1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (** This files defines the basic mechanism of proofs: the [proofview] type is the state which tactics manipulate (a global state for existential variables, together with the list of goals), and the type ['a tactic] is the (abstract) type of tactics modifying the proof state and returning a value of type ['a]. *) open Pp open Util open Proofview_monad open Context.Named.Declaration (** Main state of tactics *) type proofview = Proofview_monad.proofview (* The first items in pairs below are proofs (under construction). The second items in the pairs below are statements that are being proved. *) type entry = (EConstr.constr * EConstr.types) list (** Returns a stylised view of a proofview for use by, for instance, ide-s. *) (* spiwack: the type of [proofview] will change as we push more refined functions to ide-s. This would be better than spawning a new nearly identical function every time. Hence the generic name. *) (* In this version: returns the list of focused goals together with the [evar_map] context. *) let proofview p = List.map drop_state p.comb , p.solution let compact el ({ solution } as pv) = let nf c = Evarutil.nf_evar solution c in let nf0 c = EConstr.(to_constr ~abort_on_undefined_evars:false solution (of_constr c)) in let size = Evd.fold (fun _ _ i -> i+1) solution 0 in let new_el = List.map (fun (t,ty) -> nf t, nf ty) el in let pruned_solution = Evd.drop_all_defined solution in let apply_subst_einfo _ ei = Evd.({ ei with evar_concl = nf ei.evar_concl; evar_hyps = Environ.map_named_val (fun d -> map_constr nf0 d) ei.evar_hyps; evar_candidates = Option.map (List.map nf) ei.evar_candidates }) in let new_solution = Evd.raw_map_undefined apply_subst_einfo pruned_solution in let new_size = Evd.fold (fun _ _ i -> i+1) new_solution 0 in Feedback.msg_info (Pp.str (Printf.sprintf "Evars: %d -> %d\n" size new_size)); new_el, { pv with solution = new_solution; } (** {6 Starting and querying a proof view} *) type telescope = | TNil of Evd.evar_map | TCons of Environ.env * Evd.evar_map * EConstr.types * (Evd.evar_map -> EConstr.constr -> telescope) let dependent_init = (* Goals don't have a source location. *) let src = Loc.tag @@ Evar_kinds.GoalEvar in (* Main routine *) let rec aux = function | TNil sigma -> [], { solution = sigma; comb = []; shelf = [] } | TCons (env, sigma, typ, t) -> let (sigma, econstr) = Evarutil.new_evar env sigma ~src ~typeclass_candidate:false typ in let (gl, _) = EConstr.destEvar sigma econstr in let ret, { solution = sol; comb = comb } = aux (t sigma econstr) in let entry = (econstr, typ) :: ret in entry, { solution = sol; comb = with_empty_state gl :: comb; shelf = [] } in fun t -> let entry, v = aux t in (* The created goal are not to be shelved. *) let solution = Evd.reset_future_goals v.solution in entry, { v with solution } let init = let rec aux sigma = function | [] -> TNil sigma | (env,g)::l -> TCons (env,sigma,g,(fun sigma _ -> aux sigma l)) in fun sigma l -> dependent_init (aux sigma l) let initial_goals initial = initial let finished = function | {comb = []} -> true | _ -> false let return { solution=defs } = defs let return_constr { solution = defs } c = Evarutil.nf_evar defs c let partial_proof entry pv = CList.map (return_constr pv) (CList.map fst entry) (** {6 Focusing commands} *) (** A [focus_context] represents the part of the proof view which has been removed by a focusing action, it can be used to unfocus later on. *) (* First component is a reverse list of the goals which come before and second component is the list of the goals which go after (in the expected order). *) type focus_context = goal_with_state list * goal_with_state list (** Returns a stylised view of a focus_context for use by, for instance, ide-s. *) (* spiwack: the type of [focus_context] will change as we push more refined functions to ide-s. This would be better than spawning a new nearly identical function every time. Hence the generic name. *) (* In this version: the goals in the context, as a "zipper" (the first list is in reversed order). *) let focus_context (left,right) = (List.map drop_state left, List.map drop_state right) (** This (internal) function extracts a sublist between two indices, and returns this sublist together with its context: if it returns [(a,(b,c))] then [a] is the sublist and [(rev b) @ a @ c] is the original list. The focused list has length [j-i-1] and contains the goals from number [i] to number [j] (both included) the first goal of the list being numbered [1]. [focus_sublist i j l] raises [IndexOutOfRange] if [i > length l], or [j > length l] or [j < i]. *) let focus_sublist i j l = let (left,sub_right) = CList.goto (i-1) l in let (sub, right) = try CList.chop (j-i+1) sub_right with Failure _ -> raise CList.IndexOutOfRange in (sub, (left,right)) (** Inverse operation to the previous one. *) let unfocus_sublist (left,right) s = CList.rev_append left (s@right) (** [focus i j] focuses a proofview on the goals from index [i] to index [j] (inclusive, goals are indexed from [1]). I.e. goals number [i] to [j] become the only focused goals of the returned proofview. It returns the focused proofview, and a context for the focus stack. *) let focus i j sp = let (new_comb, (left, right)) = focus_sublist i j sp.comb in ( { sp with comb = new_comb } , (left, right) ) let cleared_alias evd g = let evk = drop_state g in let state = get_state g in Option.map (fun g -> goal_with_state g state) (Evarutil.advance evd evk) (** [undefined defs l] is the list of goals in [l] which are still unsolved (after advancing cleared goals). Note that order matters. *) let undefined_evars defs l = List.fold_right (fun evk l -> match Evarutil.advance defs evk with | Some evk -> List.add_set Evar.equal evk l | None -> l) l [] let goal_with_state_equal x y = Evar.equal (drop_state x) (drop_state y) let undefined defs l = List.fold_right (fun evk l -> match cleared_alias defs evk with | Some evk -> List.add_set goal_with_state_equal evk l | None -> l) l [] (** Unfocuses a proofview with respect to a context. *) let unfocus (left, right) sp = { sp with comb = undefined sp.solution (unfocus_sublist (left, right) sp.comb) } let with_empty_state = Proofview_monad.with_empty_state let drop_state = Proofview_monad.drop_state let goal_with_state = Proofview_monad.goal_with_state (** {6 The tactic monad} *) (** - Tactics are objects which apply a transformation to all the subgoals of the current view at the same time. By opposition to the old vision of applying it to a single goal. It allows tactics such as [shelve_unifiable], tactics to reorder the focused goals, or global automation tactic for dependent subgoals (instantiating an evar has influences on the other goals of the proof in progress, not being able to take that into account causes the current eauto tactic to fail on some instances where it could succeed). Another benefit is that it is possible to write tactics that can be executed even if there are no focused goals. - Tactics form a monad ['a tactic], in a sense a tactic can be seen as a function (without argument) which returns a value of type 'a and modifies the environment (in our case: the view). Tactics of course have arguments, but these are given at the meta-level as OCaml functions. Most tactics in the sense we are used to return [()], that is no really interesting values. But some might pass information around. The tactics seen in Coq's Ltac are (for now at least) only [unit tactic], the return values are kept for the OCaml toolkit. The operation or the monad are [Proofview.tclUNIT] (which is the "return" of the tactic monad) [Proofview.tclBIND] (which is the "bind") and [Proofview.tclTHEN] (which is a specialized bind on unit-returning tactics). - Tactics have support for full-backtracking. Tactics can be seen having multiple success: if after returning the first success a failure is encountered, the tactic can backtrack and use a second success if available. The state is backtracked to its previous value, except the non-logical state defined in the {!NonLogical} module below. *) (* spiwack: as far as I'm aware this doesn't really relate to F. Kirchner and C. Muñoz. *) module Proof = Logical (** type of tactics: tactics can - access the environment, - report unsafe status, shelved goals and given up goals - access and change the current [proofview] - backtrack on previous changes of the proofview *) type +'a tactic = 'a Proof.t (** Applies a tactic to the current proofview. *) let apply ~name ~poly env t sp = let open Logic_monad in let ans = Proof.repr (Proof.run t P.{trace=false; name; poly} (sp,env)) in let ans = Logic_monad.NonLogical.run ans in match ans with | Nil (e, info) -> iraise (TacticFailure e, info) | Cons ((r, (state, _), status, info), _) -> let (status, gaveup) = status in let status = (status, state.shelf, gaveup) in let state = { state with shelf = [] } in r, state, status, Trace.to_tree info (** {7 Monadic primitives} *) (** Unit of the tactic monad. *) let tclUNIT = Proof.return (** Bind operation of the tactic monad. *) let tclBIND = Proof.(>>=) (** Interprets the ";" (semicolon) of Ltac. As a monadic operation, it's a specialized "bind". *) let tclTHEN = Proof.(>>) (** [tclIGNORE t] has the same operational content as [t], but drops the returned value. *) let tclIGNORE = Proof.ignore module Monad = Proof (** {7 Failure and backtracking} *) (** [tclZERO e] fails with exception [e]. It has no success. *) let tclZERO ?info e = let info = match info with | None -> Exninfo.null | Some info -> info in Proof.zero (e, info) (** [tclOR t1 t2] behaves like [t1] as long as [t1] succeeds. Whenever the successes of [t1] have been depleted and it failed with [e], then it behaves as [t2 e]. In other words, [tclOR] inserts a backtracking point. *) let tclOR = Proof.plus (** [tclORELSE t1 t2] is equal to [t1] if [t1] has at least one success or [t2 e] if [t1] fails with [e]. It is analogous to [try/with] handler of exception in that it is not a backtracking point. *) let tclORELSE t1 t2 = let open Logic_monad in let open Proof in split t1 >>= function | Nil e -> t2 e | Cons (a,t1') -> plus (return a) t1' (** [tclIFCATCH a s f] is a generalisation of {!tclORELSE}: if [a] succeeds at least once then it behaves as [tclBIND a s] otherwise, if [a] fails with [e], then it behaves as [f e]. *) let tclIFCATCH a s f = let open Logic_monad in let open Proof in split a >>= function | Nil e -> f e | Cons (x,a') -> plus (s x) (fun e -> (a' e) >>= fun x' -> (s x')) (** [tclONCE t] behave like [t] except it has at most one success: [tclONCE t] stops after the first success of [t]. If [t] fails with [e], [tclONCE t] also fails with [e]. *) let tclONCE = Proof.once exception MoreThanOneSuccess let _ = CErrors.register_handler begin function | MoreThanOneSuccess -> CErrors.user_err Pp.(str "This tactic has more than one success.") | _ -> raise CErrors.Unhandled end (** [tclEXACTLY_ONCE e t] succeeds as [t] if [t] has exactly one success. Otherwise it fails. The tactic [t] is run until its first success, then a failure with exception [e] is simulated. It [t] yields another success, then [tclEXACTLY_ONCE e t] fails with [MoreThanOneSuccess] (it is a user error). Otherwise, [tclEXACTLY_ONCE e t] succeeds with the first success of [t]. Notice that the choice of [e] is relevant, as the presence of further successes may depend on [e] (see {!tclOR}). *) let tclEXACTLY_ONCE e t = let open Logic_monad in let open Proof in split t >>= function | Nil (e, info) -> tclZERO ~info e | Cons (x,k) -> Proof.split (k (e, Exninfo.null)) >>= function | Nil _ -> tclUNIT x | _ -> tclZERO MoreThanOneSuccess (** [tclCASE t] wraps the {!Proofview_monad.Logical.split} primitive. *) type 'a case = | Fail of iexn | Next of 'a * (iexn -> 'a tactic) let tclCASE t = let open Logic_monad in let map = function | Nil e -> Fail e | Cons (x, t) -> Next (x, t) in Proof.map map (Proof.split t) let tclBREAK = Proof.break (** {7 Focusing tactics} *) exception NoSuchGoals of int let _ = CErrors.register_handler begin function | NoSuchGoals n -> CErrors.user_err (str "No such " ++ str (String.plural n "goal") ++ str ".") | _ -> raise CErrors.Unhandled end (** [tclFOCUS ?nosuchgoal i j t] applies [t] in a context where only the goals numbered [i] to [j] are focused (the rest of the goals is restored at the end of the tactic). If the range [i]-[j] is not valid, then it [tclFOCUS_gen nosuchgoal i j t] is [nosuchgoal]. *) let tclFOCUS ?nosuchgoal i j t = let nosuchgoal = Option.default (tclZERO (NoSuchGoals (j+1-i))) nosuchgoal in let open Proof in Pv.get >>= fun initial -> try let (focused,context) = focus i j initial in Pv.set focused >> t >>= fun result -> Pv.modify (fun next -> unfocus context next) >> return result with CList.IndexOutOfRange -> nosuchgoal let tclTRYFOCUS i j t = tclFOCUS ~nosuchgoal:(tclUNIT ()) i j t let tclFOCUSLIST ?(nosuchgoal=tclZERO (NoSuchGoals 0)) l t = let open Proof in Comb.get >>= fun comb -> let n = CList.length comb in let ok (i, j) = 1 <= i && i <= j && j <= n in if not (CList.for_all ok l) then nosuchgoal else match l with | [] -> nosuchgoal | (mi, _) :: _ -> (* Get the left-most goal to focus. This goal won't move, and we will then place all the other goals to focus to the right. *) let mi = CList.fold_left (fun m (i, _) -> min m i) mi l in (* [CList.goto] returns a zipper, so that [(rev left) @ sub_right = comb]. *) let left, sub_right = CList.goto (mi-1) comb in let p x _ = CList.exists (fun (i, j) -> i <= x + mi && x + mi <= j) l in let sub, right = CList.partitioni p sub_right in let mj = mi - 1 + CList.length sub in Comb.set (CList.rev_append left (sub @ right)) >> tclFOCUS mi mj t (** Like {!tclFOCUS} but selects a single goal by name. *) let tclFOCUSID ?(nosuchgoal=tclZERO (NoSuchGoals 1)) id t = let open Proof in Pv.get >>= fun initial -> try let ev = Evd.evar_key id initial.solution in try let comb = CList.map drop_state initial.comb in let n = CList.index Evar.equal ev comb in (* goal is already under focus *) let (focused,context) = focus n n initial in Pv.set focused >> t >>= fun result -> Pv.modify (fun next -> unfocus context next) >> return result with Not_found -> (* otherwise, save current focus and work purely on the shelve *) Comb.set [with_empty_state ev] >> t >>= fun result -> Comb.set initial.comb >> return result with Not_found -> nosuchgoal (** {7 Dispatching on goals} *) exception SizeMismatch of int*int let _ = CErrors.register_handler begin function | SizeMismatch (i,j) -> let open Pp in let errmsg = str"Incorrect number of goals" ++ spc() ++ str"(expected "++int i++str(String.plural i " tactic") ++ str", was given "++ int j++str")." in CErrors.user_err errmsg | _ -> raise CErrors.Unhandled end (** A variant of [Monad.List.iter] where we iter over the focused list of goals. The argument tactic is executed in a focus comprising only of the current goal, a goal which has been solved by side effect is skipped. The generated subgoals are concatenated in order. *) let iter_goal i = let open Proof in Comb.get >>= fun initial -> Proof.List.fold_left begin fun (subgoals as cur) goal -> Solution.get >>= fun step -> match cleared_alias step goal with | None -> return cur | Some goal -> Comb.set [goal] >> i goal >> Proof.map (fun comb -> comb :: subgoals) Comb.get end [] initial >>= fun subgoals -> Solution.get >>= fun evd -> Comb.set CList.(undefined evd (flatten (rev subgoals))) (** List iter but allocates a list of results *) let map_goal i = let rev = List.rev in (* hem... Proof masks List... *) let open Proof in Comb.get >>= fun initial -> Proof.List.fold_left begin fun (acc, subgoals as cur) goal -> Solution.get >>= fun step -> match cleared_alias step goal with | None -> return cur | Some goal -> Comb.set [goal] >> i goal >>= fun res -> Proof.map (fun comb -> comb :: subgoals) Comb.get >>= fun x -> return (res :: acc, x) end ([],[]) initial >>= fun (results_rev, subgoals) -> Solution.get >>= fun evd -> Comb.set CList.(undefined evd (flatten (rev subgoals))) >> return (rev results_rev) (** A variant of [Monad.List.fold_left2] where the first list is the list of focused goals. The argument tactic is executed in a focus comprising only of the current goal, a goal which has been solved by side effect is skipped. The generated subgoals are concatenated in order. *) let fold_left2_goal i s l = let open Proof in Pv.get >>= fun initial -> let err = return () >>= fun () -> (* Delay the computation of list lengths. *) tclZERO (SizeMismatch (CList.length initial.comb,CList.length l)) in Proof.List.fold_left2 err begin fun ((r,subgoals) as cur) goal a -> Solution.get >>= fun step -> match cleared_alias step goal with | None -> return cur | Some goal -> Comb.set [goal] >> i goal a r >>= fun r -> Proof.map (fun comb -> (r, comb :: subgoals)) Comb.get end (s,[]) initial.comb l >>= fun (r,subgoals) -> Solution.get >>= fun evd -> Comb.set CList.(undefined evd (flatten (rev subgoals))) >> return r (** Dispatch tacticals are used to apply a different tactic to each goal under focus. They come in two flavours: [tclDISPATCH] takes a list of [unit tactic]-s and build a [unit tactic]. [tclDISPATCHL] takes a list of ['a tactic] and returns an ['a list tactic]. They both work by applying each of the tactic in a focus restricted to the corresponding goal (starting with the first goal). In the case of [tclDISPATCHL], the tactic returns a list of the same size as the argument list (of tactics), each element being the result of the tactic executed in the corresponding goal. When the length of the tactic list is not the number of goal, raises [SizeMismatch (g,t)] where [g] is the number of available goals, and [t] the number of tactics passed. [tclDISPATCHGEN join tacs] generalises both functions as the successive results of [tacs] are stored in reverse order in a list, and [join] is used to convert the result into the expected form. *) let tclDISPATCHGEN0 join tacs = match tacs with | [] -> begin let open Proof in Comb.get >>= function | [] -> tclUNIT (join []) | comb -> tclZERO (SizeMismatch (CList.length comb,0)) end | [tac] -> begin let open Proof in Pv.get >>= function | { comb=[goal] ; solution } -> begin match cleared_alias solution goal with | None -> tclUNIT (join []) | Some _ -> Proof.map (fun res -> join [res]) tac end | {comb} -> tclZERO (SizeMismatch(CList.length comb,1)) end | _ -> let iter _ t cur = Proof.map (fun y -> y :: cur) t in let ans = fold_left2_goal iter [] tacs in Proof.map join ans let tclDISPATCHGEN join tacs = let branch t = InfoL.tag (Info.DBranch) t in let tacs = CList.map branch tacs in InfoL.tag (Info.Dispatch) (tclDISPATCHGEN0 join tacs) let tclDISPATCH tacs = tclDISPATCHGEN ignore tacs let tclDISPATCHL tacs = tclDISPATCHGEN CList.rev tacs (** [extend_to_list startxs rx endxs l] builds a list [startxs @ [rx,...,rx] @ endxs] of the same length as [l]. Raises [SizeMismatch] if [startxs @ endxs] is already longer than [l]. *) let extend_to_list startxs rx endxs l = (* spiwack: I use [l] essentially as a natural number *) let rec duplicate acc = function | [] -> acc | _::rest -> duplicate (rx::acc) rest in let rec tail to_match rest = match rest, to_match with | [] , _::_ -> raise (SizeMismatch(0,0)) (* placeholder *) | _::rest , _::to_match -> tail to_match rest | _ , [] -> duplicate endxs rest in let rec copy pref rest = match rest,pref with | [] , _::_ -> raise (SizeMismatch(0,0)) (* placeholder *) | _::rest, a::pref -> a::(copy pref rest) | _ , [] -> tail endxs rest in copy startxs l (** [tclEXTEND b r e] is a variant of {!tclDISPATCH}, where the [r] tactic is "repeated" enough time such that every goal has a tactic assigned to it ([b] is the list of tactics applied to the first goals, [e] to the last goals, and [r] is applied to every goal in between). *) let tclEXTEND tacs1 rtac tacs2 = let open Proof in Comb.get >>= fun comb -> try let tacs = extend_to_list tacs1 rtac tacs2 comb in tclDISPATCH tacs with SizeMismatch _ -> tclZERO (SizeMismatch( CList.length comb, (CList.length tacs1)+(CList.length tacs2))) (* spiwack: failure occurs only when the number of goals is too small. Hence we can assume that [rtac] is replicated 0 times for any error message. *) (** [tclEXTEND [] tac []]. *) let tclINDEPENDENT tac = let open Proof in Pv.get >>= fun initial -> match initial.comb with | [] -> tclUNIT () | [_] -> tac | _ -> let tac = InfoL.tag (Info.DBranch) tac in InfoL.tag (Info.Dispatch) (iter_goal (fun _ -> tac)) let tclINDEPENDENTL tac = let open Proof in Pv.get >>= fun initial -> match initial.comb with | [] -> tclUNIT [] | [_] -> tac >>= fun x -> return [x] | _ -> let tac = InfoL.tag (Info.DBranch) tac in InfoL.tag (Info.Dispatch) (map_goal (fun _ -> tac)) (** {7 Goal manipulation} *) (** Shelves all the goals under focus. *) let shelve = let open Proof in Comb.get >>= fun initial -> Comb.set [] >> InfoL.leaf (Info.Tactic (fun _ _ -> Pp.str"shelve")) >> Shelf.modify (fun gls -> gls @ CList.map drop_state initial) let shelve_goals l = let open Proof in Comb.get >>= fun initial -> let comb = CList.filter (fun g -> not (CList.mem (drop_state g) l)) initial in Comb.set comb >> InfoL.leaf (Info.Tactic (fun _ _ -> Pp.str"shelve_goals")) >> Shelf.modify (fun gls -> gls @ l) (** [depends_on sigma src tgt] checks whether the goal [src] appears as an existential variable in the definition of the goal [tgt] in [sigma]. *) let depends_on sigma src tgt = let evi = Evd.find sigma tgt in Evar.Set.mem src (Evd.evars_of_filtered_evar_info sigma (Evarutil.nf_evar_info sigma evi)) let unifiable_delayed g l = CList.exists (fun (tgt, lazy evs) -> not (Evar.equal g tgt) && Evar.Set.mem g evs) l let free_evars sigma l = let cache = Evarutil.create_undefined_evars_cache () in let map ev = (* Computes the set of evars appearing in the hypotheses, the conclusion or the body of the evar_info [evi]. Note: since we want to use it on goals, the body is actually supposed to be empty. *) let evi = Evd.find sigma ev in let fevs = lazy (Evarutil.filtered_undefined_evars_of_evar_info ~cache sigma evi) in (ev, fevs) in List.map map l let free_evars_with_state sigma l = let cache = Evarutil.create_undefined_evars_cache () in let map ev = (* Computes the set of evars appearing in the hypotheses, the conclusion or the body of the evar_info [evi]. Note: since we want to use it on goals, the body is actually supposed to be empty. *) let ev = drop_state ev in let evi = Evd.find sigma ev in let fevs = lazy (Evarutil.filtered_undefined_evars_of_evar_info ~cache sigma evi) in (ev, fevs) in List.map map l (** [unifiable sigma g l] checks whether [g] appears in another subgoal of [l]. The list [l] may contain [g], but it does not affect the result. *) let unifiable_delayed_with_state sigma g l = let g = drop_state g in unifiable_delayed g l let unifiable sigma g l = let l = free_evars sigma l in unifiable_delayed g l (** [partition_unifiable sigma l] partitions [l] into a pair [(u,n)] where [u] is composed of the unifiable goals, i.e. the goals on whose definition other goals of [l] depend, and [n] are the non-unifiable goals. *) let partition_unifiable sigma l = let fevs = free_evars_with_state sigma l in CList.partition (fun g -> unifiable_delayed_with_state sigma g fevs) l (** Shelves the unifiable goals under focus, i.e. the goals which appear in other goals under focus (the unfocused goals are not considered). *) let shelve_unifiable_informative = let open Proof in Pv.get >>= fun initial -> let (u,n) = partition_unifiable initial.solution initial.comb in Comb.set n >> InfoL.leaf (Info.Tactic (fun _ _ -> Pp.str"shelve_unifiable")) >> let u = CList.map drop_state u in Shelf.modify (fun gls -> gls @ u) >> tclUNIT u let shelve_unifiable = let open Proof in shelve_unifiable_informative >>= fun _ -> tclUNIT () (** [guard_no_unifiable] returns the list of unifiable goals if some goals are unifiable (see {!shelve_unifiable}) in the current focus. *) let guard_no_unifiable = let open Proof in Pv.get >>= fun initial -> let (u,n) = partition_unifiable initial.solution initial.comb in match u with | [] -> tclUNIT None | gls -> let l = CList.map (fun g -> Evd.dependent_evar_ident (drop_state g) initial.solution) gls in let l = CList.map (fun id -> Names.Name id) l in tclUNIT (Some l) (** [unshelve l p] adds all the goals in [l] at the end of the focused goals of p *) let unshelve l p = let l = List.map with_empty_state l in (* advance the goals in case of clear *) let l = undefined p.solution l in { p with comb = p.comb@l } let mark_in_evm ~goal evd evars = let evd = if goal then let mark evd content = let info = Evd.find evd content in let info = { info with Evd.evar_source = match info.Evd.evar_source with (* Two kinds for goal evars: - GoalEvar (morally not dependent) - VarInstance (morally dependent of some name). This is a heuristic for naming these evars. *) | loc, (Evar_kinds.QuestionMark { Evar_kinds.qm_name=Names.Name id} | Evar_kinds.ImplicitArg (_,(_,Some id),_)) -> loc, Evar_kinds.VarInstance id | _, (Evar_kinds.VarInstance _ | Evar_kinds.GoalEvar) as x -> x | loc,_ -> loc,Evar_kinds.GoalEvar } in Evd.add evd content info in CList.fold_left mark evd evars else evd in let tcs = Evd.get_typeclass_evars evd in let evset = Evar.Set.of_list evars in Evd.set_typeclass_evars evd (Evar.Set.diff tcs evset) let with_shelf tac = let open Proof in Pv.get >>= fun pv -> let { shelf; solution } = pv in Pv.set { pv with shelf = []; solution = Evd.reset_future_goals solution } >> tac >>= fun ans -> Pv.get >>= fun npv -> let { shelf = gls; solution = sigma } = npv in (* The pending future goals are necessarily coming from V82.tactic *) (* and thus considered as to shelve, as in Proof.run_tactic *) let gls' = Evd.future_goals sigma in let fgoals = Evd.save_future_goals solution in let sigma = Evd.restore_future_goals sigma fgoals in (* Ensure we mark and return only unsolved goals *) let gls' = undefined_evars sigma (CList.rev_append gls' gls) in let sigma = mark_in_evm ~goal:false sigma gls' in let npv = { npv with shelf; solution = sigma } in Pv.set npv >> tclUNIT (gls', ans) (** [goodmod p m] computes the representative of [p] modulo [m] in the interval [[0,m-1]].*) let goodmod p m = if m = 0 then 0 else let p' = p mod m in (* if [n] is negative [n mod l] is negative of absolute value less than [l], so [(n mod l)+l] is the representative of [n] in the interval [[0,l-1]].*) if p' < 0 then p'+m else p' let cycle n = let open Proof in InfoL.leaf (Info.Tactic (fun _ _ -> Pp.(str"cycle "++int n))) >> Comb.modify begin fun initial -> let l = CList.length initial in let n' = goodmod n l in let (front,rear) = CList.chop n' initial in rear@front end let swap i j = let open Proof in InfoL.leaf (Info.Tactic (fun _ _ -> Pp.(hov 2 (str"swap"++spc()++int i++spc()++int j)))) >> Comb.modify begin fun initial -> let l = CList.length initial in let i = if i>0 then i-1 else i and j = if j>0 then j-1 else j in let i = goodmod i l and j = goodmod j l in CList.map_i begin fun k x -> match k with | k when Int.equal k i -> CList.nth initial j | k when Int.equal k j -> CList.nth initial i | _ -> x end 0 initial end let revgoals = let open Proof in InfoL.leaf (Info.Tactic (fun _ _ -> Pp.str"revgoals")) >> Comb.modify CList.rev let numgoals = let open Proof in Comb.get >>= fun comb -> return (CList.length comb) (** {7 Access primitives} *) let tclEVARMAP = Solution.get let tclENV = Env.get (** {7 Put-like primitives} *) let emit_side_effects eff x = { x with solution = Evd.emit_side_effects eff x.solution } let tclEFFECTS eff = let open Proof in return () >>= fun () -> (* The Global.env should be taken at exec time *) Env.set (Global.env ()) >> Pv.modify (fun initial -> emit_side_effects eff initial) let mark_as_unsafe = Status.put false (** Gives up on the goal under focus. Reports an unsafe status. Proofs with given up goals cannot be closed. *) let give_up = let open Proof in Comb.get >>= fun initial -> Comb.set [] >> mark_as_unsafe >> InfoL.leaf (Info.Tactic (fun _ _ -> Pp.str"give_up")) >> Giveup.put (CList.map drop_state initial) (** {7 Control primitives} *) module Progress = struct let eq_constr evd extended_evd = Evarutil.eq_constr_univs_test ~evd ~extended_evd (** equality function on hypothesis contexts *) let eq_named_context_val sigma1 sigma2 ctx1 ctx2 = let c1 = EConstr.named_context_of_val ctx1 and c2 = EConstr.named_context_of_val ctx2 in let eq_named_declaration d1 d2 = match d1, d2 with | LocalAssum (i1,t1), LocalAssum (i2,t2) -> Context.eq_annot Names.Id.equal i1 i2 && eq_constr sigma1 sigma2 t1 t2 | LocalDef (i1,c1,t1), LocalDef (i2,c2,t2) -> Context.eq_annot Names.Id.equal i1 i2 && eq_constr sigma1 sigma2 c1 c2 && eq_constr sigma1 sigma2 t1 t2 | _ -> false in List.equal eq_named_declaration c1 c2 let eq_evar_body sigma1 sigma2 b1 b2 = let open Evd in match b1, b2 with | Evar_empty, Evar_empty -> true | Evar_defined t1, Evar_defined t2 -> eq_constr sigma1 sigma2 t1 t2 | _ -> false let eq_evar_info sigma1 sigma2 ei1 ei2 = let open Evd in eq_constr sigma1 sigma2 ei1.evar_concl ei2.evar_concl && eq_named_context_val sigma1 sigma2 (ei1.evar_hyps) (ei2.evar_hyps) && eq_evar_body sigma1 sigma2 ei1.evar_body ei2.evar_body (** Equality function on goals *) let goal_equal ~evd ~extended_evd evar extended_evar = let evi = Evd.find evd evar in let extended_evi = Evd.find extended_evd extended_evar in eq_evar_info evd extended_evd evi extended_evi end let tclPROGRESS t = let open Proof in Pv.get >>= fun initial -> t >>= fun res -> Pv.get >>= fun final -> (* [*_test] test absence of progress. [quick_test] is approximate whereas [exhaustive_test] is complete. *) let quick_test = initial.solution == final.solution && initial.comb == final.comb in let test = quick_test || Util.List.for_all2eq begin fun i f -> Progress.goal_equal ~evd:initial.solution ~extended_evd:final.solution (drop_state i) (drop_state f) end initial.comb final.comb in if not test then tclUNIT res else tclZERO (CErrors.UserError (Some "Proofview.tclPROGRESS", Pp.str "Failed to progress.")) let _ = CErrors.register_handler begin function | Logic_monad.Tac_Timeout -> CErrors.user_err ~hdr:"Proofview.tclTIMEOUT" (Pp.str"Tactic timeout!") | _ -> raise CErrors.Unhandled end let tclTIMEOUT n t = let open Proof in (* spiwack: as one of the monad is a continuation passing monad, it doesn't force the computation to be threaded inside the underlying (IO) monad. Hence I force it myself by asking for the evaluation of a dummy value first, lest [timeout] be called when everything has already been computed. *) let t = Proof.lift (Logic_monad.NonLogical.return ()) >> t in Proof.get >>= fun initial -> Proof.current >>= fun envvar -> Proof.lift begin Logic_monad.NonLogical.catch begin let open Logic_monad.NonLogical in timeout n (Proof.repr (Proof.run t envvar initial)) >>= fun r -> match r with | Logic_monad.Nil e -> return (Util.Inr e) | Logic_monad.Cons (r, _) -> return (Util.Inl r) end begin let open Logic_monad.NonLogical in function (e, info) -> match e with | Logic_monad.Tac_Timeout -> return (Util.Inr (Logic_monad.Tac_Timeout, info)) | Logic_monad.TacticFailure e -> return (Util.Inr (e, info)) | e -> Logic_monad.NonLogical.raise ~info e end end >>= function | Util.Inl (res,s,m,i) -> Proof.set s >> Proof.put m >> Proof.update (fun _ -> i) >> return res | Util.Inr (e, info) -> tclZERO ~info e let tclTIME s t = let pr_time t1 t2 n msg = let msg = if n = 0 then str msg else str (msg ^ " after ") ++ int n ++ str (String.plural n " backtracking") in Feedback.msg_info(str "Tactic call" ++ pr_opt str s ++ str " ran for " ++ System.fmt_time_difference t1 t2 ++ str " " ++ surround msg) in let rec aux n t = let open Proof in tclUNIT () >>= fun () -> let tstart = System.get_time() in Proof.split t >>= let open Logic_monad in function | Nil (e, info) -> begin let tend = System.get_time() in pr_time tstart tend n "failure"; tclZERO ~info e end | Cons (x,k) -> let tend = System.get_time() in pr_time tstart tend n "success"; tclOR (tclUNIT x) (fun e -> aux (n+1) (k e)) in aux 0 t let tclProofInfo = let open Proof in Logical.current >>= fun P.{name; poly} -> tclUNIT (name, poly) (** {7 Unsafe primitives} *) module Unsafe = struct let tclEVARS evd = Pv.modify (fun ps -> { ps with solution = evd }) let tclNEWGOALS gls = Pv.modify begin fun step -> let gls = undefined step.solution gls in { step with comb = step.comb @ gls } end let tclSETENV = Env.set let tclGETGOALS = Comb.get let tclSETGOALS = Comb.set let tclGETSHELF = Shelf.get let tclSETSHELF = Shelf.set let tclPUTSHELF to_shelve = tclBIND tclGETSHELF (fun shelf -> tclSETSHELF (to_shelve@shelf)) let tclPUTGIVENUP = Giveup.put let tclEVARSADVANCE evd = Pv.modify (fun ps -> { ps with solution = evd; comb = undefined evd ps.comb }) let tclEVARUNIVCONTEXT ctx = Pv.modify (fun ps -> { ps with solution = Evd.set_universe_context ps.solution ctx }) let reset_future_goals p = { p with solution = Evd.reset_future_goals p.solution } let mark_as_goals evd content = mark_in_evm ~goal:true evd content let advance = Evarutil.advance let undefined = undefined let mark_as_unresolvable p gl = { p with solution = mark_in_evm ~goal:false p.solution [gl] } end module UnsafeRepr = Proof.Unsafe let (>>=) = tclBIND (** {6 Goal-dependent tactics} *) let goal_env evars gl = let evi = Evd.find evars gl in Evd.evar_filtered_env evi let goal_nf_evar sigma gl = let evi = Evd.find sigma gl in let evi = Evarutil.nf_evar_info sigma evi in let sigma = Evd.add sigma gl evi in (gl, sigma) let catchable_exception = function | Logic_monad.Exception _ -> false | e -> CErrors.noncritical e module Goal = struct type t = { env : Environ.env; sigma : Evd.evar_map; concl : EConstr.constr ; state : StateStore.t; self : Evar.t ; (* for compatibility with old-style definitions *) } let print { sigma; self } = { Evd.it = self; sigma } let state { state=state } = state let env {env} = env let sigma {sigma} = sigma let hyps {env} = EConstr.named_context env let concl {concl} = concl let gmake_with info env sigma goal state = { env = Environ.reset_with_named_context (Evd.evar_filtered_hyps info) env ; sigma = sigma ; concl = Evd.evar_concl info; state = state ; self = goal } let nf_gmake env sigma goal = let state = get_state goal in let goal = drop_state goal in let info = Evarutil.nf_evar_info sigma (Evd.find sigma goal) in let sigma = Evd.add sigma goal info in gmake_with info env sigma goal state , sigma let nf_enter f = InfoL.tag (Info.Dispatch) begin iter_goal begin fun goal -> tclENV >>= fun env -> tclEVARMAP >>= fun sigma -> try let (gl, sigma) = nf_gmake env sigma goal in tclTHEN (Unsafe.tclEVARS sigma) (InfoL.tag (Info.DBranch) (f gl)) with e when catchable_exception e -> let (e, info) = CErrors.push e in tclZERO ~info e end end let gmake env sigma goal = let state = get_state goal in let goal = drop_state goal in let info = Evd.find sigma goal in gmake_with info env sigma goal state let enter f = let f gl = InfoL.tag (Info.DBranch) (f gl) in InfoL.tag (Info.Dispatch) begin iter_goal begin fun goal -> Env.get >>= fun env -> tclEVARMAP >>= fun sigma -> try f (gmake env sigma goal) with e when catchable_exception e -> let (e, info) = CErrors.push e in tclZERO ~info e end end let enter_one ?(__LOC__=__LOC__) f = let open Proof in Comb.get >>= function | [goal] -> begin Env.get >>= fun env -> tclEVARMAP >>= fun sigma -> try f (gmake env sigma goal) with e when catchable_exception e -> let (e, info) = CErrors.push e in tclZERO ~info e end | _ -> CErrors.anomaly Pp.(str __LOC__ ++ str " enter_one") let goals = Pv.get >>= fun step -> let sigma = step.solution in let map goal = match cleared_alias sigma goal with | None -> None (* ppedrot: Is this check really necessary? *) | Some goal -> let gl = Env.get >>= fun env -> tclEVARMAP >>= fun sigma -> tclUNIT (gmake env sigma goal) in Some gl in tclUNIT (CList.map_filter map step.comb) let unsolved { self=self } = tclEVARMAP >>= fun sigma -> tclUNIT (not (Option.is_empty (Evarutil.advance sigma self))) (* compatibility *) let goal { self=self } = self end (** {6 Trace} *) module Trace = struct let record_info_trace = InfoL.record_trace let log m = InfoL.leaf (Info.Msg m) let name_tactic m t = InfoL.tag (Info.Tactic m) t let pr_info env sigma ?(lvl=0) info = assert (lvl >= 0); Info.(print env sigma (collapse lvl info)) end (** {6 Non-logical state} *) module NonLogical = Logic_monad.NonLogical let tclLIFT = Proof.lift let tclCHECKINTERRUPT = tclLIFT (NonLogical.make Control.check_for_interrupt) (*** Compatibility layer with <= 8.2 tactics ***) module V82 = struct type tac = Evar.t Evd.sigma -> Evar.t list Evd.sigma let tactic ?(nf_evars=true) tac = (* spiwack: we ignore the dependencies between goals here, expectingly preserving the semantics of <= 8.2 tactics *) (* spiwack: convenience notations, waiting for ocaml 3.12 *) let open Proof in Pv.get >>= fun ps -> try let tac g_w_s evd = let g, w = drop_state g_w_s, get_state g_w_s in let glsigma = tac { Evd.it = g ; sigma = evd; } in let sigma = glsigma.Evd.sigma in let g = CList.map (fun g -> goal_with_state g w) glsigma.Evd.it in ( g, sigma ) in (* Old style tactics expect the goals normalized with respect to evars. *) let (initgoals_w_state, initevd) = Evd.Monad.List.map (fun g_w_s s -> let g, w = drop_state g_w_s, get_state g_w_s in let g, s = if nf_evars then goal_nf_evar s g else g, s in goal_with_state g w, s) ps.comb ps.solution in let (goalss,evd) = Evd.Monad.List.map tac initgoals_w_state initevd in let sgs = CList.flatten goalss in let sgs = undefined evd sgs in InfoL.leaf (Info.Tactic (fun _ _ -> Pp.str"<unknown>")) >> Pv.set { ps with solution = evd; comb = sgs; } with e when catchable_exception e -> let (e, info) = CErrors.push e in tclZERO ~info e (* normalises the evars in the goals, and stores the result in solution. *) let nf_evar_goals = Pv.modify begin fun ps -> let map g s = goal_nf_evar s g in let comb = CList.map drop_state ps.comb in let (_goals,evd) = Evd.Monad.List.map map comb ps.solution in { ps with solution = evd; } end let has_unresolved_evar pv = Evd.has_undefined pv.solution (* Main function in the implementation of Grab Existential Variables.*) let grab pv = let undef = Evd.undefined_map pv.solution in let goals = CList.rev_map fst (Evar.Map.bindings undef) in { pv with comb = List.map with_empty_state goals } let top_goals initial { solution=solution; } = let goals = CList.map (fun (t,_) -> fst (Constr.destEvar (EConstr.Unsafe.to_constr t))) initial in { Evd.it = goals ; sigma=solution; } let top_evars initial { solution=sigma; } = let evars_of_initial (c,_) = Evar.Set.elements (Evd.evar_nodes_of_term c) in CList.flatten (CList.map evars_of_initial initial) let of_tactic t gls = try let init = { shelf = []; solution = gls.Evd.sigma ; comb = [with_empty_state gls.Evd.it] } in let name, poly = Names.Id.of_string "legacy_pe", false in let (_,final,_,_) = apply ~name ~poly (goal_env gls.Evd.sigma gls.Evd.it) t init in { Evd.sigma = final.solution ; it = CList.map drop_state final.comb } with Logic_monad.TacticFailure e as src -> let (_, info) = CErrors.push src in iraise (e, info) let put_status = Status.put let catchable_exception = catchable_exception let wrap_exceptions f = try f () with e when catchable_exception e -> let (e, info) = CErrors.push e in tclZERO ~info e end (** {7 Notations} *) module Notations = struct let (>>=) = tclBIND let (<*>) = tclTHEN let (<+>) t1 t2 = tclOR t1 (fun _ -> t2) end