (get_type decl)) in
  let ptyp = (str" : " ++ pt) in
    (Id.print (get_id decl) ++ hov 0 (pbody ++ ptyp))

let pr_rel_decl env decl =
  let open RelDecl in
  let sigma = Evd.from_env env in
  let pbody = match decl with
    | LocalAssum _ -> mt ()
    | LocalDef (_,c,_) ->
        (* Force evaluation *)
        let c = EConstr.of_constr c in
        let pb = print_constr_env env sigma c in
          (str":=" ++ spc () ++ pb ++ spc ()) in
  let ptyp = print_constr_env env sigma (EConstr.of_constr (get_type decl)) in
    match get_name decl with
      | Anonymous -> hov 0 (str"<>" ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp)
      | Name id -> hov 0 (Id.print id ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp)

let print_named_context env =
  hv 0 (fold_named_context
          (fun env d pps ->
            pps ++ ws 2 ++ pr_var_decl env d)
          env ~init:(mt ()))

let print_rel_context env =
  hv 0 (fold_rel_context
          (fun env d pps -> pps ++ ws 2 ++ pr_rel_decl env d)
          env ~init:(mt ()))

let print_env env =
  let sign_env =
    fold_named_context
      (fun env d pps ->
         let pidt =  pr_var_decl env d in
         (pps ++ fnl () ++ pidt))
      env ~init:(mt ())
  in
  let db_env =
    fold_rel_context
      (fun env d pps ->
         let pnat = pr_rel_decl env d in (pps ++ fnl () ++ pnat))
      env ~init:(mt ())
  in
    (sign_env ++ db_env)

(* [Rel (n+m);...;Rel(n+1)] *)
let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i))

let rel_list n m =
  let open EConstr in
  let rec reln l p =
    if p>m then l else reln (mkRel(n+p)::l) (p+1)
  in
  reln [] 1

let push_rel_assum (x,t) env =
  let open RelDecl in
  let open EConstr in
  push_rel (LocalAssum (x,t)) env

let push_rels_assum assums =
  let open RelDecl in
  push_rel_context (List.map (fun (x,t) -> LocalAssum (x,t)) assums)

let push_named_rec_types (lna,typarray,_) env =
  let open NamedDecl in
  let ctxt =
    Array.map2_i
      (fun i na t ->
         let id = map_annot (function
             | Name id -> id
             | Anonymous -> anomaly (Pp.str "Fix declarations must be named.")) na
         in  LocalAssum (id, lift i t))
      lna typarray in
  Array.fold_left
    (fun e assum -> push_named assum e) env ctxt

let lookup_rel_id id sign =
  let open RelDecl in
  let rec lookrec n = function
    | [] -> raise Not_found
    | decl :: l ->
      if Names.Name.equal (Name id) (get_name decl)
      then (n, get_value decl, get_type decl)
      else lookrec (n+1) l
  in
  lookrec 1 sign

(* Constructs either [forall x:t, c] or [let x:=b:t in c] *)
let mkProd_or_LetIn = EConstr.mkProd_or_LetIn
(* Constructs either [forall x:t, c] or [c] in which [x] is replaced by [b] *)
let mkProd_wo_LetIn decl c =
  let open EConstr in
  let open RelDecl in
  match decl with
    | LocalAssum (na,t) -> mkProd (na, t, c)
    | LocalDef (_,b,_) -> Vars.subst1 b c

let it_mkProd init = List.fold_left (fun c (n,t)  -> EConstr.mkProd (n, t, c)) init
let it_mkLambda init = List.fold_left (fun c (n,t)  -> EConstr.mkLambda (n, t, c)) init

let it_named_context_quantifier f ~init =
  List.fold_left (fun c d -> f d c) init

let it_mkProd_or_LetIn init = it_named_context_quantifier mkProd_or_LetIn ~init
let it_mkProd_wo_LetIn init = it_named_context_quantifier mkProd_wo_LetIn ~init
let it_mkLambda_or_LetIn init = it_named_context_quantifier mkLambda_or_LetIn ~init
let it_mkNamedProd_or_LetIn init = it_named_context_quantifier EConstr.mkNamedProd_or_LetIn ~init
let it_mkNamedProd_wo_LetIn init = it_named_context_quantifier mkNamedProd_wo_LetIn ~init
let it_mkNamedLambda_or_LetIn init = it_named_context_quantifier EConstr.mkNamedLambda_or_LetIn ~init

let it_mkLambda_or_LetIn_from_no_LetIn c decls =
  let open RelDecl in
  let rec aux k decls c = match decls with
  | [] -> c
  | LocalDef (na,b,t) :: decls -> mkLetIn (na,b,t,aux (k-1) decls (liftn 1 k c))
  | LocalAssum (na,t) :: decls -> mkLambda (na,t,aux (k-1) decls c)
  in aux (List.length decls) (List.rev decls) c

(* *)

(* strips head casts and flattens head applications *)
let rec strip_head_cast sigma c = match EConstr.kind sigma c with
  | App (f,cl) ->
      let rec collapse_rec f cl2 = match EConstr.kind sigma f with
        | App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
        | Cast (c,_,_) -> collapse_rec c cl2
        | _ -> if Int.equal (Array.length cl2) 0 then f else EConstr.mkApp (f,cl2)
      in
      collapse_rec f cl
  | Cast (c,_,_) -> strip_head_cast sigma c
  | _ -> c

let rec drop_extra_implicit_args sigma c = match EConstr.kind sigma c with
  (* Removed trailing extra implicit arguments, what improves compatibility
     for constants with recently added maximal implicit arguments *)
  | App (f,args) when EConstr.isEvar sigma (Array.last args) ->
      let open EConstr in
      drop_extra_implicit_args sigma
        (mkApp (f,fst (Array.chop (Array.length args - 1) args)))
  | _ -> c

(* Get the last arg of an application *)
let last_arg sigma c = match EConstr.kind sigma c with
  | App (f,cl) -> Array.last cl
  | _ -> anomaly (Pp.str "last_arg.")

(* Get the last arg of an application *)
let decompose_app_vect sigma c =
  match EConstr.kind sigma c with
  | App (f,cl) -> (f, cl)
  | _ -> (c,[||])

let adjust_app_list_size f1 l1 f2 l2 =
  let open EConstr in
  let len1 = List.length l1 and len2 = List.length l2 in
  if Int.equal len1 len2 then (f1,l1,f2,l2)
  else if len1 < len2 then
   let extras,restl2 = List.chop (len2-len1) l2 in
    (f1, l1, applist (f2,extras), restl2)
  else
    let extras,restl1 = List.chop (len1-len2) l1 in
    (applist (f1,extras), restl1, f2, l2)

let adjust_app_array_size f1 l1 f2 l2 =
  let open EConstr in
  let len1 = Array.length l1 and len2 = Array.length l2 in
  if Int.equal len1 len2 then (f1,l1,f2,l2)
  else if len1 < len2 then
    let extras,restl2 = Array.chop (len2-len1) l2 in
    (f1, l1, mkApp (f2,extras), restl2)
  else
    let extras,restl1 = Array.chop (len1-len2) l1 in
    (mkApp (f1,extras), restl1, f2, l2)

(* [map_constr_with_binders_left_to_right g f n c] maps [f n] on the
   immediate subterms of [c]; it carries an extra data [n] (typically
   a lift index) which is processed by [g] (which typically add 1 to
   [n]) at each binder traversal; the subterms are processed from left
   to right according to the usual representation of the constructions
   (this may matter if [f] does a side-effect); it is not recursive;
   in fact, the usual representation of the constructions is at the
   time being almost those of the ML representation (except for
   (co-)fixpoint) *)

let fold_rec_types g (lna,typarray,_) e =
  let open EConstr in
  let open Vars in
  let ctxt = Array.map2_i (fun i na t -> RelDecl.LocalAssum (na, lift i t)) lna typarray in
  Array.fold_left (fun e assum -> g assum e) e ctxt

let map_left2 f a g b =
  let l = Array.length a in
  if Int.equal l 0 then [||], [||] else begin
    let r = Array.make l (f a.(0)) in
    let s = Array.make l (g b.(0)) in
    for i = 1 to l - 1 do
      r.(i) <- f a.(i);
      s.(i) <- g b.(i)
    done;
    r, s
  end

let map_constr_with_binders_left_to_right sigma g f l c =
  let open RelDecl in
  let open EConstr in
  match EConstr.kind sigma c with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _ | Int _) -> c
  | Cast (b,k,t) -> 
    let b' = f l b in 
    let t' = f l t in
      if b' == b && t' == t then c
      else mkCast (b',k,t')
  | Prod (na,t,b) ->
      let t' = f l t in
      let b' = f (g (LocalAssum (na,t)) l) b in
        if t' == t && b' == b then c
        else mkProd (na, t', b')
  | Lambda (na,t,b) ->
      let t' = f l t in
      let b' = f (g (LocalAssum (na,t)) l) b in
        if t' == t && b' == b then c
        else mkLambda (na, t', b')
  | LetIn (na,bo,t,b) ->
      let bo' = f l bo in
      let t' = f l t in
      let b' = f (g (LocalDef (na,bo,t)) l) b in
        if bo' == bo && t' == t && b' == b then c
        else mkLetIn (na, bo', t', b')            
  | App (c,[||]) -> assert false
  | App (t,al) ->
      (*Special treatment to be able to recognize partially applied subterms*)
      let a = al.(Array.length al - 1) in
      let app = (mkApp (t, Array.sub al 0 (Array.length al - 1))) in
      let app' = f l app in
      let a' = f l a in
        if app' == app && a' == a then c
        else mkApp (app', [| a' |])
  | Proj (p,b) ->
    let b' = f l b in
      if b' == b then c
      else mkProj (p, b')
  | Evar (e,al) -> 
    let al' = Array.map_left (f l) al in
      if Array.for_all2 (==) al' al then c
      else mkEvar (e, al')
  | Case (ci,p,b,bl) ->
      (* In v8 concrete syntax, predicate is after the term to match! *)
      let b' = f l b in
      let p' = f l p in
      let bl' = Array.map_left (f l) bl in
        if b' == b && p' == p && bl' == bl then c
        else mkCase (ci, p', b', bl')
  | Fix (ln,(lna,tl,bl as fx)) ->
      let l' = fold_rec_types g fx l in
      let (tl', bl') = map_left2 (f l) tl (f l') bl in
        if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl'
        then c
        else mkFix (ln,(lna,tl',bl'))
  | CoFix(ln,(lna,tl,bl as fx)) ->
      let l' = fold_rec_types g fx l in
      let (tl', bl') = map_left2 (f l) tl (f l') bl in
        if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl'
        then c
        else mkCoFix (ln,(lna,tl',bl'))

let map_under_context_with_full_binders sigma g f l n d =
  let open EConstr in
  let f l c = Unsafe.to_constr (f l (of_constr c)) in
  let g d l = g (of_rel_decl d) l in
  let d = EConstr.Unsafe.to_constr (EConstr.whd_evar sigma d) in
  EConstr.of_constr (Constr.map_under_context_with_full_binders g f l n d)

let map_branches_with_full_binders sigma g f l ci bl =
  let tags = Array.map List.length ci.ci_pp_info.cstr_tags in
  let bl' = Array.map2 (map_under_context_with_full_binders sigma g f l) tags bl in
  if Array.for_all2 (==) bl' bl then bl else bl'

let map_return_predicate_with_full_binders sigma g f l ci p =
  let n = List.length ci.ci_pp_info.ind_tags in
  let p' = map_under_context_with_full_binders sigma g f l n p in
  if p' == p then p else p'

(* strong *)
let map_constr_with_full_binders_gen userview sigma g f l cstr =
  let open EConstr in
  match EConstr.kind sigma cstr with
  | (Rel _ | Meta _ | Var _   | Sort _ | Const _ | Ind _
    | Construct _ | Int _) -> cstr
  | Cast (c,k, t) ->
      let c' = f l c in
      let t' = f l t in
      if c==c' && t==t' then cstr else mkCast (c', k, t')
  | Prod (na,t,c) ->
      let t' = f l t in
      let c' = f (g (RelDecl.LocalAssum (na, t)) l) c in
      if t==t' && c==c' then cstr else mkProd (na, t', c')
  | Lambda (na,t,c) ->
      let t' = f l t in
      let c' = f (g (RelDecl.LocalAssum (na, t)) l) c in
      if t==t' && c==c' then cstr else  mkLambda (na, t', c')
  | LetIn (na,b,t,c) ->
      let b' = f l b in
      let t' = f l t in
      let c' = f (g (RelDecl.LocalDef (na, b, t)) l) c in
      if b==b' && t==t' && c==c' then cstr else mkLetIn (na, b', t', c')
  | App (c,al) ->
      let c' = f l c in
      let al' = Array.map (f l) al in
      if c==c' && Array.for_all2 (==) al al' then cstr else mkApp (c', al')
  | Proj (p,c) -> 
      let c' = f l c in
        if c' == c then cstr else mkProj (p, c')
  | Evar (e,al) ->
      let al' = Array.map (f l) al in
      if Array.for_all2 (==) al al' then cstr else mkEvar (e, al')
  | Case (ci,p,c,bl) when userview ->
      let p' = map_return_predicate_with_full_binders sigma g f l ci p in
      let c' = f l c in
      let bl' = map_branches_with_full_binders sigma g f l ci bl in
      if p==p' && c==c' && bl'==bl then cstr else
        mkCase (ci, p', c', bl')
  | Case (ci,p,c,bl) ->
      let p' = f l p in
      let c' = f l c in
      let bl' = Array.map (f l) bl in
      if p==p' && c==c' && Array.for_all2 (==) bl bl' then cstr else
        mkCase (ci, p', c', bl')
  | Fix (ln,(lna,tl,bl as fx)) ->
      let tl' = Array.map (f l) tl in
      let l' = fold_rec_types g fx l in
      let bl' = Array.map (f l') bl in
      if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl'
      then cstr
      else mkFix (ln,(lna,tl',bl'))
  | CoFix(ln,(lna,tl,bl as fx)) ->
      let tl' = Array.map (f l) tl in
      let l' = fold_rec_types g fx l in
      let bl' = Array.map (f l') bl in
      if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl'
      then cstr
      else mkCoFix (ln,(lna,tl',bl'))

let map_constr_with_full_binders sigma g f =
  map_constr_with_full_binders_gen false sigma g f

let map_constr_with_full_binders_user_view sigma g f =
  map_constr_with_full_binders_gen true sigma g f

(* [fold_constr_with_binders g f n acc c] folds [f n] on the immediate
   subterms of [c] starting from [acc] and proceeding from left to
   right according to the usual representation of the constructions as
   [fold_constr] but it carries an extra data [n] (typically a lift
   index) which is processed by [g] (which typically add 1 to [n]) at
   each binder traversal; it is not recursive *)

let fold_constr_with_full_binders sigma g f n acc c =
  let open EConstr in
  let f l acc c = f l acc (of_constr c) in
  let g d l  = g (of_rel_decl d) l in
  let c = Unsafe.to_constr (whd_evar sigma c) in
  Constr.fold_with_full_binders g f n acc c

let fold_constr_with_binders sigma g f n acc c =
  let open EConstr in
  let f l acc c = f l acc (of_constr c) in
  let c = Unsafe.to_constr (whd_evar sigma c) in
  Constr.fold_constr_with_binders g f n acc c

(***************************)
(* occurs check functions  *)
(***************************)

exception Occur

let occur_meta sigma c =
  let rec occrec c = match EConstr.kind sigma c with
    | Meta _ -> raise Occur
    | _ -> EConstr.iter sigma occrec c
  in try occrec c; false with Occur -> true

let occur_existential sigma c =
  let rec occrec c = match EConstr.kind sigma c with
    | Evar _ -> raise Occur
    | _ -> EConstr.iter sigma occrec c
  in try occrec c; false with Occur -> true

let occur_meta_or_existential sigma c =
  let rec occrec c = match EConstr.kind sigma c with
    | Evar _ -> raise Occur
    | Meta _ -> raise Occur
    | _ -> EConstr.iter sigma occrec c
  in try occrec c; false with Occur -> true

let occur_metavariable sigma m c =
  let rec occrec c = match EConstr.kind sigma c with
  | Meta m' -> if Int.equal m m' then raise Occur
  | _ -> EConstr.iter sigma occrec c
  in
  try occrec c; false with Occur -> true

let occur_evar sigma n c =
  let rec occur_rec c = match EConstr.kind sigma c with
    | Evar (sp,_) when Evar.equal sp n -> raise Occur
    | _ -> EConstr.iter sigma occur_rec c
  in
  try occur_rec c; false with Occur -> true

let occur_in_global env id constr =
  let vars = vars_of_global env constr in
  if Id.Set.mem id vars then raise Occur

let occur_var env sigma id c =
  let rec occur_rec c =
    match EConstr.destRef sigma c with
    | gr, _ -> occur_in_global env id gr
    | exception DestKO -> EConstr.iter sigma occur_rec c
  in
  try occur_rec c; false with Occur -> true

let occur_var_in_decl env sigma hyp decl =
  let open NamedDecl in
  match decl with
    | LocalAssum (_,typ) -> occur_var env sigma hyp typ
    | LocalDef (_, body, typ) ->
        occur_var env sigma hyp typ ||
        occur_var env sigma hyp body

let local_occur_var sigma id c =
  let rec occur c = match EConstr.kind sigma c with
  | Var id' -> if Id.equal id id' then raise Occur
  | _ -> EConstr.iter sigma occur c
  in
  try occur c; false with Occur -> true

  (* returns the list of free debruijn indices in a term *)

let free_rels sigma m =
  let rec frec depth acc c = match EConstr.kind sigma c with
    | Rel n       -> if n >= depth then Int.Set.add (n-depth+1) acc else acc
    | _ -> fold_constr_with_binders sigma succ frec depth acc c
  in
  frec 1 Int.Set.empty m

(* collects all metavar occurrences, in left-to-right order, preserving
 * repetitions and all. *)

let collect_metas sigma c =
  let rec collrec acc c =
    match EConstr.kind sigma c with
      | Meta mv -> List.add_set Int.equal mv acc
      | _       -> EConstr.fold sigma collrec acc c
  in
  List.rev (collrec [] c)

(* collects all vars; warning: this is only visible vars, not dependencies in
   all section variables; for the latter, use global_vars_set *)
let collect_vars sigma c =
  let rec aux vars c = match EConstr.kind sigma c with
  | Var id -> Id.Set.add id vars
  | _ -> EConstr.fold sigma aux vars c in
  aux Id.Set.empty c

(* Tests whether [m] is a subterm of [t]:
   [m] is appropriately lifted through abstractions of [t] *)

let dependent_main noevar sigma m t =
  let open EConstr in
  let eqc x y = eq_constr_nounivs sigma x y in
  let rec deprec m t =
    if eqc m t then
      raise Occur
    else
      match EConstr.kind sigma m, EConstr.kind sigma t with
        | App (fm,lm), App (ft,lt) when Array.length lm < Array.length lt ->
            deprec m (mkApp (ft,Array.sub lt 0 (Array.length lm)));
            Array.Fun1.iter deprec m
              (Array.sub lt
                (Array.length lm) ((Array.length lt) - (Array.length lm)))
        | _, Cast (c,_,_) when noevar && isMeta sigma c -> ()
        | _, Evar _ when noevar -> ()
        | _ -> EConstr.iter_with_binders sigma (fun c -> Vars.lift 1 c) deprec m t
  in
  try deprec m t; false with Occur -> true

let dependent sigma c t = dependent_main false sigma c t
let dependent_no_evar sigma c t = dependent_main true sigma c t

let dependent_in_decl sigma a decl =
  let open NamedDecl in
  match decl with
    | LocalAssum (_,t) -> dependent sigma a t
    | LocalDef (_, body, t) -> dependent sigma a body || dependent sigma a t

let count_occurrences sigma m t =
  let open EConstr in
  let n = ref 0 in
  let rec countrec m t =
    if EConstr.eq_constr sigma m t then
      incr n
    else
      match EConstr.kind sigma m, EConstr.kind sigma t with
        | App (fm,lm), App (ft,lt) when Array.length lm < Array.length lt ->
            countrec m (mkApp (ft,Array.sub lt 0 (Array.length lm)));
            Array.iter (countrec m)
              (Array.sub lt
                (Array.length lm) ((Array.length lt) - (Array.length lm)))
        | _, Cast (c,_,_) when isMeta sigma c -> ()
        | _, Evar _ -> ()
        | _ -> EConstr.iter_with_binders sigma (Vars.lift 1) countrec m t
  in
  countrec m t;
  !n

let pop t = EConstr.Vars.lift (-1) t

(***************************)
(*  bindings functions *)
(***************************)

type meta_type_map = (metavariable * types) list

type meta_value_map = (metavariable * constr) list

let isMetaOf sigma mv c =
  match EConstr.kind sigma c with Meta mv' -> Int.equal mv mv' | _ -> false

let rec subst_meta bl c =
  match kind c with
    | Meta i -> (try Int.List.assoc i bl with Not_found -> c)
    | _ -> Constr.map (subst_meta bl) c

let rec strip_outer_cast sigma c = match EConstr.kind sigma c with
  | Cast (c,_,_) -> strip_outer_cast sigma c
  | _ -> c

(* flattens application lists throwing casts in-between *)
let collapse_appl sigma c = match EConstr.kind sigma c with
  | App (f,cl) ->
    if EConstr.isCast sigma f then
      let rec collapse_rec f cl2 =
        match EConstr.kind sigma (strip_outer_cast sigma f) with
        | App (g,cl1) -> collapse_rec g (Array.append cl1 cl2)
        | _ -> EConstr.mkApp (f,cl2)
      in
      collapse_rec f cl
    else c
  | _ -> c

(* First utilities for avoiding telescope computation for subst_term *)

let prefix_application sigma eq_fun (k,c) t =
  let open EConstr in
  let c' = collapse_appl sigma c and t' = collapse_appl sigma t in
  match EConstr.kind sigma c', EConstr.kind sigma t' with
    | App (f1,cl1), App (f2,cl2) ->
        let l1 = Array.length cl1
        and l2 = Array.length cl2 in
        if l1 <= l2
           && eq_fun sigma c' (mkApp (f2, Array.sub cl2 0 l1)) then
          Some (mkApp (mkRel k, Array.sub cl2 l1 (l2 - l1)))
        else
          None
    | _ -> None

let my_prefix_application sigma eq_fun (k,c) by_c t =
  let open EConstr in
  let c' = collapse_appl sigma c and t' = collapse_appl sigma t in
  match EConstr.kind sigma c', EConstr.kind sigma t' with
    | App (f1,cl1), App (f2,cl2) ->
        let l1 = Array.length cl1
        and l2 = Array.length cl2 in
        if l1 <= l2
           && eq_fun sigma c' (mkApp (f2, Array.sub cl2 0 l1)) then
          Some (mkApp ((Vars.lift k by_c), Array.sub cl2 l1 (l2 - l1)))
        else
          None
    | _ -> None

(* Recognizing occurrences of a given subterm in a term: [subst_term c t]
   substitutes [(Rel 1)] for all occurrences of term [c] in a term [t];
   works if [c] has rels *)

let subst_term_gen sigma eq_fun c t =
  let open EConstr in
  let open Vars in
  let rec substrec (k,c as kc) t =
    match prefix_application sigma eq_fun kc t with
      | Some x -> x
      | None ->
    if eq_fun sigma c t then mkRel k
    else
      EConstr.map_with_binders sigma (fun (k,c) -> (k+1,lift 1 c)) substrec kc t
  in
  substrec (1,c) t

let subst_term sigma c t = subst_term_gen sigma EConstr.eq_constr c t

(* Recognizing occurrences of a given subterm in a term :
   [replace_term c1 c2 t] substitutes [c2] for all occurrences of
   term [c1] in a term [t]; works if [c1] and [c2] have rels *)

let replace_term_gen sigma eq_fun c by_c in_t =
  let rec substrec (k,c as kc) t =
    match my_prefix_application sigma eq_fun kc by_c t with
      | Some x -> x
      | None ->
    (if eq_fun sigma c t then (EConstr.Vars.lift k by_c) else
      EConstr.map_with_binders sigma (fun (k,c) -> (k+1,EConstr.Vars.lift 1 c))
        substrec kc t)
  in
  substrec (0,c) in_t

let replace_term sigma c byc t = replace_term_gen sigma EConstr.eq_constr c byc t

let vars_of_env env =
  let s = Environ.ids_of_named_context_val (Environ.named_context_val env) in
  if List.is_empty (Environ.rel_context env) then s
  else
  Context.Rel.fold_outside
    (fun decl s -> match RelDecl.get_name decl with Name id -> Id.Set.add id s | _ -> s)
    (rel_context env) ~init:s

let add_vname vars = function
    Name id -> Id.Set.add id vars
  | _ -> vars

(*************************)
(*   Names environments  *)
(*************************)
type names_context = Name.t list
let add_name n nl = n::nl
let lookup_name_of_rel p names =
  try List.nth names (p-1)
  with Invalid_argument _ | Failure _ -> raise Not_found
let lookup_rel_of_name id names =
  let rec lookrec n = function
    | Anonymous :: l  -> lookrec (n+1) l
    | (Name id') :: l -> if Id.equal id' id then n else lookrec (n+1) l
    | []            -> raise Not_found
  in
  lookrec 1 names
let empty_names_context = []

let ids_of_rel_context sign =
  Context.Rel.fold_outside
    (fun decl l -> match RelDecl.get_name decl with Name id -> id::l | Anonymous -> l)
    sign ~init:[]

let ids_of_named_context sign =
  Context.Named.fold_outside (fun decl idl -> NamedDecl.get_id decl :: idl) sign ~init:[]

let ids_of_context env =
  (ids_of_rel_context (rel_context env))
  @ (ids_of_named_context (named_context env))


let names_of_rel_context env =
  List.map RelDecl.get_name (rel_context env)

let is_section_variable id =
  try let _ = Global.lookup_named id in true
  with Not_found -> false

let global_of_constr sigma c =
  let open GlobRef in
  match EConstr.kind sigma c with
  | Const (c, u) -> ConstRef c, u
  | Ind (i, u) -> IndRef i, u
  | Construct (c, u) -> ConstructRef c, u
  | Var id -> VarRef id, EConstr.EInstance.empty
  | _ -> raise Not_found

let is_global sigma c t =
  let open GlobRef in
  match c, EConstr.kind sigma t with
  | ConstRef c, Const (c', _) -> Constant.equal c c'
  | IndRef i, Ind (i', _) -> eq_ind i i'
  | ConstructRef i, Construct (i', _) -> eq_constructor i i'
  | VarRef id, Var id' -> Id.equal id id'
  | _ -> false

let isGlobalRef sigma c =
  match EConstr.kind sigma c with
  | Const _ | Ind _ | Construct _ | Var _ -> true
  | _ -> false

let is_template_polymorphic_ind env sigma f =
  match EConstr.kind sigma f with
  | Ind (ind, u) ->
    if not (EConstr.EInstance.is_empty u) then false
    else Environ.template_polymorphic_ind ind env
  | _ -> false

let base_sort_cmp pb s0 s1 =
  match (s0,s1) with
  | SProp, SProp | Prop, Prop | Set, Set | Type _, Type _ -> true
  | SProp, _ | _, SProp -> false
  | Prop, Set | Prop, Type _ | Set, Type _ -> pb == Reduction.CUMUL
  | Set, Prop | Type _, Prop | Type _, Set -> false

let rec is_Prop sigma c = match EConstr.kind sigma c with
  | Sort u ->
    begin match EConstr.ESorts.kind sigma u with
    | Prop -> true
    | _ -> false
    end
  | Cast (c,_,_) -> is_Prop sigma c
  | _ -> false

let rec is_Set sigma c = match EConstr.kind sigma c with
  | Sort u ->
    begin match EConstr.ESorts.kind sigma u with
    | Set -> true
    | _ -> false
    end
  | Cast (c,_,_) -> is_Set sigma c
  | _ -> false

let rec is_Type sigma c = match EConstr.kind sigma c with
  | Sort u ->
    begin match EConstr.ESorts.kind sigma u with
    | Type _ -> true
    | _ -> false
    end
  | Cast (c,_,_) -> is_Type sigma c
  | _ -> false

(* eq_constr extended with universe erasure *)
let compare_constr_univ sigma f cv_pb t1 t2 =
  let open EConstr in
  match EConstr.kind sigma t1, EConstr.kind sigma t2 with
      Sort s1, Sort s2 -> base_sort_cmp cv_pb (ESorts.kind sigma s1) (ESorts.kind sigma s2)
    | Prod (_,t1,c1), Prod (_,t2,c2) ->
        f Reduction.CONV t1 t2 && f cv_pb c1 c2
    | Const (c, u), Const (c', u') -> Constant.equal c c'
    | Ind (i, _), Ind (i', _) -> eq_ind i i'
    | Construct (i, _), Construct (i', _) -> eq_constructor i i'
    | _ -> EConstr.compare_constr sigma (fun t1 t2 -> f Reduction.CONV t1 t2) t1 t2

let constr_cmp sigma cv_pb t1 t2 =
  let rec compare cv_pb t1 t2 = compare_constr_univ sigma compare cv_pb t1 t2 in
  compare cv_pb t1 t2

let eq_constr sigma t1 t2 = constr_cmp sigma Reduction.CONV t1 t2

(* App(c,[t1,...tn]) -> ([c,t1,...,tn-1],tn)
   App(c,[||]) -> ([],c) *)
let split_app sigma c = match EConstr.kind sigma c with
    App(c,l) ->
      let len = Array.length l in
      if Int.equal len 0 then ([],c) else
        let last = Array.get l (len-1) in
        let prev = Array.sub l 0 (len-1) in
        c::(Array.to_list prev), last
  | _ -> assert false

type subst = (EConstr.rel_context * EConstr.constr) Evar.Map.t

exception CannotFilter

let filtering sigma env cv_pb c1 c2 =
  let open EConstr in
  let open Vars in
  let evm = ref Evar.Map.empty in
  let define cv_pb e1 ev c1 =
    try let (e2,c2) = Evar.Map.find ev !evm in
    let shift = List.length e1 - List.length e2 in
    if constr_cmp sigma cv_pb c1 (lift shift c2) then () else raise CannotFilter
    with Not_found ->
      evm := Evar.Map.add ev (e1,c1) !evm
  in
  let rec aux env cv_pb c1 c2 =
    match EConstr.kind sigma c1, EConstr.kind sigma c2 with
      | App _, App _ ->
        let ((p1,l1),(p2,l2)) = (split_app sigma c1),(split_app sigma c2) in
        let () = aux env cv_pb l1 l2 in
        begin match p1, p2 with
        | [], [] -> ()
        | (h1 :: p1), (h2 :: p2) ->
          aux env cv_pb (applist (h1, p1)) (applist (h2, p2))
        | _ -> assert false
        end
      | Prod (n,t1,c1), Prod (_,t2,c2) ->
          aux env cv_pb t1 t2;
          aux (RelDecl.LocalAssum (n,t1) :: env) cv_pb c1 c2
      | _, Evar (ev,_) -> define cv_pb env ev c1
      | Evar (ev,_), _ -> define cv_pb env ev c2
      | _ ->
          if compare_constr_univ sigma
          (fun pb c1 c2 -> aux env pb c1 c2; true) cv_pb c1 c2 then ()
          else raise CannotFilter
          (* TODO: le reste des binders *)
  in
  aux env cv_pb c1 c2; !evm

let decompose_prod_letin sigma c =
  let rec prodec_rec i l c = match EConstr.kind sigma c with
    | Prod (n,t,c)    -> prodec_rec (succ i) (RelDecl.LocalAssum (n,t)::l) c
    | LetIn (n,d,t,c) -> prodec_rec (succ i) (RelDecl.LocalDef (n,d,t)::l) c
    | Cast (c,_,_)    -> prodec_rec i l c
    | _               -> i,l,c in
  prodec_rec 0 [] c

(* (nb_lam [na1:T1]...[nan:Tan]c) where c is not an abstraction
 * gives n (casts are ignored) *)
let nb_lam sigma c =
  let rec nbrec n c = match EConstr.kind sigma c with
    | Lambda (_,_,c) -> nbrec (n+1) c
    | Cast (c,_,_) -> nbrec n c
    | _ -> n
  in
  nbrec 0 c

(* similar to nb_lam, but gives the number of products instead *)
let nb_prod sigma c =
  let rec nbrec n c = match EConstr.kind sigma c with
    | Prod (_,_,c) -> nbrec (n+1) c
    | Cast (c,_,_) -> nbrec n c
    | _ -> n
  in
  nbrec 0 c

let nb_prod_modulo_zeta sigma x =
  let rec count n c =
    match EConstr.kind sigma c with
        Prod(_,_,t) -> count (n+1) t
      | LetIn(_,a,_,t) -> count n (EConstr.Vars.subst1 a t)
      | Cast(c,_,_) -> count n c
      | _ -> n
  in count 0 x

let align_prod_letin sigma c a =
  let (lc,_,_) = decompose_prod_letin sigma c in
  let (la,l,a) = decompose_prod_letin sigma a in
  if not (la >= lc) then invalid_arg "align_prod_letin";
  let (l1,l2) = Util.List.chop lc l in
  l2,it_mkProd_or_LetIn a l1

(* We reduce a series of head eta-redex or nothing at all   *)
(* [x1:c1;...;xn:cn]@(f;a1...an;x1;...;xn) --> @(f;a1...an) *)
(* Remplace 2 earlier buggish versions                      *)

let rec eta_reduce_head sigma c =
  let open EConstr in
  let open Vars in
  match EConstr.kind sigma c with
    | Lambda (_,c1,c') ->
        (match EConstr.kind sigma (eta_reduce_head sigma c') with
           | App (f,cl) ->
               let lastn = (Array.length cl) - 1 in
               if lastn < 0 then anomaly (Pp.str "application without arguments.")
               else
                 (match EConstr.kind sigma cl.(lastn) with
                    | Rel 1 ->
                        let c' =
                          if Int.equal lastn 0 then f
                          else mkApp (f, Array.sub cl 0 lastn)
                        in
                        if noccurn sigma 1 c'
                        then lift (-1) c'
                        else c
                    | _   -> c)
           | _ -> c)
    | _ -> c


(* iterator on rel context *)
let process_rel_context f env =
  let sign = named_context_val env in
  let rels = EConstr.rel_context env in
  let env0 = reset_with_named_context sign env in
  Context.Rel.fold_outside f rels ~init:env0

let assums_of_rel_context sign =
  Context.Rel.fold_outside
    (fun decl l ->
      match decl with
      | RelDecl.LocalDef _ -> l
      | RelDecl.LocalAssum (na,t) -> (na, t)::l)
    sign ~init:[]

let map_rel_context_in_env f env sign =
  let rec aux env acc = function
    | d::sign ->
        aux (push_rel d env) (RelDecl.map_constr (f env) d :: acc) sign
    | [] ->
        acc
  in
  aux env [] (List.rev sign)

let map_rel_context_with_binders f sign =
  let rec aux k = function
    | d::sign -> RelDecl.map_constr (f k) d :: aux (k-1) sign
    | [] -> []
  in
  aux (Context.Rel.length sign) sign

let substl_rel_context l =
  map_rel_context_with_binders (fun k -> substnl l (k-1))

let lift_rel_context n =
  map_rel_context_with_binders (liftn n)

let smash_rel_context sign =
  let rec aux acc = function
  | [] -> acc
  | (RelDecl.LocalAssum _ as d) :: l -> aux (d::acc) l
  | RelDecl.LocalDef (_,b,_) :: l ->
      (* Quadratic in the number of let but there are probably a few of them *)
      aux (List.rev (substl_rel_context [b] (List.rev acc))) l
  in List.rev (aux [] sign)

let fold_named_context_both_sides f l ~init = List.fold_right_and_left f l init

let mem_named_context_val id ctxt =
  try ignore(Environ.lookup_named_ctxt id ctxt); true with Not_found -> false

let map_rel_decl f = function
| RelDecl.LocalAssum (id, t) -> RelDecl.LocalAssum (id, f t)
| RelDecl.LocalDef (id, b, t) -> RelDecl.LocalDef (id, f b, f t)

let map_named_decl f = function
| NamedDecl.LocalAssum (id, t) -> NamedDecl.LocalAssum (id, f t)
| NamedDecl.LocalDef (id, b, t) -> NamedDecl.LocalDef (id, f b, f t)

let compact_named_context sign =
  let compact l decl =
    match decl, l with
    | NamedDecl.LocalAssum (i,t), [] ->
       [CompactedDecl.LocalAssum ([i],t)]
    | NamedDecl.LocalDef (i,c,t), [] ->
       [CompactedDecl.LocalDef ([i],c,t)]
    | NamedDecl.LocalAssum (i1,t1), CompactedDecl.LocalAssum (li,t2) :: q ->
       if Constr.equal t1 t2
       then CompactedDecl.LocalAssum (i1::li, t2) :: q
       else CompactedDecl.LocalAssum ([i1],t1) :: CompactedDecl.LocalAssum (li,t2) :: q
    | NamedDecl.LocalDef (i1,c1,t1), CompactedDecl.LocalDef (li,c2,t2) :: q ->
       if Constr.equal c1 c2 && Constr.equal t1 t2
       then CompactedDecl.LocalDef (i1::li, c2, t2) :: q
       else CompactedDecl.LocalDef ([i1],c1,t1) :: CompactedDecl.LocalDef (li,c2,t2) :: q
    | NamedDecl.LocalAssum (i,t), q ->
       CompactedDecl.LocalAssum ([i],t) :: q
    | NamedDecl.LocalDef (i,c,t), q ->
       CompactedDecl.LocalDef ([i],c,t) :: q
  in
  sign |> Context.Named.fold_inside compact ~init:[] |> List.rev

let clear_named_body id env =
  let open NamedDecl in
  let aux _ = function
  | LocalDef (id',c,t) when Id.equal id id'.binder_name -> push_named (LocalAssum (id',t))
  | d -> push_named d in
  fold_named_context aux env ~init:(reset_context env)

let global_vars_set env sigma constr =
  let rec filtrec acc c =
    match EConstr.destRef sigma c with
    | gr, _ -> Id.Set.union (vars_of_global env gr) acc
    | exception DestKO -> EConstr.fold sigma filtrec acc c
  in
  filtrec Id.Set.empty constr

let global_vars env sigma ids = Id.Set.elements (global_vars_set env sigma ids)

let global_vars_set_of_decl env sigma = function
  | NamedDecl.LocalAssum (_,t) -> global_vars_set env sigma t
  | NamedDecl.LocalDef (_,c,t) ->
      Id.Set.union (global_vars_set env sigma t)
        (global_vars_set env sigma c)

let dependency_closure env sigma sign hyps =
  if Id.Set.is_empty hyps then [] else
    let (_,lh) =
      Context.Named.fold_inside
        (fun (hs,hl) d ->
          let x = NamedDecl.get_id d in
          if Id.Set.mem x hs then
            (Id.Set.union (global_vars_set_of_decl env sigma d) (Id.Set.remove x hs),
            x::hl)
          else (hs,hl))
        ~init:(hyps,[])
        sign in
    List.rev lh

let global_app_of_constr sigma c =
  let open GlobRef in
  match EConstr.kind sigma c with
  | Const (c, u) -> (ConstRef c, u), None
  | Ind (i, u) -> (IndRef i, u), None
  | Construct (c, u) -> (ConstructRef c, u), None
  | Var id -> (VarRef id, EConstr.EInstance.empty), None
  | Proj (p, c) -> (ConstRef (Projection.constant p), EConstr.EInstance.empty), Some c
  | _ -> raise Not_found

let prod_applist sigma c l =
  let open EConstr in
  let rec app subst c l =
    match EConstr.kind sigma c, l with
    | Prod(_,_,c), arg::l -> app (arg::subst) c l
    | _, [] -> Vars.substl subst c
    | _ -> anomaly (Pp.str "Not enough prod's.") in
  app [] c l

let prod_applist_assum sigma n c l =
  let open EConstr in
  let rec app n subst c l =
    if Int.equal n 0 then
      if l == [] then Vars.substl subst c
      else anomaly (Pp.str "Not enough arguments.")
    else match EConstr.kind sigma c, l with
    | Prod(_,_,c), arg::l -> app (n-1) (arg::subst) c l
    | LetIn(_,b,_,c), _ -> app (n-1) (Vars.substl subst b::subst) c l
    | _ -> anomaly (Pp.str "Not enough prod/let's.") in
  app n [] c l

(* Cut a context ctx in 2 parts (ctx1,ctx2) with ctx1 containing k non let-in
     variables skips let-in's; let-in's in the middle are put in ctx2 *)
let context_chop k ctx =
  let rec chop_aux acc = function
    | (0, l2) -> (List.rev acc, l2)
    | (n, (RelDecl.LocalDef _ as h)::t) -> chop_aux (h::acc) (n, t)
    | (n, (h::t)) -> chop_aux (h::acc) (pred n, t)
    | (_, []) -> anomaly (Pp.str "context_chop.")
  in chop_aux [] (k,ctx)

(* Do not skip let-in's *)
let env_rel_context_chop k env =
  let open EConstr in
  let rels = rel_context env in
  let ctx1,ctx2 = List.chop k rels in
  push_rel_context ctx2 (reset_with_named_context (named_context_val env) env),
  ctx1
end

include Internal