1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Util open Names open Nameops open Term open Constr open Context open Vars open Environ module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration module CompactedDecl = Context.Compacted.Declaration module Internal = struct let debug_print_constr c = Constr.debug_print EConstr.Unsafe.(to_constr c) let debug_print_constr_env env sigma c = Constr.debug_print EConstr.(to_constr sigma c) let term_printer = ref debug_print_constr_env let print_constr_env env sigma t = !term_printer (env:env) sigma (t:Evd.econstr) let set_print_constr f = term_printer := f module EvMap = Evar.Map let evar_suggested_name evk sigma = let open Evd in let base_id evk' evi = match evar_ident evk' sigma with | Some id -> id | None -> match evi.evar_source with | _,Evar_kinds.ImplicitArg (c,(n,Some id),b) -> id | _,Evar_kinds.VarInstance id -> id | _,Evar_kinds.QuestionMark {Evar_kinds.qm_name = Name id} -> id | _,Evar_kinds.GoalEvar -> Id.of_string "Goal" | _ -> let env = reset_with_named_context evi.evar_hyps (Global.env()) in Namegen.id_of_name_using_hdchar env sigma evi.evar_concl Anonymous in let names = EvMap.mapi base_id (undefined_map sigma) in let id = EvMap.find evk names in let fold evk' id' (seen, n) = if seen then (seen, n) else if Evar.equal evk evk' then (true, n) else if Id.equal id id' then (seen, succ n) else (seen, n) in let (_, n) = EvMap.fold fold names (false, 0) in if n = 0 then id else Nameops.add_suffix id (string_of_int (pred n)) let pr_existential_key sigma evk = let open Evd in match evar_ident evk sigma with | None -> str "?" ++ Id.print (evar_suggested_name evk sigma) | Some id -> str "?" ++ Id.print id let pr_instance_status (sc,typ) = let open Evd in begin match sc with | IsSubType -> str " [or a subtype of it]" | IsSuperType -> str " [or a supertype of it]" | Conv -> mt () end ++ begin match typ with | CoerceToType -> str " [up to coercion]" | TypeNotProcessed -> mt () | TypeProcessed -> str " [type is checked]" end let protect f x = try f x with e -> str "EXCEPTION: " ++ str (Printexc.to_string e) let print_kconstr env sigma a = protect (fun c -> print_constr_env env sigma c) a let pr_meta_map env sigma = let open Evd in let print_constr = print_kconstr in let pr_name = function Name id -> str"[" ++ Id.print id ++ str"]" | _ -> mt() in let pr_meta_binding = function | (mv,Cltyp (na,b)) -> hov 0 (pr_meta mv ++ pr_name na ++ str " : " ++ print_constr env sigma b.rebus ++ fnl ()) | (mv,Clval(na,(b,s),t)) -> hov 0 (pr_meta mv ++ pr_name na ++ str " := " ++ print_constr env sigma b.rebus ++ str " : " ++ print_constr env sigma t.rebus ++ spc () ++ pr_instance_status s ++ fnl ()) in prlist pr_meta_binding (meta_list sigma) let pr_decl env sigma (decl,ok) = let open NamedDecl in let print_constr = print_kconstr in match decl with | LocalAssum ({binder_name=id},_) -> if ok then Id.print id else (str "{" ++ Id.print id ++ str "}") | LocalDef ({binder_name=id},c,_) -> str (if ok then "(" else "{") ++ Id.print id ++ str ":=" ++ print_constr env sigma c ++ str (if ok then ")" else "}") let pr_evar_source env sigma = function | Evar_kinds.NamedHole id -> Id.print id | Evar_kinds.QuestionMark _ -> str "underscore" | Evar_kinds.CasesType false -> str "pattern-matching return predicate" | Evar_kinds.CasesType true -> str "subterm of pattern-matching return predicate" | Evar_kinds.BinderType (Name id) -> str "type of " ++ Id.print id | Evar_kinds.BinderType Anonymous -> str "type of anonymous binder" | Evar_kinds.ImplicitArg (c,(n,ido),b) -> let open Globnames in let print_constr = print_kconstr in let id = Option.get ido in str "parameter " ++ Id.print id ++ spc () ++ str "of" ++ spc () ++ print_constr env sigma (EConstr.of_constr @@ printable_constr_of_global c) | Evar_kinds.InternalHole -> str "internal placeholder" | Evar_kinds.TomatchTypeParameter (ind,n) -> let print_constr = print_kconstr in pr_nth n ++ str " argument of type " ++ print_constr env sigma (EConstr.mkInd ind) | Evar_kinds.GoalEvar -> str "goal evar" | Evar_kinds.ImpossibleCase -> str "type of impossible pattern-matching clause" | Evar_kinds.MatchingVar _ -> str "matching variable" | Evar_kinds.VarInstance id -> str "instance of " ++ Id.print id | Evar_kinds.SubEvar (where,evk) -> (match where with | None -> str "subterm of " | Some Evar_kinds.Body -> str "body of " | Some Evar_kinds.Domain -> str "domain of " | Some Evar_kinds.Codomain -> str "codomain of ") ++ Evar.print evk let pr_evar_info env sigma evi = let open Evd in let print_constr = print_kconstr in let phyps = try let decls = match Filter.repr (evar_filter evi) with | None -> List.map (fun c -> (c, true)) (evar_context evi) | Some filter -> List.combine (evar_context evi) filter in prlist_with_sep spc (pr_decl env sigma) (List.rev decls) with Invalid_argument _ -> str "Ill-formed filtered context" in let pty = print_constr env sigma evi.evar_concl in let pb = match evi.evar_body with | Evar_empty -> mt () | Evar_defined c -> spc() ++ str"=> " ++ print_constr env sigma c in let candidates = match evi.evar_body, evi.evar_candidates with | Evar_empty, Some l -> spc () ++ str "{" ++ prlist_with_sep (fun () -> str "|") (print_constr env sigma) l ++ str "}" | _ -> mt () in let src = str "(" ++ pr_evar_source env sigma (snd evi.evar_source) ++ str ")" in hov 2 (str"[" ++ phyps ++ spc () ++ str"|- " ++ pty ++ pb ++ str"]" ++ candidates ++ spc() ++ src) let compute_evar_dependency_graph sigma = let open Evd in (* Compute the map binding ev to the evars whose body depends on ev *) let fold evk evi acc = let fold_ev evk' acc = let tab = try EvMap.find evk' acc with Not_found -> Evar.Set.empty in EvMap.add evk' (Evar.Set.add evk tab) acc in match evar_body evi with | Evar_empty -> acc | Evar_defined c -> Evar.Set.fold fold_ev (evars_of_term sigma c) acc in Evd.fold fold sigma EvMap.empty let evar_dependency_closure n sigma = let open Evd in (* Create the DAG of depth [n] representing the recursive dependencies of undefined evars. *) let graph = compute_evar_dependency_graph sigma in let rec aux n curr accu = if Int.equal n 0 then Evar.Set.union curr accu else let fold evk accu = try let deps = EvMap.find evk graph in Evar.Set.union deps accu with Not_found -> accu in (* Consider only the newly added evars *) let ncurr = Evar.Set.fold fold curr Evar.Set.empty in (* Merge the others *) let accu = Evar.Set.union curr accu in aux (n - 1) ncurr accu in let undef = EvMap.domain (undefined_map sigma) in aux n undef Evar.Set.empty let evar_dependency_closure n sigma = let open Evd in let deps = evar_dependency_closure n sigma in let map = EvMap.bind (fun ev -> find sigma ev) deps in EvMap.bindings map let has_no_evar sigma = try let () = Evd.fold (fun _ _ () -> raise Exit) sigma () in true with Exit -> false let pr_evd_level sigma = UState.pr_uctx_level (Evd.evar_universe_context sigma) let reference_of_level sigma l = UState.qualid_of_level (Evd.evar_universe_context sigma) l let pr_evar_universe_context ctx = let open UState in let prl = pr_uctx_level ctx in if UState.is_empty ctx then mt () else (str"UNIVERSES:"++brk(0,1)++ h 0 (Univ.pr_universe_context_set prl (UState.context_set ctx)) ++ fnl () ++ str"ALGEBRAIC UNIVERSES:"++brk(0,1)++ h 0 (Univ.LSet.pr prl (UState.algebraics ctx)) ++ fnl() ++ str"UNDEFINED UNIVERSES:"++brk(0,1)++ h 0 (UnivSubst.pr_universe_opt_subst (UState.subst ctx)) ++ fnl() ++ str "WEAK CONSTRAINTS:"++brk(0,1)++ h 0 (UState.pr_weak prl ctx) ++ fnl ()) let print_env_short env sigma = let print_constr = print_kconstr in let pr_rel_decl = function | RelDecl.LocalAssum (n,_) -> Name.print n.binder_name | RelDecl.LocalDef (n,b,_) -> str "(" ++ Name.print n.binder_name ++ str " := " ++ print_constr env sigma (EConstr.of_constr b) ++ str ")" in let pr_named_decl = NamedDecl.to_rel_decl %> pr_rel_decl in let nc = List.rev (named_context env) in let rc = List.rev (rel_context env) in str "[" ++ pr_sequence pr_named_decl nc ++ str "]" ++ spc () ++ str "[" ++ pr_sequence pr_rel_decl rc ++ str "]" let pr_evar_constraints sigma pbs = let pr_evconstr (pbty, env, t1, t2) = let env = (* We currently allow evar instances to refer to anonymous de Bruijn indices, so we protect the error printing code in this case by giving names to every de Bruijn variable in the rel_context of the conversion problem. MS: we should rather stop depending on anonymous variables, they can be used to indicate independency. Also, this depends on a strategy for naming/renaming. *) Namegen.make_all_name_different env sigma in print_env_short env sigma ++ spc () ++ str "|-" ++ spc () ++ protect (print_constr_env env sigma) t1 ++ spc () ++ str (match pbty with | Reduction.CONV -> "==" | Reduction.CUMUL -> "<=") ++ spc () ++ protect (print_constr_env env @@ Evd.from_env env) t2 in prlist_with_sep fnl pr_evconstr pbs let pr_evar_map_gen with_univs pr_evars env sigma = let uvs = Evd.evar_universe_context sigma in let (_, conv_pbs) = Evd.extract_all_conv_pbs sigma in let evs = if has_no_evar sigma then mt () else pr_evars sigma ++ fnl () and svs = if with_univs then pr_evar_universe_context uvs else mt () and cstrs = if List.is_empty conv_pbs then mt () else str "CONSTRAINTS:" ++ brk (0, 1) ++ pr_evar_constraints sigma conv_pbs ++ fnl () and typeclasses = let evars = Evd.get_typeclass_evars sigma in if Evar.Set.is_empty evars then mt () else str "TYPECLASSES:" ++ brk (0, 1) ++ prlist_with_sep spc Evar.print (Evar.Set.elements evars) ++ fnl () and obligations = let evars = Evd.get_obligation_evars sigma in if Evar.Set.is_empty evars then mt () else str "OBLIGATIONS:" ++ brk (0, 1) ++ prlist_with_sep spc Evar.print (Evar.Set.elements evars) ++ fnl () and metas = if List.is_empty (Evd.meta_list sigma) then mt () else str "METAS:" ++ brk (0, 1) ++ pr_meta_map env sigma in evs ++ svs ++ cstrs ++ typeclasses ++ obligations ++ metas let pr_evar_list env sigma l = let open Evd in let pr_restrict ev = match is_restricted_evar sigma ev with | None -> mt () | Some ev' -> str " (restricted to " ++ Evar.print ev' ++ str ")" in let pr (ev, evi) = h 0 (Evar.print ev ++ str "==" ++ pr_evar_info env sigma evi ++ pr_restrict ev ++ (if evi.evar_body == Evar_empty then str " {" ++ pr_existential_key sigma ev ++ str "}" else mt ())) in h 0 (prlist_with_sep fnl pr l) let to_list d = let open Evd in (* Workaround for change in Map.fold behavior in ocaml 3.08.4 *) let l = ref [] in let fold_def evk evi () = match evi.evar_body with | Evar_defined _ -> l := (evk, evi) :: !l | Evar_empty -> () in let fold_undef evk evi () = match evi.evar_body with | Evar_empty -> l := (evk, evi) :: !l | Evar_defined _ -> () in Evd.fold fold_def d (); Evd.fold fold_undef d (); !l let pr_evar_by_depth depth env sigma = match depth with | None -> (* Print all evars *) str"EVARS:" ++ brk(0,1) ++ pr_evar_list env sigma (to_list sigma) ++ fnl() | Some n -> (* Print closure of undefined evars *) str"UNDEFINED EVARS:"++ (if Int.equal n 0 then mt() else str" (+level "++int n++str" closure):")++ brk(0,1)++ pr_evar_list env sigma (evar_dependency_closure n sigma) ++ fnl() let pr_evar_by_filter filter env sigma = let open Evd in let elts = Evd.fold (fun evk evi accu -> (evk, evi) :: accu) sigma [] in let elts = List.rev elts in let is_def (_, evi) = match evi.evar_body with | Evar_defined _ -> true | Evar_empty -> false in let (defined, undefined) = List.partition is_def elts in let filter (evk, evi) = filter evk evi in let defined = List.filter filter defined in let undefined = List.filter filter undefined in let prdef = if List.is_empty defined then mt () else str "DEFINED EVARS:" ++ brk (0, 1) ++ pr_evar_list env sigma defined in let prundef = if List.is_empty undefined then mt () else str "UNDEFINED EVARS:" ++ brk (0, 1) ++ pr_evar_list env sigma undefined in prdef ++ prundef let pr_evar_map ?(with_univs=true) depth env sigma = pr_evar_map_gen with_univs (fun sigma -> pr_evar_by_depth depth env sigma) env sigma let pr_evar_map_filter ?(with_univs=true) filter env sigma = pr_evar_map_gen with_univs (fun sigma -> pr_evar_by_filter filter env sigma) env sigma let pr_metaset metas = str "[" ++ pr_sequence pr_meta (Evd.Metaset.elements metas) ++ str "]" let pr_var_decl env decl = let open NamedDecl in let sigma = Evd.from_env env in let pbody = match decl with | LocalAssum _ -> mt () | LocalDef (_,c,_) -> (* Force evaluation *) let c = EConstr.of_constr c in let pb = print_constr_env env sigma c in (str" := " ++ pb ++ cut () ) in let pt = print_constr_env env sigma (EConstr.of_constr (get_type decl)) in let ptyp = (str" : " ++ pt) in (Id.print (get_id decl) ++ hov 0 (pbody ++ ptyp)) let pr_rel_decl env decl = let open RelDecl in let sigma = Evd.from_env env in let pbody = match decl with | LocalAssum _ -> mt () | LocalDef (_,c,_) -> (* Force evaluation *) let c = EConstr.of_constr c in let pb = print_constr_env env sigma c in (str":=" ++ spc () ++ pb ++ spc ()) in let ptyp = print_constr_env env sigma (EConstr.of_constr (get_type decl)) in match get_name decl with | Anonymous -> hov 0 (str"<>" ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp) | Name id -> hov 0 (Id.print id ++ spc () ++ pbody ++ str":" ++ spc () ++ ptyp) let print_named_context env = hv 0 (fold_named_context (fun env d pps -> pps ++ ws 2 ++ pr_var_decl env d) env ~init:(mt ())) let print_rel_context env = hv 0 (fold_rel_context (fun env d pps -> pps ++ ws 2 ++ pr_rel_decl env d) env ~init:(mt ())) let print_env env = let sign_env = fold_named_context (fun env d pps -> let pidt = pr_var_decl env d in (pps ++ fnl () ++ pidt)) env ~init:(mt ()) in let db_env = fold_rel_context (fun env d pps -> let pnat = pr_rel_decl env d in (pps ++ fnl () ++ pnat)) env ~init:(mt ()) in (sign_env ++ db_env) (* [Rel (n+m);...;Rel(n+1)] *) let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i)) let rel_list n m = let open EConstr in let rec reln l p = if p>m then l else reln (mkRel(n+p)::l) (p+1) in reln [] 1 let push_rel_assum (x,t) env = let open RelDecl in let open EConstr in push_rel (LocalAssum (x,t)) env let push_rels_assum assums = let open RelDecl in push_rel_context (List.map (fun (x,t) -> LocalAssum (x,t)) assums) let push_named_rec_types (lna,typarray,_) env = let open NamedDecl in let ctxt = Array.map2_i (fun i na t -> let id = map_annot (function | Name id -> id | Anonymous -> anomaly (Pp.str "Fix declarations must be named.")) na in LocalAssum (id, lift i t)) lna typarray in Array.fold_left (fun e assum -> push_named assum e) env ctxt let lookup_rel_id id sign = let open RelDecl in let rec lookrec n = function | [] -> raise Not_found | decl :: l -> if Names.Name.equal (Name id) (get_name decl) then (n, get_value decl, get_type decl) else lookrec (n+1) l in lookrec 1 sign (* Constructs either [forall x:t, c] or [let x:=b:t in c] *) let mkProd_or_LetIn = EConstr.mkProd_or_LetIn (* Constructs either [forall x:t, c] or [c] in which [x] is replaced by [b] *) let mkProd_wo_LetIn decl c = let open EConstr in let open RelDecl in match decl with | LocalAssum (na,t) -> mkProd (na, t, c) | LocalDef (_,b,_) -> Vars.subst1 b c let it_mkProd init = List.fold_left (fun c (n,t) -> EConstr.mkProd (n, t, c)) init let it_mkLambda init = List.fold_left (fun c (n,t) -> EConstr.mkLambda (n, t, c)) init let it_named_context_quantifier f ~init = List.fold_left (fun c d -> f d c) init let it_mkProd_or_LetIn init = it_named_context_quantifier mkProd_or_LetIn ~init let it_mkProd_wo_LetIn init = it_named_context_quantifier mkProd_wo_LetIn ~init let it_mkLambda_or_LetIn init = it_named_context_quantifier mkLambda_or_LetIn ~init let it_mkNamedProd_or_LetIn init = it_named_context_quantifier EConstr.mkNamedProd_or_LetIn ~init let it_mkNamedProd_wo_LetIn init = it_named_context_quantifier mkNamedProd_wo_LetIn ~init let it_mkNamedLambda_or_LetIn init = it_named_context_quantifier EConstr.mkNamedLambda_or_LetIn ~init let it_mkLambda_or_LetIn_from_no_LetIn c decls = let open RelDecl in let rec aux k decls c = match decls with | [] -> c | LocalDef (na,b,t) :: decls -> mkLetIn (na,b,t,aux (k-1) decls (liftn 1 k c)) | LocalAssum (na,t) :: decls -> mkLambda (na,t,aux (k-1) decls c) in aux (List.length decls) (List.rev decls) c (* *) (* strips head casts and flattens head applications *) let rec strip_head_cast sigma c = match EConstr.kind sigma c with | App (f,cl) -> let rec collapse_rec f cl2 = match EConstr.kind sigma f with | App (g,cl1) -> collapse_rec g (Array.append cl1 cl2) | Cast (c,_,_) -> collapse_rec c cl2 | _ -> if Int.equal (Array.length cl2) 0 then f else EConstr.mkApp (f,cl2) in collapse_rec f cl | Cast (c,_,_) -> strip_head_cast sigma c | _ -> c let rec drop_extra_implicit_args sigma c = match EConstr.kind sigma c with (* Removed trailing extra implicit arguments, what improves compatibility for constants with recently added maximal implicit arguments *) | App (f,args) when EConstr.isEvar sigma (Array.last args) -> let open EConstr in drop_extra_implicit_args sigma (mkApp (f,fst (Array.chop (Array.length args - 1) args))) | _ -> c (* Get the last arg of an application *) let last_arg sigma c = match EConstr.kind sigma c with | App (f,cl) -> Array.last cl | _ -> anomaly (Pp.str "last_arg.") (* Get the last arg of an application *) let decompose_app_vect sigma c = match EConstr.kind sigma c with | App (f,cl) -> (f, cl) | _ -> (c,[||]) let adjust_app_list_size f1 l1 f2 l2 = let open EConstr in let len1 = List.length l1 and len2 = List.length l2 in if Int.equal len1 len2 then (f1,l1,f2,l2) else if len1 < len2 then let extras,restl2 = List.chop (len2-len1) l2 in (f1, l1, applist (f2,extras), restl2) else let extras,restl1 = List.chop (len1-len2) l1 in (applist (f1,extras), restl1, f2, l2) let adjust_app_array_size f1 l1 f2 l2 = let open EConstr in let len1 = Array.length l1 and len2 = Array.length l2 in if Int.equal len1 len2 then (f1,l1,f2,l2) else if len1 < len2 then let extras,restl2 = Array.chop (len2-len1) l2 in (f1, l1, mkApp (f2,extras), restl2) else let extras,restl1 = Array.chop (len1-len2) l1 in (mkApp (f1,extras), restl1, f2, l2) (* [map_constr_with_binders_left_to_right g f n c] maps [f n] on the immediate subterms of [c]; it carries an extra data [n] (typically a lift index) which is processed by [g] (which typically add 1 to [n]) at each binder traversal; the subterms are processed from left to right according to the usual representation of the constructions (this may matter if [f] does a side-effect); it is not recursive; in fact, the usual representation of the constructions is at the time being almost those of the ML representation (except for (co-)fixpoint) *) let fold_rec_types g (lna,typarray,_) e = let open EConstr in let open Vars in let ctxt = Array.map2_i (fun i na t -> RelDecl.LocalAssum (na, lift i t)) lna typarray in Array.fold_left (fun e assum -> g assum e) e ctxt let map_left2 f a g b = let l = Array.length a in if Int.equal l 0 then [||], [||] else begin let r = Array.make l (f a.(0)) in let s = Array.make l (g b.(0)) in for i = 1 to l - 1 do r.(i) <- f a.(i); s.(i) <- g b.(i) done; r, s end let map_constr_with_binders_left_to_right sigma g f l c = let open RelDecl in let open EConstr in match EConstr.kind sigma c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _ | Int _) -> c | Cast (b,k,t) -> let b' = f l b in let t' = f l t in if b' == b && t' == t then c else mkCast (b',k,t') | Prod (na,t,b) -> let t' = f l t in let b' = f (g (LocalAssum (na,t)) l) b in if t' == t && b' == b then c else mkProd (na, t', b') | Lambda (na,t,b) -> let t' = f l t in let b' = f (g (LocalAssum (na,t)) l) b in if t' == t && b' == b then c else mkLambda (na, t', b') | LetIn (na,bo,t,b) -> let bo' = f l bo in let t' = f l t in let b' = f (g (LocalDef (na,bo,t)) l) b in if bo' == bo && t' == t && b' == b then c else mkLetIn (na, bo', t', b') | App (c,[||]) -> assert false | App (t,al) -> (*Special treatment to be able to recognize partially applied subterms*) let a = al.(Array.length al - 1) in let app = (mkApp (t, Array.sub al 0 (Array.length al - 1))) in let app' = f l app in let a' = f l a in if app' == app && a' == a then c else mkApp (app', [| a' |]) | Proj (p,b) -> let b' = f l b in if b' == b then c else mkProj (p, b') | Evar (e,al) -> let al' = Array.map_left (f l) al in if Array.for_all2 (==) al' al then c else mkEvar (e, al') | Case (ci,p,b,bl) -> (* In v8 concrete syntax, predicate is after the term to match! *) let b' = f l b in let p' = f l p in let bl' = Array.map_left (f l) bl in if b' == b && p' == p && bl' == bl then c else mkCase (ci, p', b', bl') | Fix (ln,(lna,tl,bl as fx)) -> let l' = fold_rec_types g fx l in let (tl', bl') = map_left2 (f l) tl (f l') bl in if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl' then c else mkFix (ln,(lna,tl',bl')) | CoFix(ln,(lna,tl,bl as fx)) -> let l' = fold_rec_types g fx l in let (tl', bl') = map_left2 (f l) tl (f l') bl in if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl' then c else mkCoFix (ln,(lna,tl',bl')) let map_under_context_with_full_binders sigma g f l n d = let open EConstr in let f l c = Unsafe.to_constr (f l (of_constr c)) in let g d l = g (of_rel_decl d) l in let d = EConstr.Unsafe.to_constr (EConstr.whd_evar sigma d) in EConstr.of_constr (Constr.map_under_context_with_full_binders g f l n d) let map_branches_with_full_binders sigma g f l ci bl = let tags = Array.map List.length ci.ci_pp_info.cstr_tags in let bl' = Array.map2 (map_under_context_with_full_binders sigma g f l) tags bl in if Array.for_all2 (==) bl' bl then bl else bl' let map_return_predicate_with_full_binders sigma g f l ci p = let n = List.length ci.ci_pp_info.ind_tags in let p' = map_under_context_with_full_binders sigma g f l n p in if p' == p then p else p' (* strong *) let map_constr_with_full_binders_gen userview sigma g f l cstr = let open EConstr in match EConstr.kind sigma cstr with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _ | Int _) -> cstr | Cast (c,k, t) -> let c' = f l c in let t' = f l t in if c==c' && t==t' then cstr else mkCast (c', k, t') | Prod (na,t,c) -> let t' = f l t in let c' = f (g (RelDecl.LocalAssum (na, t)) l) c in if t==t' && c==c' then cstr else mkProd (na, t', c') | Lambda (na,t,c) -> let t' = f l t in let c' = f (g (RelDecl.LocalAssum (na, t)) l) c in if t==t' && c==c' then cstr else mkLambda (na, t', c') | LetIn (na,b,t,c) -> let b' = f l b in let t' = f l t in let c' = f (g (RelDecl.LocalDef (na, b, t)) l) c in if b==b' && t==t' && c==c' then cstr else mkLetIn (na, b', t', c') | App (c,al) -> let c' = f l c in let al' = Array.map (f l) al in if c==c' && Array.for_all2 (==) al al' then cstr else mkApp (c', al') | Proj (p,c) -> let c' = f l c in if c' == c then cstr else mkProj (p, c') | Evar (e,al) -> let al' = Array.map (f l) al in if Array.for_all2 (==) al al' then cstr else mkEvar (e, al') | Case (ci,p,c,bl) when userview -> let p' = map_return_predicate_with_full_binders sigma g f l ci p in let c' = f l c in let bl' = map_branches_with_full_binders sigma g f l ci bl in if p==p' && c==c' && bl'==bl then cstr else mkCase (ci, p', c', bl') | Case (ci,p,c,bl) -> let p' = f l p in let c' = f l c in let bl' = Array.map (f l) bl in if p==p' && c==c' && Array.for_all2 (==) bl bl' then cstr else mkCase (ci, p', c', bl') | Fix (ln,(lna,tl,bl as fx)) -> let tl' = Array.map (f l) tl in let l' = fold_rec_types g fx l in let bl' = Array.map (f l') bl in if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl' then cstr else mkFix (ln,(lna,tl',bl')) | CoFix(ln,(lna,tl,bl as fx)) -> let tl' = Array.map (f l) tl in let l' = fold_rec_types g fx l in let bl' = Array.map (f l') bl in if Array.for_all2 (==) tl tl' && Array.for_all2 (==) bl bl' then cstr else mkCoFix (ln,(lna,tl',bl')) let map_constr_with_full_binders sigma g f = map_constr_with_full_binders_gen false sigma g f let map_constr_with_full_binders_user_view sigma g f = map_constr_with_full_binders_gen true sigma g f (* [fold_constr_with_binders g f n acc c] folds [f n] on the immediate subterms of [c] starting from [acc] and proceeding from left to right according to the usual representation of the constructions as [fold_constr] but it carries an extra data [n] (typically a lift index) which is processed by [g] (which typically add 1 to [n]) at each binder traversal; it is not recursive *) let fold_constr_with_full_binders sigma g f n acc c = let open EConstr in let f l acc c = f l acc (of_constr c) in let g d l = g (of_rel_decl d) l in let c = Unsafe.to_constr (whd_evar sigma c) in Constr.fold_with_full_binders g f n acc c let fold_constr_with_binders sigma g f n acc c = let open EConstr in let f l acc c = f l acc (of_constr c) in let c = Unsafe.to_constr (whd_evar sigma c) in Constr.fold_constr_with_binders g f n acc c (***************************) (* occurs check functions *) (***************************) exception Occur let occur_meta sigma c = let rec occrec c = match EConstr.kind sigma c with | Meta _ -> raise Occur | _ -> EConstr.iter sigma occrec c in try occrec c; false with Occur -> true let occur_existential sigma c = let rec occrec c = match EConstr.kind sigma c with | Evar _ -> raise Occur | _ -> EConstr.iter sigma occrec c in try occrec c; false with Occur -> true let occur_meta_or_existential sigma c = let rec occrec c = match EConstr.kind sigma c with | Evar _ -> raise Occur | Meta _ -> raise Occur | _ -> EConstr.iter sigma occrec c in try occrec c; false with Occur -> true let occur_metavariable sigma m c = let rec occrec c = match EConstr.kind sigma c with | Meta m' -> if Int.equal m m' then raise Occur | _ -> EConstr.iter sigma occrec c in try occrec c; false with Occur -> true let occur_evar sigma n c = let rec occur_rec c = match EConstr.kind sigma c with | Evar (sp,_) when Evar.equal sp n -> raise Occur | _ -> EConstr.iter sigma occur_rec c in try occur_rec c; false with Occur -> true let occur_in_global env id constr = let vars = vars_of_global env constr in if Id.Set.mem id vars then raise Occur let occur_var env sigma id c = let rec occur_rec c = match EConstr.destRef sigma c with | gr, _ -> occur_in_global env id gr | exception DestKO -> EConstr.iter sigma occur_rec c in try occur_rec c; false with Occur -> true let occur_var_in_decl env sigma hyp decl = let open NamedDecl in match decl with | LocalAssum (_,typ) -> occur_var env sigma hyp typ | LocalDef (_, body, typ) -> occur_var env sigma hyp typ || occur_var env sigma hyp body let local_occur_var sigma id c = let rec occur c = match EConstr.kind sigma c with | Var id' -> if Id.equal id id' then raise Occur | _ -> EConstr.iter sigma occur c in try occur c; false with Occur -> true (* returns the list of free debruijn indices in a term *) let free_rels sigma m = let rec frec depth acc c = match EConstr.kind sigma c with | Rel n -> if n >= depth then Int.Set.add (n-depth+1) acc else acc | _ -> fold_constr_with_binders sigma succ frec depth acc c in frec 1 Int.Set.empty m (* collects all metavar occurrences, in left-to-right order, preserving * repetitions and all. *) let collect_metas sigma c = let rec collrec acc c = match EConstr.kind sigma c with | Meta mv -> List.add_set Int.equal mv acc | _ -> EConstr.fold sigma collrec acc c in List.rev (collrec [] c) (* collects all vars; warning: this is only visible vars, not dependencies in all section variables; for the latter, use global_vars_set *) let collect_vars sigma c = let rec aux vars c = match EConstr.kind sigma c with | Var id -> Id.Set.add id vars | _ -> EConstr.fold sigma aux vars c in aux Id.Set.empty c (* Tests whether [m] is a subterm of [t]: [m] is appropriately lifted through abstractions of [t] *) let dependent_main noevar sigma m t = let open EConstr in let eqc x y = eq_constr_nounivs sigma x y in let rec deprec m t = if eqc m t then raise Occur else match EConstr.kind sigma m, EConstr.kind sigma t with | App (fm,lm), App (ft,lt) when Array.length lm < Array.length lt -> deprec m (mkApp (ft,Array.sub lt 0 (Array.length lm))); Array.Fun1.iter deprec m (Array.sub lt (Array.length lm) ((Array.length lt) - (Array.length lm))) | _, Cast (c,_,_) when noevar && isMeta sigma c -> () | _, Evar _ when noevar -> () | _ -> EConstr.iter_with_binders sigma (fun c -> Vars.lift 1 c) deprec m t in try deprec m t; false with Occur -> true let dependent sigma c t = dependent_main false sigma c t let dependent_no_evar sigma c t = dependent_main true sigma c t let dependent_in_decl sigma a decl = let open NamedDecl in match decl with | LocalAssum (_,t) -> dependent sigma a t | LocalDef (_, body, t) -> dependent sigma a body || dependent sigma a t let count_occurrences sigma m t = let open EConstr in let n = ref 0 in let rec countrec m t = if EConstr.eq_constr sigma m t then incr n else match EConstr.kind sigma m, EConstr.kind sigma t with | App (fm,lm), App (ft,lt) when Array.length lm < Array.length lt -> countrec m (mkApp (ft,Array.sub lt 0 (Array.length lm))); Array.iter (countrec m) (Array.sub lt (Array.length lm) ((Array.length lt) - (Array.length lm))) | _, Cast (c,_,_) when isMeta sigma c -> () | _, Evar _ -> () | _ -> EConstr.iter_with_binders sigma (Vars.lift 1) countrec m t in countrec m t; !n let pop t = EConstr.Vars.lift (-1) t (***************************) (* bindings functions *) (***************************) type meta_type_map = (metavariable * types) list type meta_value_map = (metavariable * constr) list let isMetaOf sigma mv c = match EConstr.kind sigma c with Meta mv' -> Int.equal mv mv' | _ -> false let rec subst_meta bl c = match kind c with | Meta i -> (try Int.List.assoc i bl with Not_found -> c) | _ -> Constr.map (subst_meta bl) c let rec strip_outer_cast sigma c = match EConstr.kind sigma c with | Cast (c,_,_) -> strip_outer_cast sigma c | _ -> c (* flattens application lists throwing casts in-between *) let collapse_appl sigma c = match EConstr.kind sigma c with | App (f,cl) -> if EConstr.isCast sigma f then let rec collapse_rec f cl2 = match EConstr.kind sigma (strip_outer_cast sigma f) with | App (g,cl1) -> collapse_rec g (Array.append cl1 cl2) | _ -> EConstr.mkApp (f,cl2) in collapse_rec f cl else c | _ -> c (* First utilities for avoiding telescope computation for subst_term *) let prefix_application sigma eq_fun (k,c) t = let open EConstr in let c' = collapse_appl sigma c and t' = collapse_appl sigma t in match EConstr.kind sigma c', EConstr.kind sigma t' with | App (f1,cl1), App (f2,cl2) -> let l1 = Array.length cl1 and l2 = Array.length cl2 in if l1 <= l2 && eq_fun sigma c' (mkApp (f2, Array.sub cl2 0 l1)) then Some (mkApp (mkRel k, Array.sub cl2 l1 (l2 - l1))) else None | _ -> None let my_prefix_application sigma eq_fun (k,c) by_c t = let open EConstr in let c' = collapse_appl sigma c and t' = collapse_appl sigma t in match EConstr.kind sigma c', EConstr.kind sigma t' with | App (f1,cl1), App (f2,cl2) -> let l1 = Array.length cl1 and l2 = Array.length cl2 in if l1 <= l2 && eq_fun sigma c' (mkApp (f2, Array.sub cl2 0 l1)) then Some (mkApp ((Vars.lift k by_c), Array.sub cl2 l1 (l2 - l1))) else None | _ -> None (* Recognizing occurrences of a given subterm in a term: [subst_term c t] substitutes [(Rel 1)] for all occurrences of term [c] in a term [t]; works if [c] has rels *) let subst_term_gen sigma eq_fun c t = let open EConstr in let open Vars in let rec substrec (k,c as kc) t = match prefix_application sigma eq_fun kc t with | Some x -> x | None -> if eq_fun sigma c t then mkRel k else EConstr.map_with_binders sigma (fun (k,c) -> (k+1,lift 1 c)) substrec kc t in substrec (1,c) t let subst_term sigma c t = subst_term_gen sigma EConstr.eq_constr c t (* Recognizing occurrences of a given subterm in a term : [replace_term c1 c2 t] substitutes [c2] for all occurrences of term [c1] in a term [t]; works if [c1] and [c2] have rels *) let replace_term_gen sigma eq_fun c by_c in_t = let rec substrec (k,c as kc) t = match my_prefix_application sigma eq_fun kc by_c t with | Some x -> x | None -> (if eq_fun sigma c t then (EConstr.Vars.lift k by_c) else EConstr.map_with_binders sigma (fun (k,c) -> (k+1,EConstr.Vars.lift 1 c)) substrec kc t) in substrec (0,c) in_t let replace_term sigma c byc t = replace_term_gen sigma EConstr.eq_constr c byc t let vars_of_env env = let s = Environ.ids_of_named_context_val (Environ.named_context_val env) in if List.is_empty (Environ.rel_context env) then s else Context.Rel.fold_outside (fun decl s -> match RelDecl.get_name decl with Name id -> Id.Set.add id s | _ -> s) (rel_context env) ~init:s let add_vname vars = function Name id -> Id.Set.add id vars | _ -> vars (*************************) (* Names environments *) (*************************) type names_context = Name.t list let add_name n nl = n::nl let lookup_name_of_rel p names = try List.nth names (p-1) with Invalid_argument _ | Failure _ -> raise Not_found let lookup_rel_of_name id names = let rec lookrec n = function | Anonymous :: l -> lookrec (n+1) l | (Name id') :: l -> if Id.equal id' id then n else lookrec (n+1) l | [] -> raise Not_found in lookrec 1 names let empty_names_context = [] let ids_of_rel_context sign = Context.Rel.fold_outside (fun decl l -> match RelDecl.get_name decl with Name id -> id::l | Anonymous -> l) sign ~init:[] let ids_of_named_context sign = Context.Named.fold_outside (fun decl idl -> NamedDecl.get_id decl :: idl) sign ~init:[] let ids_of_context env = (ids_of_rel_context (rel_context env)) @ (ids_of_named_context (named_context env)) let names_of_rel_context env = List.map RelDecl.get_name (rel_context env) let is_section_variable id = try let _ = Global.lookup_named id in true with Not_found -> false let global_of_constr sigma c = let open GlobRef in match EConstr.kind sigma c with | Const (c, u) -> ConstRef c, u | Ind (i, u) -> IndRef i, u | Construct (c, u) -> ConstructRef c, u | Var id -> VarRef id, EConstr.EInstance.empty | _ -> raise Not_found let is_global sigma c t = let open GlobRef in match c, EConstr.kind sigma t with | ConstRef c, Const (c', _) -> Constant.equal c c' | IndRef i, Ind (i', _) -> eq_ind i i' | ConstructRef i, Construct (i', _) -> eq_constructor i i' | VarRef id, Var id' -> Id.equal id id' | _ -> false let isGlobalRef sigma c = match EConstr.kind sigma c with | Const _ | Ind _ | Construct _ | Var _ -> true | _ -> false let is_template_polymorphic_ind env sigma f = match EConstr.kind sigma f with | Ind (ind, u) -> if not (EConstr.EInstance.is_empty u) then false else Environ.template_polymorphic_ind ind env | _ -> false let base_sort_cmp pb s0 s1 = match (s0,s1) with | SProp, SProp | Prop, Prop | Set, Set | Type _, Type _ -> true | SProp, _ | _, SProp -> false | Prop, Set | Prop, Type _ | Set, Type _ -> pb == Reduction.CUMUL | Set, Prop | Type _, Prop | Type _, Set -> false let rec is_Prop sigma c = match EConstr.kind sigma c with | Sort u -> begin match EConstr.ESorts.kind sigma u with | Prop -> true | _ -> false end | Cast (c,_,_) -> is_Prop sigma c | _ -> false let rec is_Set sigma c = match EConstr.kind sigma c with | Sort u -> begin match EConstr.ESorts.kind sigma u with | Set -> true | _ -> false end | Cast (c,_,_) -> is_Set sigma c | _ -> false let rec is_Type sigma c = match EConstr.kind sigma c with | Sort u -> begin match EConstr.ESorts.kind sigma u with | Type _ -> true | _ -> false end | Cast (c,_,_) -> is_Type sigma c | _ -> false (* eq_constr extended with universe erasure *) let compare_constr_univ sigma f cv_pb t1 t2 = let open EConstr in match EConstr.kind sigma t1, EConstr.kind sigma t2 with Sort s1, Sort s2 -> base_sort_cmp cv_pb (ESorts.kind sigma s1) (ESorts.kind sigma s2) | Prod (_,t1,c1), Prod (_,t2,c2) -> f Reduction.CONV t1 t2 && f cv_pb c1 c2 | Const (c, u), Const (c', u') -> Constant.equal c c' | Ind (i, _), Ind (i', _) -> eq_ind i i' | Construct (i, _), Construct (i', _) -> eq_constructor i i' | _ -> EConstr.compare_constr sigma (fun t1 t2 -> f Reduction.CONV t1 t2) t1 t2 let constr_cmp sigma cv_pb t1 t2 = let rec compare cv_pb t1 t2 = compare_constr_univ sigma compare cv_pb t1 t2 in compare cv_pb t1 t2 let eq_constr sigma t1 t2 = constr_cmp sigma Reduction.CONV t1 t2 (* App(c,[t1,...tn]) -> ([c,t1,...,tn-1],tn) App(c,[||]) -> ([],c) *) let split_app sigma c = match EConstr.kind sigma c with App(c,l) -> let len = Array.length l in if Int.equal len 0 then ([],c) else let last = Array.get l (len-1) in let prev = Array.sub l 0 (len-1) in c::(Array.to_list prev), last | _ -> assert false type subst = (EConstr.rel_context * EConstr.constr) Evar.Map.t exception CannotFilter let filtering sigma env cv_pb c1 c2 = let open EConstr in let open Vars in let evm = ref Evar.Map.empty in let define cv_pb e1 ev c1 = try let (e2,c2) = Evar.Map.find ev !evm in let shift = List.length e1 - List.length e2 in if constr_cmp sigma cv_pb c1 (lift shift c2) then () else raise CannotFilter with Not_found -> evm := Evar.Map.add ev (e1,c1) !evm in let rec aux env cv_pb c1 c2 = match EConstr.kind sigma c1, EConstr.kind sigma c2 with | App _, App _ -> let ((p1,l1),(p2,l2)) = (split_app sigma c1),(split_app sigma c2) in let () = aux env cv_pb l1 l2 in begin match p1, p2 with | [], [] -> () | (h1 :: p1), (h2 :: p2) -> aux env cv_pb (applist (h1, p1)) (applist (h2, p2)) | _ -> assert false end | Prod (n,t1,c1), Prod (_,t2,c2) -> aux env cv_pb t1 t2; aux (RelDecl.LocalAssum (n,t1) :: env) cv_pb c1 c2 | _, Evar (ev,_) -> define cv_pb env ev c1 | Evar (ev,_), _ -> define cv_pb env ev c2 | _ -> if compare_constr_univ sigma (fun pb c1 c2 -> aux env pb c1 c2; true) cv_pb c1 c2 then () else raise CannotFilter (* TODO: le reste des binders *) in aux env cv_pb c1 c2; !evm let decompose_prod_letin sigma c = let rec prodec_rec i l c = match EConstr.kind sigma c with | Prod (n,t,c) -> prodec_rec (succ i) (RelDecl.LocalAssum (n,t)::l) c | LetIn (n,d,t,c) -> prodec_rec (succ i) (RelDecl.LocalDef (n,d,t)::l) c | Cast (c,_,_) -> prodec_rec i l c | _ -> i,l,c in prodec_rec 0 [] c (* (nb_lam [na1:T1]...[nan:Tan]c) where c is not an abstraction * gives n (casts are ignored) *) let nb_lam sigma c = let rec nbrec n c = match EConstr.kind sigma c with | Lambda (_,_,c) -> nbrec (n+1) c | Cast (c,_,_) -> nbrec n c | _ -> n in nbrec 0 c (* similar to nb_lam, but gives the number of products instead *) let nb_prod sigma c = let rec nbrec n c = match EConstr.kind sigma c with | Prod (_,_,c) -> nbrec (n+1) c | Cast (c,_,_) -> nbrec n c | _ -> n in nbrec 0 c let nb_prod_modulo_zeta sigma x = let rec count n c = match EConstr.kind sigma c with Prod(_,_,t) -> count (n+1) t | LetIn(_,a,_,t) -> count n (EConstr.Vars.subst1 a t) | Cast(c,_,_) -> count n c | _ -> n in count 0 x let align_prod_letin sigma c a = let (lc,_,_) = decompose_prod_letin sigma c in let (la,l,a) = decompose_prod_letin sigma a in if not (la >= lc) then invalid_arg "align_prod_letin"; let (l1,l2) = Util.List.chop lc l in l2,it_mkProd_or_LetIn a l1 (* We reduce a series of head eta-redex or nothing at all *) (* [x1:c1;...;xn:cn]@(f;a1...an;x1;...;xn) --> @(f;a1...an) *) (* Remplace 2 earlier buggish versions *) let rec eta_reduce_head sigma c = let open EConstr in let open Vars in match EConstr.kind sigma c with | Lambda (_,c1,c') -> (match EConstr.kind sigma (eta_reduce_head sigma c') with | App (f,cl) -> let lastn = (Array.length cl) - 1 in if lastn < 0 then anomaly (Pp.str "application without arguments.") else (match EConstr.kind sigma cl.(lastn) with | Rel 1 -> let c' = if Int.equal lastn 0 then f else mkApp (f, Array.sub cl 0 lastn) in if noccurn sigma 1 c' then lift (-1) c' else c | _ -> c) | _ -> c) | _ -> c (* iterator on rel context *) let process_rel_context f env = let sign = named_context_val env in let rels = EConstr.rel_context env in let env0 = reset_with_named_context sign env in Context.Rel.fold_outside f rels ~init:env0 let assums_of_rel_context sign = Context.Rel.fold_outside (fun decl l -> match decl with | RelDecl.LocalDef _ -> l | RelDecl.LocalAssum (na,t) -> (na, t)::l) sign ~init:[] let map_rel_context_in_env f env sign = let rec aux env acc = function | d::sign -> aux (push_rel d env) (RelDecl.map_constr (f env) d :: acc) sign | [] -> acc in aux env [] (List.rev sign) let map_rel_context_with_binders f sign = let rec aux k = function | d::sign -> RelDecl.map_constr (f k) d :: aux (k-1) sign | [] -> [] in aux (Context.Rel.length sign) sign let substl_rel_context l = map_rel_context_with_binders (fun k -> substnl l (k-1)) let lift_rel_context n = map_rel_context_with_binders (liftn n) let smash_rel_context sign = let rec aux acc = function | [] -> acc | (RelDecl.LocalAssum _ as d) :: l -> aux (d::acc) l | RelDecl.LocalDef (_,b,_) :: l -> (* Quadratic in the number of let but there are probably a few of them *) aux (List.rev (substl_rel_context [b] (List.rev acc))) l in List.rev (aux [] sign) let fold_named_context_both_sides f l ~init = List.fold_right_and_left f l init let mem_named_context_val id ctxt = try ignore(Environ.lookup_named_ctxt id ctxt); true with Not_found -> false let map_rel_decl f = function | RelDecl.LocalAssum (id, t) -> RelDecl.LocalAssum (id, f t) | RelDecl.LocalDef (id, b, t) -> RelDecl.LocalDef (id, f b, f t) let map_named_decl f = function | NamedDecl.LocalAssum (id, t) -> NamedDecl.LocalAssum (id, f t) | NamedDecl.LocalDef (id, b, t) -> NamedDecl.LocalDef (id, f b, f t) let compact_named_context sign = let compact l decl = match decl, l with | NamedDecl.LocalAssum (i,t), [] -> [CompactedDecl.LocalAssum ([i],t)] | NamedDecl.LocalDef (i,c,t), [] -> [CompactedDecl.LocalDef ([i],c,t)] | NamedDecl.LocalAssum (i1,t1), CompactedDecl.LocalAssum (li,t2) :: q -> if Constr.equal t1 t2 then CompactedDecl.LocalAssum (i1::li, t2) :: q else CompactedDecl.LocalAssum ([i1],t1) :: CompactedDecl.LocalAssum (li,t2) :: q | NamedDecl.LocalDef (i1,c1,t1), CompactedDecl.LocalDef (li,c2,t2) :: q -> if Constr.equal c1 c2 && Constr.equal t1 t2 then CompactedDecl.LocalDef (i1::li, c2, t2) :: q else CompactedDecl.LocalDef ([i1],c1,t1) :: CompactedDecl.LocalDef (li,c2,t2) :: q | NamedDecl.LocalAssum (i,t), q -> CompactedDecl.LocalAssum ([i],t) :: q | NamedDecl.LocalDef (i,c,t), q -> CompactedDecl.LocalDef ([i],c,t) :: q in sign |> Context.Named.fold_inside compact ~init:[] |> List.rev let clear_named_body id env = let open NamedDecl in let aux _ = function | LocalDef (id',c,t) when Id.equal id id'.binder_name -> push_named (LocalAssum (id',t)) | d -> push_named d in fold_named_context aux env ~init:(reset_context env) let global_vars_set env sigma constr = let rec filtrec acc c = match EConstr.destRef sigma c with | gr, _ -> Id.Set.union (vars_of_global env gr) acc | exception DestKO -> EConstr.fold sigma filtrec acc c in filtrec Id.Set.empty constr let global_vars env sigma ids = Id.Set.elements (global_vars_set env sigma ids) let global_vars_set_of_decl env sigma = function | NamedDecl.LocalAssum (_,t) -> global_vars_set env sigma t | NamedDecl.LocalDef (_,c,t) -> Id.Set.union (global_vars_set env sigma t) (global_vars_set env sigma c) let dependency_closure env sigma sign hyps = if Id.Set.is_empty hyps then [] else let (_,lh) = Context.Named.fold_inside (fun (hs,hl) d -> let x = NamedDecl.get_id d in if Id.Set.mem x hs then (Id.Set.union (global_vars_set_of_decl env sigma d) (Id.Set.remove x hs), x::hl) else (hs,hl)) ~init:(hyps,[]) sign in List.rev lh let global_app_of_constr sigma c = let open GlobRef in match EConstr.kind sigma c with | Const (c, u) -> (ConstRef c, u), None | Ind (i, u) -> (IndRef i, u), None | Construct (c, u) -> (ConstructRef c, u), None | Var id -> (VarRef id, EConstr.EInstance.empty), None | Proj (p, c) -> (ConstRef (Projection.constant p), EConstr.EInstance.empty), Some c | _ -> raise Not_found let prod_applist sigma c l = let open EConstr in let rec app subst c l = match EConstr.kind sigma c, l with | Prod(_,_,c), arg::l -> app (arg::subst) c l | _, [] -> Vars.substl subst c | _ -> anomaly (Pp.str "Not enough prod's.") in app [] c l let prod_applist_assum sigma n c l = let open EConstr in let rec app n subst c l = if Int.equal n 0 then if l == [] then Vars.substl subst c else anomaly (Pp.str "Not enough arguments.") else match EConstr.kind sigma c, l with | Prod(_,_,c), arg::l -> app (n-1) (arg::subst) c l | LetIn(_,b,_,c), _ -> app (n-1) (Vars.substl subst b::subst) c l | _ -> anomaly (Pp.str "Not enough prod/let's.") in app n [] c l (* Cut a context ctx in 2 parts (ctx1,ctx2) with ctx1 containing k non let-in variables skips let-in's; let-in's in the middle are put in ctx2 *) let context_chop k ctx = let rec chop_aux acc = function | (0, l2) -> (List.rev acc, l2) | (n, (RelDecl.LocalDef _ as h)::t) -> chop_aux (h::acc) (n, t) | (n, (h::t)) -> chop_aux (h::acc) (pred n, t) | (_, []) -> anomaly (Pp.str "context_chop.") in chop_aux [] (k,ctx) (* Do not skip let-in's *) let env_rel_context_chop k env = let open EConstr in let rels = rel_context env in let ctx1,ctx2 = List.chop k rels in push_rel_context ctx2 (reset_with_named_context (named_context_val env) env), ctx1 end include Internal