1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Util
open Names

(* Utilities *)

module Subscript =
struct

type t = {
  ss_zero : int;
  (** Number of leading zeros of the subscript *)
  ss_subs : int;
  (** Digital value of the subscript, zero meaning empty *)
}

let rec overflow n =
  Int.equal (n mod 10) 9 && (Int.equal (n / 10) 0 || overflow (n / 10))

let zero = { ss_subs = 0; ss_zero = 0 }

let succ s =
  if Int.equal s.ss_subs 0 then
    if Int.equal s.ss_zero 0 then
      (* [] -> [0] *)
      { ss_zero = 1; ss_subs = 0 }
    else
      (* [0...00] -> [0..01] *)
      { ss_zero = s.ss_zero - 1; ss_subs = 1 }
  else if overflow s.ss_subs then
    if Int.equal s.ss_zero 0 then
      (* [9...9] -> [10...0] *)
      { ss_zero = 0; ss_subs = 1 + s.ss_subs }
    else
      (* [0...009...9] -> [0...010...0] *)
      { ss_zero = s.ss_zero - 1; ss_subs = 1 + s.ss_subs }
  else
    (* [0...0n] -> [0...0{n+1}] *)
    { ss_zero = s.ss_zero; ss_subs = s.ss_subs + 1 }

let equal s1 s2 =
  Int.equal s1.ss_zero s2.ss_zero && Int.equal s1.ss_subs s2.ss_subs

let compare s1 s2 =
  (* Lexicographic order is reversed in order to ensure that [succ] is strictly
      increasing. *)
  let c = Int.compare s1.ss_subs s2.ss_subs in
  if Int.equal c 0 then Int.compare s1.ss_zero s2.ss_zero else c

end

let code_of_0 = Char.code '0'
let code_of_9 = Char.code '9'

let cut_ident skip_quote s =
  let s = Id.to_string s in
  let slen = String.length s in
  (* [n'] is the position of the first non nullary digit *)
  let rec numpart n n' =
    if Int.equal n 0 then
      (* ident made of _ and digits only [and ' if skip_quote]: don't cut it *)
      slen
    else
      let c = Char.code (String.get s (n-1)) in
      if Int.equal c code_of_0 && not (Int.equal n slen) then
        numpart (n-1) n'
      else if code_of_0 <= c && c <= code_of_9 then
        numpart (n-1) (n-1)
      else if skip_quote && (Int.equal c (Char.code '\'') || Int.equal c (Char.code '_')) then
        numpart (n-1) (n-1)
      else
        n'
  in
  numpart slen slen

let repr_ident s =
  let numstart = cut_ident false s in
  let s = Id.to_string s in
  let slen = String.length s in
  if Int.equal numstart slen then
    (s, None)
  else
    (String.sub s 0 numstart,
     Some (int_of_string (String.sub s numstart (slen - numstart))))

let make_ident sa = function
  | Some n ->
      let c = Char.code (String.get sa (String.length sa -1)) in
      let s =
        if c < code_of_0 || c > code_of_9 then sa ^ (string_of_int n)
        else sa ^ "_" ^ (string_of_int n) in
      Id.of_string s
  | None -> Id.of_string sa

let root_of_id id =
  let suffixstart = cut_ident true id in
  Id.of_string (String.sub (Id.to_string id) 0 suffixstart)

(* Return the same identifier as the original one but whose {i subscript} is incremented.
   If the original identifier does not have a suffix, [0] is appended to it.

   Example mappings:

   [bar]   ↦ [bar0]
   [bar0]  ↦ [bar1]
   [bar00] ↦ [bar01]
   [bar1]  ↦ [bar2]
   [bar01] ↦ [bar02]
   [bar9]  ↦ [bar10]
   [bar09] ↦ [bar10]
   [bar99] ↦ [bar100]
*)
let increment_subscript id =
  let id = Id.to_string id in
  let len = String.length id in
  let rec add carrypos =
    let c = id.[carrypos] in
    if is_digit c then
      if Int.equal (Char.code c) (Char.code '9') then begin
        assert (carrypos>0);
        add (carrypos-1)
      end
      else begin
        let newid = Bytes.of_string id in
        Bytes.fill newid (carrypos+1) (len-1-carrypos) '0';
        Bytes.set newid carrypos (Char.chr (Char.code c + 1));
        newid
      end
    else begin
      let newid = Bytes.of_string (id^"0") in
      if carrypos < len-1 then begin
        Bytes.fill newid (carrypos+1) (len-1-carrypos) '0';
        Bytes.set newid (carrypos+1) '1'
      end;
      newid
    end
  in Id.of_bytes (add (len-1))

let has_subscript id =
  let id = Id.to_string id in
  is_digit (id.[String.length id - 1])

let get_subscript id =
  let id0 = id in
  let id = Id.to_string id in
  let len = String.length id in
  let rec get_suf accu pos =
    if pos < 0 then (pos, accu)
    else
      let c = id.[pos] in
      if is_digit c then get_suf (Char.code c - Char.code '0' :: accu) (pos - 1)
      else (pos, accu)
  in
  let (pos, suf) = get_suf [] (len - 1) in
  if Int.equal pos (len - 1) then (id0, Subscript.zero)
  else
    let id = String.sub id 0 (pos + 1) in
    let rec compute_zeros accu = function
    | [] -> (accu, [])
    | 0 :: l -> compute_zeros (succ accu) l
    | _ :: _ as l -> (accu, l)
    in
    let (ss_zero, suf) = compute_zeros 0 suf in
    let rec compute_suf accu = function
    | [] -> accu
    | n :: l -> compute_suf (10 * accu + n) l
    in
    let ss_subs = compute_suf 0 suf in
    (Id.of_string id, { Subscript.ss_subs; ss_zero; })

let add_subscript id ss =
  if Subscript.equal Subscript.zero ss then id
  else if Int.equal ss.Subscript.ss_subs 0 then
    let id = Id.to_string id in
    let pad = String.make ss.Subscript.ss_zero '0' in
    Id.of_string (Printf.sprintf "%s%s" id pad)
  else
    let id = Id.to_string id in
    let pad = String.make ss.Subscript.ss_zero '0' in
    let suf = ss.Subscript.ss_subs in
    Id.of_string (Printf.sprintf "%s%s%i" id pad suf)

let forget_subscript id =
  let numstart = cut_ident false id in
  let newid = Bytes.make (numstart+1) '0' in
  String.blit (Id.to_string id) 0 newid 0 numstart;
  (Id.of_bytes newid)

let add_suffix id s = Id.of_string (Id.to_string id ^ s)
let add_prefix s id = Id.of_string (s ^ Id.to_string id)

let atompart_of_id id = fst (repr_ident id)

(* Names *)

module type ExtName =
sig

  include module type of struct include Names.Name end

  exception IsAnonymous

  val fold_left : ('a -> Id.t -> 'a) -> 'a -> t -> 'a
  val fold_right : (Id.t -> 'a -> 'a) -> t -> 'a -> 'a
  val iter : (Id.t -> unit) -> t -> unit
  val map : (Id.t -> Id.t) -> t -> t
  val fold_left_map : ('a -> Id.t -> 'a * Id.t) -> 'a -> t -> 'a * t
  val fold_right_map : (Id.t -> 'a -> Id.t * 'a) -> Name.t -> 'a -> Name.t * 'a
  val get_id : t -> Id.t
  val pick : t -> t -> t
  val pick_annot : t Context.binder_annot -> t Context.binder_annot -> t Context.binder_annot
  val cons : t -> Id.t list -> Id.t list
  val to_option : Name.t -> Id.t option

end

module Name : ExtName =
struct

  include Names.Name

  exception IsAnonymous

  let fold_left f a = function
    | Name id -> f a id
    | Anonymous -> a

  let fold_right f na a =
    match na with
    | Name id -> f id a
    | Anonymous -> a

  let iter f na = fold_right (fun x () -> f x) na ()

  let map f = function
    | Name id -> Name (f id)
    | Anonymous -> Anonymous

  let fold_left_map f a = function
    | Name id -> let (a, id) = f a id in (a, Name id)
    | Anonymous -> a, Anonymous

  let fold_right_map f na a = match na with
    | Name id -> let (id, a) = f id a in (Name id, a)
    | Anonymous -> Anonymous, a

  let get_id = function
    | Name id -> id
    | Anonymous -> raise IsAnonymous

  let pick na1 na2 =
    match na1 with
    | Name _ -> na1
    | Anonymous -> na2

  let pick_annot na1 na2 =
    let open Context in
    match na1.binder_name with
    | Name _ -> na1 | Anonymous -> na2

  let cons na l =
    match na with
    | Anonymous -> l
    | Name id -> id::l

  let to_option = function
    | Anonymous -> None
    | Name id -> Some id

end

(* Metavariables *)
let pr_meta = Pp.int
let string_of_meta = string_of_int