1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Pp
open CErrors
open Sorts
open Util
open Names
open Nameops
open Constr
open Vars
open Environ

(* module RelDecl = Context.Rel.Declaration *)
module NamedDecl = Context.Named.Declaration

type econstr = constr
type etypes = types

(** Generic filters *)
module Filter :
sig
  type t
  val equal : t -> t -> bool
  val identity : t
  val filter_list : t -> 'a list -> 'a list
  val filter_array : t -> 'a array -> 'a array
  val extend : int -> t -> t
  val compose : t -> t -> t
  val apply_subfilter : t -> bool list -> t
  val restrict_upon : t -> int -> (int -> bool) -> t option
  val map_along : (bool -> 'a -> bool) -> t -> 'a list -> t
  val make : bool list -> t
  val repr :  t -> bool list option
end =
struct
  type t = bool list option
  (** We guarantee through the interface that if a filter is [Some _] then it
      contains at least one [false] somewhere. *)

  let identity = None

  let rec equal l1 l2 = match l1, l2 with
  | [], [] -> true
  | h1 :: l1, h2 :: l2 ->
    (if h1 then h2 else not h2) && equal l1 l2
  | _ -> false

  let equal l1 l2 = match l1, l2 with
  | None, None -> true
  | Some _, None | None, Some _ -> false
  | Some l1, Some l2 -> equal l1 l2

  let rec is_identity = function
  | [] -> true
  | true :: l -> is_identity l
  | false :: _ -> false

  let normalize f = if is_identity f then None else Some f

  let filter_list f l = match f with
  | None -> l
  | Some f -> CList.filter_with f l

  let filter_array f v = match f with
  | None -> v
  | Some f -> CArray.filter_with f v

  let rec extend n l =
    if n = 0 then l
    else extend (pred n) (true :: l)

  let extend n = function
  | None -> None
  | Some f -> Some (extend n f)

  let compose f1 f2 = match f1 with
  | None -> f2
  | Some f1 ->
    match f2 with
    | None -> None
    | Some f2 -> normalize (CList.filter_with f1 f2)

  let apply_subfilter_array filter subfilter =
    (* In both cases we statically know that the argument will contain at
       least one [false] *)
    match filter with
    | None -> Some (Array.to_list subfilter)
    | Some f ->
    let len = Array.length subfilter in
    let fold b (i, ans) =
      if b then
        let () = assert (0 <= i) in
        (pred i, Array.unsafe_get subfilter i :: ans)
      else
        (i, false :: ans)
    in
    Some (snd (List.fold_right fold f (pred len, [])))

  let apply_subfilter filter subfilter =
    apply_subfilter_array filter (Array.of_list subfilter)

  let restrict_upon f len p =
    let newfilter = Array.init len p in
    if Array.for_all (fun id -> id) newfilter then None
    else
      Some (apply_subfilter_array f newfilter)

  let map_along f flt l =
    let ans = match flt with
    | None -> List.map (fun x -> f true x) l
    | Some flt -> List.map2 f flt l
    in
    normalize ans

  let make l = normalize l

  let repr f = f

end

module Abstraction = struct

  type abstraction =
    | Abstract
    | Imitate

  type t = abstraction list

  let identity = []

  let abstract_last l = Abstract :: l
end

(* The kinds of existential variables are now defined in [Evar_kinds] *)

(* The type of mappings for existential variables *)

module Store = Store.Make ()

let string_of_existential evk = "?X" ^ string_of_int (Evar.repr evk)

type evar_body =
  | Evar_empty
  | Evar_defined of constr

type evar_info = {
  evar_concl : constr;
  evar_hyps : named_context_val;
  evar_body : evar_body;
  evar_filter : Filter.t;
  evar_abstract_arguments : Abstraction.t;
  evar_source : Evar_kinds.t Loc.located;
  evar_candidates : constr list option; (* if not None, list of allowed instances *)}

let make_evar hyps ccl = {
  evar_concl = ccl;
  evar_hyps = hyps;
  evar_body = Evar_empty;
  evar_filter = Filter.identity;
  evar_abstract_arguments = Abstraction.identity;
  evar_source = Loc.tag @@ Evar_kinds.InternalHole;
  evar_candidates = None; }

let instance_mismatch () =
  anomaly (Pp.str "Signature and its instance do not match.")

let evar_concl evi = evi.evar_concl

let evar_filter evi = evi.evar_filter

let evar_body evi = evi.evar_body

let evar_context evi = named_context_of_val evi.evar_hyps

let evar_filtered_context evi =
  Filter.filter_list (evar_filter evi) (evar_context evi)

let evar_candidates evi = evi.evar_candidates

let evar_hyps evi = evi.evar_hyps

let evar_filtered_hyps evi = match Filter.repr (evar_filter evi) with
| None -> evar_hyps evi
| Some filter ->
  let rec make_hyps filter ctxt = match filter, ctxt with
  | [], [] -> empty_named_context_val
  | false :: filter, _ :: ctxt -> make_hyps filter ctxt
  | true :: filter, decl :: ctxt ->
    let hyps = make_hyps filter ctxt in
    push_named_context_val decl hyps
  | _ -> instance_mismatch ()
  in
  make_hyps filter (evar_context evi)

let evar_env evi = Global.env_of_context evi.evar_hyps

let evar_filtered_env evi = match Filter.repr (evar_filter evi) with
| None -> evar_env evi
| Some filter ->
  let rec make_env filter ctxt = match filter, ctxt with
  | [], [] -> reset_context (Global.env ())
  | false :: filter, _ :: ctxt -> make_env filter ctxt
  | true :: filter, decl :: ctxt ->
    let env = make_env filter ctxt in
    push_named decl env
  | _ -> instance_mismatch ()
  in
  make_env filter (evar_context evi)

let map_evar_body f = function
  | Evar_empty -> Evar_empty
  | Evar_defined d -> Evar_defined (f d)

let map_evar_info f evi =
  {evi with
    evar_body = map_evar_body f evi.evar_body;
    evar_hyps = map_named_val (fun d -> NamedDecl.map_constr f d) evi.evar_hyps;
    evar_concl = f evi.evar_concl;
    evar_candidates = Option.map (List.map f) evi.evar_candidates }

(* This exception is raised by *.existential_value *)
exception NotInstantiatedEvar

(* Note: let-in contributes to the instance *)

let evar_instance_array test_id info args =
  let len = Array.length args in
  let rec instrec filter ctxt i = match filter, ctxt with
  | [], [] ->
    if Int.equal i len then []
    else instance_mismatch ()
  | false :: filter, _ :: ctxt ->
    instrec filter ctxt i
  | true :: filter, d :: ctxt ->
    if i < len then
      let c = Array.unsafe_get args i in
      if test_id d c then instrec filter ctxt (succ i)
      else (NamedDecl.get_id d, c) :: instrec filter ctxt (succ i)
    else instance_mismatch ()
  | _ -> instance_mismatch ()
  in
  match Filter.repr (evar_filter info) with
  | None ->
     let map i d =
      if (i < len) then
        let c = Array.unsafe_get args i in
        if test_id d c then None else Some (NamedDecl.get_id d, c)
      else instance_mismatch ()
    in
    List.map_filter_i map (evar_context info)
  | Some filter ->
    instrec filter (evar_context info) 0

let make_evar_instance_array info args =
  evar_instance_array (NamedDecl.get_id %> isVarId) info args

let instantiate_evar_array info c args =
  let inst = make_evar_instance_array info args in
  match inst with
  | [] -> c
  | _ -> replace_vars inst c


type 'a in_evar_universe_context = 'a * UState.t

(*******************************************************************)
(* Metamaps *)

(*******************************************************************)
(*            Constraints for existential variables                *)
(*******************************************************************)

type 'a freelisted = {
  rebus : 'a;
  freemetas : Int.Set.t }

(* Collects all metavars appearing in a constr *)
let metavars_of c =
  let rec collrec acc c =
    match kind c with
      | Meta mv -> Int.Set.add mv acc
      | _         -> Constr.fold collrec acc c
  in
  collrec Int.Set.empty c

let mk_freelisted c =
  { rebus = c; freemetas = metavars_of c }

let map_fl f cfl = { cfl with rebus=f cfl.rebus }

(* Status of an instance found by unification wrt to the meta it solves:
  - a supertype of the meta (e.g. the solution to ?X <= T is a supertype of ?X)
  - a subtype of the meta (e.g. the solution to T <= ?X is a supertype of ?X)
  - a term that can be eta-expanded n times while still being a solution
    (e.g. the solution [P] to [?X u v = P u v] can be eta-expanded twice)
*)

type instance_constraint = IsSuperType | IsSubType | Conv

let eq_instance_constraint c1 c2 = c1 == c2

(* Status of the unification of the type of an instance against the type of
     the meta it instantiates:
   - CoerceToType means that the unification of types has not been done
     and that a coercion can still be inserted: the meta should not be
     substituted freely (this happens for instance given via the
     "with" binding clause).
   - TypeProcessed means that the information obtainable from the
     unification of types has been extracted.
   - TypeNotProcessed means that the unification of types has not been
     done but it is known that no coercion may be inserted: the meta
     can be substituted freely.
*)

type instance_typing_status =
    CoerceToType | TypeNotProcessed | TypeProcessed

(* Status of an instance together with the status of its type unification *)

type instance_status = instance_constraint * instance_typing_status

(* Clausal environments *)

type clbinding =
  | Cltyp of Name.t * constr freelisted
  | Clval of Name.t * (constr freelisted * instance_status) * constr freelisted

let map_clb f = function
  | Cltyp (na,cfl) -> Cltyp (na,map_fl f cfl)
  | Clval (na,(cfl1,pb),cfl2) -> Clval (na,(map_fl f cfl1,pb),map_fl f cfl2)

(* name of defined is erased (but it is pretty-printed) *)
let clb_name = function
    Cltyp(na,_) -> (na,false)
  | Clval (na,_,_) -> (na,true)

(***********************)

module Metaset = Int.Set

module Metamap = Int.Map

let metamap_to_list m =
  Metamap.fold (fun n v l -> (n,v)::l) m []

(*************************)
(* Unification state *)

type conv_pb = Reduction.conv_pb
type evar_constraint = conv_pb * Environ.env * constr * constr

module EvMap = Evar.Map

module EvNames :
sig

type t

val empty : t
val add_name_undefined : Id.t option -> Evar.t -> evar_info -> t -> t
val remove_name_defined : Evar.t -> t -> t
val rename : Evar.t -> Id.t -> t -> t
val reassign_name_defined : Evar.t -> Evar.t -> t -> t
val ident : Evar.t -> t -> Id.t option
val key : Id.t -> t -> Evar.t

end =
struct

type t = Id.t EvMap.t * Evar.t Id.Map.t

let empty = (EvMap.empty, Id.Map.empty)

let add_name_newly_undefined id evk evi (evtoid, idtoev as names) =
  match id with
  | None -> names
  | Some id ->
    if Id.Map.mem id idtoev then
      user_err  (str "Already an existential evar of name " ++ Id.print id);
    (EvMap.add evk id evtoid, Id.Map.add id evk idtoev)

let add_name_undefined naming evk evi (evtoid,idtoev as evar_names) =
  if EvMap.mem evk evtoid then
    evar_names
  else
    add_name_newly_undefined naming evk evi evar_names

let remove_name_defined evk (evtoid, idtoev as names) =
  let id = try Some (EvMap.find evk evtoid) with Not_found -> None in
  match id with
  | None -> names
  | Some id -> (EvMap.remove evk evtoid, Id.Map.remove id idtoev)

let rename evk id (evtoid, idtoev) =
  let id' = try Some (EvMap.find evk evtoid) with Not_found -> None in
  match id' with
  | None -> (EvMap.add evk id evtoid, Id.Map.add id evk idtoev)
  | Some id' ->
    if Id.Map.mem id idtoev then anomaly (str "Evar name already in use.");
    (EvMap.set evk id evtoid (* overwrite old name *), Id.Map.add id evk (Id.Map.remove id' idtoev))

let reassign_name_defined evk evk' (evtoid, idtoev as names) =
  let id = try Some (EvMap.find evk evtoid) with Not_found -> None in
  match id with
  | None -> names (* evk' must not be defined *)
  | Some id ->
    (EvMap.add evk' id (EvMap.remove evk evtoid),
    Id.Map.add id evk' (Id.Map.remove id idtoev))

let ident evk (evtoid, _) =
  try Some (EvMap.find evk evtoid) with Not_found -> None

let key id (_, idtoev) =
  Id.Map.find id idtoev

end

type goal_kind = ToShelve | ToGiveUp

type evar_flags =
  { obligation_evars : Evar.Set.t;
    restricted_evars : Evar.t Evar.Map.t;
    typeclass_evars : Evar.Set.t }

type side_effect_role =
| Schema of inductive * string

type side_effects = {
  seff_private : Safe_typing.private_constants;
  seff_roles : side_effect_role Cmap.t;
}

type evar_map = {
  (* Existential variables *)
  defn_evars : evar_info EvMap.t;
  undf_evars : evar_info EvMap.t;
  evar_names : EvNames.t;
  (** Universes *)
  universes  : UState.t;
  (** Conversion problems *)
  conv_pbs   : evar_constraint list;
  last_mods  : Evar.Set.t;
  (** Metas *)
  metas      : clbinding Metamap.t;
  evar_flags : evar_flags;
  (** Interactive proofs *)
  effects    : side_effects;
  future_goals : Evar.t list; (** list of newly created evars, to be
                                  eventually turned into goals if not solved.*)
  principal_future_goal : Evar.t option; (** if [Some e], [e] must be
                                             contained
                                             [future_goals]. The evar
                                             [e] will inherit
                                             properties (now: the
                                             name) of the evar which
                                             will be instantiated with
                                             a term containing [e]. *)
  future_goals_status : goal_kind EvMap.t;
  extras : Store.t;
}

let get_is_maybe_typeclass, (is_maybe_typeclass_hook : (evar_map -> constr -> bool) Hook.t) = Hook.make ~default:(fun evd c -> false) ()

let is_maybe_typeclass sigma c = Hook.get get_is_maybe_typeclass sigma c

(*** Lifting primitive from Evar.Map. ***)

let rename evk id evd =
  { evd with evar_names = EvNames.rename evk id evd.evar_names }

let add_with_name ?name ?(typeclass_candidate = true) d e i = match i.evar_body with
| Evar_empty ->
  let evar_names = EvNames.add_name_undefined name e i d.evar_names in
  let evar_flags =
    if typeclass_candidate && is_maybe_typeclass d i.evar_concl then
      let flags = d.evar_flags in
      { flags with typeclass_evars = Evar.Set.add e flags.typeclass_evars }
    else d.evar_flags
  in
  { d with undf_evars = EvMap.add e i d.undf_evars; evar_names; evar_flags }
| Evar_defined _ ->
  let evar_names = EvNames.remove_name_defined e d.evar_names in
  { d with defn_evars = EvMap.add e i d.defn_evars; evar_names }

(** Evd.add is a low-level function mainly used to update the evar_info
    associated to an evar, so we prevent registering its typeclass status. *)
let add d e i = add_with_name ~typeclass_candidate:false d e i

(*** Evar flags: typeclasses, restricted or obligation flag *)

let get_typeclass_evars evd = evd.evar_flags.typeclass_evars

let set_typeclass_evars evd tcs =
  let flags = evd.evar_flags in
  { evd with evar_flags = { flags with typeclass_evars = tcs } }

let is_typeclass_evar evd evk =
  let flags = evd.evar_flags in
  Evar.Set.mem evk flags.typeclass_evars

let get_obligation_evars evd = evd.evar_flags.obligation_evars

let set_obligation_evar evd evk =
  let flags = evd.evar_flags in
  let evar_flags = { flags with obligation_evars = Evar.Set.add evk flags.obligation_evars } in
  { evd with evar_flags }

let is_obligation_evar evd evk =
  let flags = evd.evar_flags in
  Evar.Set.mem evk flags.obligation_evars

(** Inheritance of flags: for evar-evar and restriction cases *)

let inherit_evar_flags evar_flags evk evk' =
  let evk_typeclass = Evar.Set.mem evk evar_flags.typeclass_evars in
  let evk_obligation = Evar.Set.mem evk evar_flags.obligation_evars in
  if not (evk_obligation || evk_typeclass) then evar_flags
  else
    let typeclass_evars =
      if evk_typeclass then
        let typeclass_evars = Evar.Set.remove evk evar_flags.typeclass_evars in
        Evar.Set.add evk' typeclass_evars
      else evar_flags.typeclass_evars
    in
    let obligation_evars =
      if evk_obligation then
        let obligation_evars = Evar.Set.remove evk evar_flags.obligation_evars in
        Evar.Set.add evk' obligation_evars
      else evar_flags.obligation_evars
    in
    { evar_flags with obligation_evars; typeclass_evars }

(** Removal: in all other cases of definition *)

let remove_evar_flags evk evar_flags =
  { typeclass_evars = Evar.Set.remove evk evar_flags.typeclass_evars;
    obligation_evars = Evar.Set.remove evk evar_flags.obligation_evars;
    (* Restriction information is kept. *)
    restricted_evars = evar_flags.restricted_evars }

(** New evars *)

let evar_counter_summary_name = "evar counter"

(* Generator of existential names *)
let evar_ctr, evar_counter_summary_tag = Summary.ref_tag 0 ~name:evar_counter_summary_name
let new_untyped_evar () = incr evar_ctr; Evar.unsafe_of_int !evar_ctr

let new_evar evd ?name ?typeclass_candidate evi =
  let evk = new_untyped_evar () in
  let evd = add_with_name evd ?name ?typeclass_candidate evk evi in
  (evd, evk)

let remove d e =
  let undf_evars = EvMap.remove e d.undf_evars in
  let defn_evars = EvMap.remove e d.defn_evars in
  let principal_future_goal = match d.principal_future_goal with
  | None -> None
  | Some e' -> if Evar.equal e e' then None else d.principal_future_goal
  in
  let future_goals = List.filter (fun e' -> not (Evar.equal e e')) d.future_goals in
  let future_goals_status = EvMap.remove e d.future_goals_status in
  let evar_flags = remove_evar_flags e d.evar_flags in
  { d with undf_evars; defn_evars; principal_future_goal; future_goals; future_goals_status;
           evar_flags }

let find d e =
  try EvMap.find e d.undf_evars
  with Not_found -> EvMap.find e d.defn_evars

let find_undefined d e = EvMap.find e d.undf_evars

let mem d e = EvMap.mem e d.undf_evars || EvMap.mem e d.defn_evars

let undefined_map d = d.undf_evars

let drop_all_defined d = { d with defn_evars = EvMap.empty }

(* spiwack: not clear what folding over an evar_map, for now we shall
    simply fold over the inner evar_map. *)
let fold f d a =
  EvMap.fold f d.defn_evars (EvMap.fold f d.undf_evars a)

let fold_undefined f d a = EvMap.fold f d.undf_evars a

let raw_map f d =
  let f evk info =
    let ans = f evk info in
    let () = match info.evar_body, ans.evar_body with
    | Evar_defined _, Evar_empty
    | Evar_empty, Evar_defined _ ->
      anomaly (str "Unrespectful mapping function.")
    | _ -> ()
    in
    ans
  in
  let defn_evars = EvMap.Smart.mapi f d.defn_evars in
  let undf_evars = EvMap.Smart.mapi f d.undf_evars in
  { d with defn_evars; undf_evars; }

let raw_map_undefined f d =
  let f evk info =
    let ans = f evk info in
    let () = match ans.evar_body with
    | Evar_defined _ ->
      anomaly (str "Unrespectful mapping function.")
    | _ -> ()
    in
    ans
  in
  { d with undf_evars = EvMap.Smart.mapi f d.undf_evars; }

let is_evar = mem

let is_defined d e = EvMap.mem e d.defn_evars

let is_undefined d e = EvMap.mem e d.undf_evars

let existential_opt_value d (n, args) =
  match EvMap.find_opt n d.defn_evars with
  | None -> None
  | Some info ->
    match evar_body info with
    | Evar_defined c -> Some (instantiate_evar_array info c args)
    | Evar_empty -> None (* impossible but w/e *)

let existential_value d ev = match existential_opt_value d ev with
  | None -> raise NotInstantiatedEvar
  | Some v -> v

let existential_value0 = existential_value

let existential_opt_value0 = existential_opt_value

let existential_type d (n, args) =
  let info =
    try find d n
    with Not_found ->
      anomaly (str "Evar " ++ str (string_of_existential n) ++ str " was not declared.") in
  instantiate_evar_array info info.evar_concl args

let existential_type0 = existential_type

let add_constraints d c =
  { d with universes = UState.add_constraints d.universes c }

let add_universe_constraints d c = 
  { d with universes = UState.add_universe_constraints d.universes c }

(*** /Lifting... ***)

(* evar_map are considered empty disregarding histories *)
let is_empty d =
  EvMap.is_empty d.defn_evars &&
  EvMap.is_empty d.undf_evars &&
  List.is_empty d.conv_pbs &&
  Metamap.is_empty d.metas

let cmap f evd = 
  { evd with
      metas = Metamap.map (map_clb f) evd.metas;
      defn_evars = EvMap.map (map_evar_info f) evd.defn_evars;
      undf_evars = EvMap.map (map_evar_info f) evd.undf_evars
  }

(* spiwack: deprecated *)
let create_evar_defs sigma = { sigma with
  conv_pbs=[]; last_mods=Evar.Set.empty; metas=Metamap.empty }

let empty_evar_flags =
  { obligation_evars = Evar.Set.empty;
    restricted_evars = Evar.Map.empty;
    typeclass_evars = Evar.Set.empty }

let empty_side_effects = {
  seff_private = Safe_typing.empty_private_constants;
  seff_roles = Cmap.empty;
}

let empty = {
  defn_evars = EvMap.empty;
  undf_evars = EvMap.empty;
  universes  = UState.empty;
  conv_pbs   = [];
  last_mods  = Evar.Set.empty;
  evar_flags = empty_evar_flags;
  metas      = Metamap.empty;
  effects    = empty_side_effects;
  evar_names = EvNames.empty; (* id<->key for undefined evars *)
  future_goals = [];
  principal_future_goal = None;
  future_goals_status = EvMap.empty;
  extras = Store.empty;
}

let from_env e = 
  { empty with universes = UState.make ~lbound:(Environ.universes_lbound e) (Environ.universes e) }

let from_ctx ctx = { empty with universes = ctx }

let has_undefined evd = not (EvMap.is_empty evd.undf_evars)

let evars_reset_evd ?(with_conv_pbs=false) ?(with_univs=true) evd d =
  let conv_pbs = if with_conv_pbs then evd.conv_pbs else d.conv_pbs in
  let last_mods = if with_conv_pbs then evd.last_mods else d.last_mods in
  let universes = 
    if not with_univs then evd.universes
    else UState.union evd.universes d.universes
  in
  { evd with
    metas = d.metas;
    last_mods; conv_pbs; universes }

let merge_universe_context evd uctx' =
  { evd with universes = UState.union evd.universes uctx' }

let set_universe_context evd uctx' =
  { evd with universes = uctx' }

(* TODO: make unique *)
let add_conv_pb ?(tail=false) pb d =
  if tail then {d with conv_pbs = d.conv_pbs @ [pb]}
  else {d with conv_pbs = pb::d.conv_pbs}

let conv_pbs d = d.conv_pbs

let evar_source evk d = (find d evk).evar_source

let evar_ident evk evd = EvNames.ident evk evd.evar_names
let evar_key id evd = EvNames.key id evd.evar_names

let define_aux def undef evk body =
  let oldinfo =
    try EvMap.find evk undef
    with Not_found ->
      if EvMap.mem evk def then
        anomaly ~label:"Evd.define" (Pp.str "cannot define an evar twice.")
      else
        anomaly ~label:"Evd.define" (Pp.str "cannot define undeclared evar.")
  in
  let () = assert (oldinfo.evar_body == Evar_empty) in
  let newinfo = { oldinfo with evar_body = Evar_defined body } in
  EvMap.add evk newinfo def, EvMap.remove evk undef

(* define the existential of section path sp as the constr body *)
let define_gen evk body evd evar_flags =
  let (defn_evars, undf_evars) = define_aux evd.defn_evars evd.undf_evars evk body in
  let last_mods = match evd.conv_pbs with
  | [] ->  evd.last_mods
  | _ -> Evar.Set.add evk evd.last_mods
  in
  let evar_names = EvNames.remove_name_defined evk evd.evar_names in
  { evd with defn_evars; undf_evars; last_mods; evar_names; evar_flags }

(** By default, the obligation and evar tag of the evar is removed *)
let define evk body evd =
  let evar_flags = remove_evar_flags evk evd.evar_flags in
  define_gen evk body evd evar_flags

(** In case of an evar-evar solution, the flags are inherited *)
let define_with_evar evk body evd =
  let evk' = fst (destEvar body) in
  let evar_flags = inherit_evar_flags evd.evar_flags evk evk' in
  define_gen evk body evd evar_flags

let is_restricted_evar evd evk =
  try Some (Evar.Map.find evk evd.evar_flags.restricted_evars)
  with Not_found -> None

let declare_restricted_evar evar_flags evk evk' =
  { evar_flags with restricted_evars = Evar.Map.add evk evk' evar_flags.restricted_evars }

(* In case of restriction, we declare the restriction and inherit the obligation
   and typeclass flags. *)

let restrict evk filter ?candidates ?src evd =
  let evk' = new_untyped_evar () in
  let evar_info = EvMap.find evk evd.undf_evars in
  let evar_info' =
    { evar_info with evar_filter = filter;
      evar_candidates = candidates;
      evar_source = (match src with None -> evar_info.evar_source | Some src -> src) } in
  let last_mods = match evd.conv_pbs with
  | [] ->  evd.last_mods
  | _ -> Evar.Set.add evk evd.last_mods in
  let evar_names = EvNames.reassign_name_defined evk evk' evd.evar_names in
  let ctxt = Filter.filter_list filter (evar_context evar_info) in
  let id_inst = Array.map_of_list (NamedDecl.get_id %> mkVar) ctxt in
  let body = mkEvar(evk',id_inst) in
  let (defn_evars, undf_evars) = define_aux evd.defn_evars evd.undf_evars evk body in
  let evar_flags = declare_restricted_evar evd.evar_flags evk evk' in
  let evar_flags = inherit_evar_flags evar_flags evk evk' in
  { evd with undf_evars = EvMap.add evk' evar_info' undf_evars;
    defn_evars; last_mods; evar_names; evar_flags }, evk'

let downcast evk ccl evd =
  let evar_info = EvMap.find evk evd.undf_evars in
  let evar_info' = { evar_info with evar_concl = ccl } in
  { evd with undf_evars = EvMap.add evk evar_info' evd.undf_evars }

(* extracts conversion problems that satisfy predicate p *)
(* Note: conv_pbs not satisying p are stored back in reverse order *)
let extract_conv_pbs evd p =
  let (pbs,pbs1) =
    List.fold_left
      (fun (pbs,pbs1) pb ->
             if p pb then
           (pb::pbs,pbs1)
         else
           (pbs,pb::pbs1))
      ([],[])
      evd.conv_pbs
  in
  {evd with conv_pbs = pbs1; last_mods = Evar.Set.empty},
  pbs

let extract_changed_conv_pbs evd p =
  extract_conv_pbs evd (fun pb -> p evd.last_mods pb)

let extract_all_conv_pbs evd =
  extract_conv_pbs evd (fun _ -> true)

let loc_of_conv_pb evd (pbty,env,t1,t2) =
  match kind (fst (decompose_app t1)) with
  | Evar (evk1,_) -> fst (evar_source evk1 evd)
  | _ ->
  match kind (fst (decompose_app t2)) with
  | Evar (evk2,_) -> fst (evar_source evk2 evd)
  | _             -> None

(**********************************************************)
(* Sort variables *)

type rigid = UState.rigid =
  | UnivRigid
  | UnivFlexible of bool (** Is substitution by an algebraic ok? *)

let univ_rigid = UnivRigid
let univ_flexible = UnivFlexible false
let univ_flexible_alg = UnivFlexible true

let evar_universe_context d = d.universes

let universe_context_set d = UState.context_set d.universes

let to_universe_context evd = UState.context evd.universes

let univ_entry ~poly evd = UState.univ_entry ~poly evd.universes

let check_univ_decl ~poly evd decl = UState.check_univ_decl ~poly evd.universes decl

let restrict_universe_context evd vars =
  { evd with universes = UState.restrict evd.universes vars }

let universe_subst evd =
  UState.subst evd.universes

let merge_context_set ?loc ?(sideff=false) rigid evd ctx' =
  {evd with universes = UState.merge ?loc ~sideff rigid evd.universes ctx'}

let merge_universe_subst evd subst = 
  {evd with universes = UState.merge_subst evd.universes subst }

let with_context_set ?loc rigid d (a, ctx) =
  (merge_context_set ?loc rigid d ctx, a)

let new_univ_level_variable ?loc ?name rigid evd =
  let uctx', u = UState.new_univ_variable ?loc rigid name evd.universes in
    ({evd with universes = uctx'}, u)

let new_univ_variable ?loc ?name rigid evd =
  let uctx', u = UState.new_univ_variable ?loc rigid name evd.universes in
    ({evd with universes = uctx'}, Univ.Universe.make u)

let new_sort_variable ?loc ?name rigid d =
  let (d', u) = new_univ_variable ?loc rigid ?name d in
    (d', Sorts.sort_of_univ u)

let add_global_univ d u =
  { d with universes = UState.add_global_univ d.universes u }

let make_flexible_variable evd ~algebraic u =
  { evd with universes =
      UState.make_flexible_variable evd.universes ~algebraic u }

let make_nonalgebraic_variable evd u =
  { evd with universes = UState.make_nonalgebraic_variable evd.universes u }

(****************************************)
(* Operations on constants              *)
(****************************************)

let fresh_sort_in_family ?loc ?(rigid=univ_flexible) evd s =
  with_context_set ?loc rigid evd (UnivGen.fresh_sort_in_family s)

let fresh_constant_instance ?loc env evd c =
  with_context_set ?loc univ_flexible evd (UnivGen.fresh_constant_instance env c)

let fresh_inductive_instance ?loc env evd i =
  with_context_set ?loc univ_flexible evd (UnivGen.fresh_inductive_instance env i)

let fresh_constructor_instance ?loc env evd c =
  with_context_set ?loc univ_flexible evd (UnivGen.fresh_constructor_instance env c)

let fresh_global ?loc ?(rigid=univ_flexible) ?names env evd gr =
  with_context_set ?loc rigid evd (UnivGen.fresh_global_instance ?loc ?names env gr)

let is_sort_variable evd s = UState.is_sort_variable evd.universes s

let is_flexible_level evd l = 
  let uctx = evd.universes in
    Univ.LMap.mem l (UState.subst uctx)

let is_eq_sort s1 s2 =
  if Sorts.equal s1 s2 then None
  else
    let u1 = univ_of_sort s1
    and u2 = univ_of_sort s2 in
      if Univ.Universe.equal u1 u2 then None
      else Some (u1, u2)

(* Precondition: l is not defined in the substitution *)
let universe_rigidity evd l =
  let uctx = evd.universes in
  if Univ.LSet.mem l (Univ.ContextSet.levels (UState.context_set uctx)) then
    UnivFlexible (Univ.LSet.mem l (UState.algebraics uctx))
  else UnivRigid

let normalize_universe evd =
  let vars = UState.subst evd.universes in
  let normalize = UnivSubst.normalize_universe_opt_subst vars in
    normalize

let normalize_universe_instance evd l =
  let vars = UState.subst evd.universes in
  let normalize = UnivSubst.level_subst_of (UnivSubst.normalize_univ_variable_opt_subst vars) in
    Univ.Instance.subst_fn normalize l

let normalize_sort evars s =
  match s with
  | SProp | Prop | Set -> s
  | Type u -> 
    let u' = normalize_universe evars u in
    if u' == u then s else Sorts.sort_of_univ u'

(* FIXME inefficient *)
let set_eq_sort env d s1 s2 =
  let s1 = normalize_sort d s1 and s2 = normalize_sort d s2 in
  match is_eq_sort s1 s2 with
  | None -> d
  | Some (u1, u2) ->
    if not (type_in_type env) then
      add_universe_constraints d
        (UnivProblem.Set.singleton (UnivProblem.UEq (u1,u2)))
    else
      d

let set_eq_level d u1 u2 =
  add_constraints d (Univ.enforce_eq_level u1 u2 Univ.Constraint.empty)

let set_leq_level d u1 u2 =
  add_constraints d (Univ.enforce_leq_level u1 u2 Univ.Constraint.empty)

let set_eq_instances ?(flex=false) d u1 u2 =
  add_universe_constraints d
    (UnivProblem.enforce_eq_instances_univs flex u1 u2 UnivProblem.Set.empty)

let set_leq_sort env evd s1 s2 =
  let s1 = normalize_sort evd s1 
  and s2 = normalize_sort evd s2 in
  match is_eq_sort s1 s2 with
  | None -> evd
  | Some (u1, u2) ->
     if not (type_in_type env) then
       add_universe_constraints evd (UnivProblem.Set.singleton (UnivProblem.ULe (u1,u2)))
     else evd
            
let check_eq evd s s' =
  UGraph.check_eq (UState.ugraph evd.universes) s s'

let check_leq evd s s' =
  UGraph.check_leq (UState.ugraph evd.universes) s s'

let check_constraints evd csts =
  UGraph.check_constraints csts (UState.ugraph evd.universes)

let fix_undefined_variables evd =
  { evd with universes = UState.fix_undefined_variables evd.universes }

let refresh_undefined_universes evd =
  let uctx', subst = UState.refresh_undefined_univ_variables evd.universes in
  let evd' = cmap (subst_univs_level_constr subst) {evd with universes = uctx'} in
    evd', subst

let nf_univ_variables evd =
  let subst, uctx' = UState.normalize_variables evd.universes in
  let evd' = {evd with universes = uctx'} in
    evd', subst

let minimize_universes evd =
  let subst, uctx' = UState.normalize_variables evd.universes in
  let uctx' = UState.minimize uctx' in
    {evd with universes = uctx'}

let universe_of_name evd s = UState.universe_of_name evd.universes s

let universe_binders evd = UState.universe_binders evd.universes

let universes evd = UState.ugraph evd.universes

let update_sigma_env evd env =
  { evd with universes = UState.update_sigma_env evd.universes env }

exception UniversesDiffer = UState.UniversesDiffer

(**********************************************************)
(* Side effects *)

let concat_side_effects eff eff' = {
  seff_private = Safe_typing.concat_private eff.seff_private eff'.seff_private;
  seff_roles = Cmap.fold Cmap.add eff.seff_roles eff'.seff_roles;
}

let emit_side_effects eff evd =
  let effects = concat_side_effects eff evd.effects in
  { evd with effects; universes = UState.emit_side_effects eff.seff_private evd.universes }

let drop_side_effects evd =
  { evd with effects = empty_side_effects; }

let eval_side_effects evd = evd.effects

(* Future goals *)
let declare_future_goal ?tag evk evd =
  { evd with future_goals = evk::evd.future_goals;
             future_goals_status = Option.fold_right (EvMap.add evk) tag evd.future_goals_status }

let declare_principal_goal ?tag evk evd =
  match evd.principal_future_goal with
  | None -> { evd with
    future_goals = evk::evd.future_goals;
    principal_future_goal=Some evk;
    future_goals_status = Option.fold_right (EvMap.add evk) tag evd.future_goals_status;
    }
  | Some _ -> CErrors.user_err Pp.(str "Only one main subgoal per instantiation.")

type future_goals = Evar.t list * Evar.t option * goal_kind EvMap.t

let future_goals evd = evd.future_goals

let principal_future_goal evd = evd.principal_future_goal

let save_future_goals evd =
  (evd.future_goals, evd.principal_future_goal, evd.future_goals_status)

let reset_future_goals evd =
  { evd with future_goals = [] ; principal_future_goal = None;
             future_goals_status = EvMap.empty }

let restore_future_goals evd (gls,pgl,map) =
  { evd with future_goals = gls ; principal_future_goal = pgl;
             future_goals_status = map }

let fold_future_goals f sigma (gls,pgl,map) =
  List.fold_left f sigma gls

let map_filter_future_goals f (gls,pgl,map) =
  (* Note: map is now a superset of filtered evs, but its size should
    not be too big, so that's probably ok not to update it *)
  (List.map_filter f gls,Option.bind pgl f,map)

let filter_future_goals f (gls,pgl,map) =
  (List.filter f gls,Option.bind pgl (fun a -> if f a then Some a else None),map)

let dispatch_future_goals_gen distinguish_shelf (gls,pgl,map) =
  let rec aux (comb,shelf,givenup as acc) = function
    | [] -> acc
    | evk :: gls ->
       let acc =
        try match EvMap.find evk map with
        | ToGiveUp -> (comb,shelf,evk::givenup)
        | ToShelve ->
           if distinguish_shelf then (comb,evk::shelf,givenup)
           else raise Not_found
        with Not_found -> (evk::comb,shelf,givenup) in
       aux acc gls in
  (* Note: this reverses the order of initial list on purpose *)
  let (comb,shelf,givenup) = aux ([],[],[]) gls in
  (comb,shelf,givenup,pgl)

let dispatch_future_goals =
  dispatch_future_goals_gen true

let extract_given_up_future_goals goals =
  let (comb,_,givenup,_) = dispatch_future_goals_gen false goals in
  (comb,givenup)

let shelve_on_future_goals shelved (gls,pgl,map) =
  (shelved @ gls, pgl, List.fold_right (fun evk -> EvMap.add evk ToShelve) shelved map)

(**********************************************************)
(* Accessing metas *)

(** We use this function to overcome OCaml compiler limitations and to prevent
    the use of costly in-place modifications. *)
let set_metas evd metas = {
  defn_evars = evd.defn_evars;
  undf_evars = evd.undf_evars;
  universes  = evd.universes;
  conv_pbs = evd.conv_pbs;
  last_mods = evd.last_mods;
  evar_flags = evd.evar_flags;
  metas;
  effects = evd.effects;
  evar_names = evd.evar_names;
  future_goals = evd.future_goals;
  future_goals_status = evd.future_goals_status;
  principal_future_goal = evd.principal_future_goal;
  extras = evd.extras;
}

let meta_list evd = metamap_to_list evd.metas

let undefined_metas evd =
  let filter = function
    | (n,Clval(_,_,typ)) -> None
    | (n,Cltyp (_,typ))  -> Some n
  in
  let m = List.map_filter filter (meta_list evd) in
  List.sort Int.compare m

let map_metas_fvalue f evd =
  let map = function
  | Clval(id,(c,s),typ) -> Clval(id,(mk_freelisted (f c.rebus),s),typ)
  | x -> x
  in
  set_metas evd (Metamap.Smart.map map evd.metas)

let map_metas f evd =
  let map cl = map_clb f cl in
  set_metas evd (Metamap.Smart.map map evd.metas)

let meta_opt_fvalue evd mv =
  match Metamap.find mv evd.metas with
    | Clval(_,b,_) -> Some b
    | Cltyp _ -> None

let meta_defined evd mv =
  match Metamap.find mv evd.metas with
    | Clval _ -> true
    | Cltyp _ -> false

let try_meta_fvalue evd mv =
  match Metamap.find mv evd.metas with
    | Clval(_,b,_) -> b
    | Cltyp _ -> raise Not_found

let meta_fvalue evd mv =
  try try_meta_fvalue evd mv
  with Not_found -> anomaly ~label:"meta_fvalue" (Pp.str "meta has no value.")

let meta_value evd mv =
  (fst (try_meta_fvalue evd mv)).rebus

let meta_ftype evd mv =
  match Metamap.find mv evd.metas with
    | Cltyp (_,b) -> b
    | Clval(_,_,b) -> b

let meta_type evd mv = (meta_ftype evd mv).rebus
let meta_type0 = meta_type

let meta_declare mv v ?(name=Anonymous) evd =
  let metas = Metamap.add mv (Cltyp(name,mk_freelisted v)) evd.metas in
  set_metas evd metas

let meta_assign mv (v, pb) evd =
  let modify _ = function
  | Cltyp (na, ty) -> Clval (na, (mk_freelisted v, pb), ty)
  | _ -> anomaly ~label:"meta_assign" (Pp.str "already defined.")
  in
  let metas = Metamap.modify mv modify evd.metas in
  set_metas evd metas

let meta_reassign mv (v, pb) evd =
  let modify _ = function
  | Clval(na, _, ty) -> Clval (na, (mk_freelisted v, pb), ty)
  | _ -> anomaly ~label:"meta_reassign" (Pp.str "not yet defined.")
  in
  let metas = Metamap.modify mv modify evd.metas in
  set_metas evd metas

(* If the meta is defined then forget its name *)
let meta_name evd mv =
  try fst (clb_name (Metamap.find mv evd.metas)) with Not_found -> Anonymous

let clear_metas evd = {evd with metas = Metamap.empty}

let meta_merge ?(with_univs = true) evd1 evd2 =
  let metas = Metamap.fold Metamap.add evd1.metas evd2.metas in
  let universes =
    if with_univs then UState.union evd2.universes evd1.universes
    else evd2.universes
  in
  {evd2 with universes; metas; }

type metabinding = metavariable * constr * instance_status

let retract_coercible_metas evd =
  let mc = ref [] in
  let map n v = match v with
  | Clval (na, (b, (Conv, CoerceToType as s)), typ) ->
    let () = mc := (n, b.rebus, s) :: !mc in
    Cltyp (na, typ)
  | v -> v
  in
  let metas = Metamap.Smart.mapi map evd.metas in
  !mc, set_metas evd metas

let evar_source_of_meta mv evd =
  match meta_name evd mv with
  | Anonymous -> Loc.tag Evar_kinds.GoalEvar
  | Name id   -> Loc.tag @@ Evar_kinds.VarInstance id

let dependent_evar_ident ev evd =
  let evi = find evd ev in
  match evi.evar_source with
  | (_,Evar_kinds.VarInstance id) -> id
  | _ -> anomaly (str "Not an evar resulting of a dependent binding.")

(**********************************************************)
(* Extra data *)

let get_extra_data evd = evd.extras
let set_extra_data extras evd = { evd with extras }

(*******************************************************************)

type open_constr = evar_map * constr

(*******************************************************************)
(* The type constructor ['a sigma] adds an evar map to an object of
  type ['a] *)
type 'a sigma = {
  it : 'a ;
  sigma : evar_map
}

let sig_it x = x.it
let sig_sig x = x.sigma
let on_sig s f = 
  let sigma', v = f s.sigma in
    { s with sigma = sigma' }, v

(*******************************************************************)
(* The state monad with state an evar map. *)

module MonadR =
  Monad.Make (struct

    type +'a t = evar_map -> evar_map * 'a

    let return a = fun s -> (s,a)

    let (>>=) x f = fun s ->
      let (s',a) = x s in
      f a s'

    let (>>) x y = fun s ->
      let (s',()) = x s in
      y s'

    let map f x = fun s ->
      on_snd f (x s)

  end)

module Monad =
  Monad.Make (struct

    type +'a t = evar_map -> 'a * evar_map

    let return a = fun s -> (a,s)

    let (>>=) x f = fun s ->
      let (a,s') = x s in
      f a s'

    let (>>) x y = fun s ->
      let ((),s') = x s in
      y s'

    let map f x = fun s ->
      on_fst f (x s)

  end)

(**********************************************************)
(* Failure explanation *)

type unsolvability_explanation = SeveralInstancesFound of int

module MiniEConstr = struct

  module ESorts =
  struct
    type t = Sorts.t
    let make s = s
    let kind sigma = function
      | Sorts.Type u -> Sorts.sort_of_univ (normalize_universe sigma u)
      | s -> s
    let unsafe_to_sorts s = s
  end

  module EInstance =
  struct
    type t = Univ.Instance.t
    let make i = i
    let kind sigma i =
      if Univ.Instance.is_empty i then i
      else normalize_universe_instance sigma i
    let empty = Univ.Instance.empty
    let is_empty = Univ.Instance.is_empty
    let unsafe_to_instance t = t
  end

  type t = econstr

  let safe_evar_value sigma ev =
    try Some (existential_value sigma ev)
    with NotInstantiatedEvar | Not_found -> None

  let rec whd_evar sigma c =
    match Constr.kind c with
    | Evar ev ->
      begin match safe_evar_value sigma ev with
        | Some c -> whd_evar sigma c
        | None -> c
      end
    | App (f, args) when isEvar f ->
      (* Enforce smart constructor invariant on applications *)
      let ev = destEvar f in
      begin match safe_evar_value sigma ev with
        | None -> c
        | Some f -> whd_evar sigma (mkApp (f, args))
      end
    | Cast (c0, k, t) when isEvar c0 ->
      (* Enforce smart constructor invariant on casts. *)
      let ev = destEvar c0 in
      begin match safe_evar_value sigma ev with
        | None -> c
        | Some c -> whd_evar sigma (mkCast (c, k, t))
      end
    | _ -> c

  let kind sigma c = Constr.kind (whd_evar sigma c)
  let kind_upto = kind
  let kind_of_type sigma c = Term.kind_of_type (whd_evar sigma c)
  let of_kind = Constr.of_kind
  let of_constr c = c
  let of_constr_array v = v
  let unsafe_to_constr c = c
  let unsafe_to_constr_array v = v
  let unsafe_eq = Refl

  let to_constr ?(abort_on_undefined_evars=true) sigma c =
    let evar_value =
      if not abort_on_undefined_evars then fun ev -> safe_evar_value sigma ev
      else fun ev ->
        match safe_evar_value sigma ev with
        | Some _ as v -> v
        | None -> anomaly ~label:"econstr" Pp.(str "grounding a non evar-free term")
    in
    UnivSubst.nf_evars_and_universes_opt_subst evar_value (universe_subst sigma) c

  let to_constr_opt sigma c =
    let evar_value ev = Some (existential_value sigma ev) in
    try
      Some (UnivSubst.nf_evars_and_universes_opt_subst evar_value (universe_subst sigma) c)
    with NotInstantiatedEvar ->
      None

  let of_named_decl d = d
  let unsafe_to_named_decl d = d
  let of_rel_decl d = d
  let unsafe_to_rel_decl d = d
  let to_rel_decl sigma d = Context.Rel.Declaration.map_constr (to_constr sigma) d

end

(** The following functions return the set of evars immediately
    contained in the object *)

(* excluding defined evars *)

let evars_of_term evd c =
  let rec evrec acc c =
    let c = MiniEConstr.whd_evar evd c in
    match kind c with
    | Evar (n, l) -> Evar.Set.add n (Array.fold_left evrec acc l)
    | _ -> Constr.fold evrec acc c
  in
  evrec Evar.Set.empty c

let evar_nodes_of_term c =
  let rec evrec acc c =
    match kind c with
    | Evar (n, l) -> Evar.Set.add n (Array.fold_left evrec acc l)
    | _ -> Constr.fold evrec acc c
  in
  evrec Evar.Set.empty c

let evars_of_named_context evd nc =
  Context.Named.fold_outside
    (NamedDecl.fold_constr (fun constr s -> Evar.Set.union s (evars_of_term evd constr)))
    nc
    ~init:Evar.Set.empty

let evars_of_filtered_evar_info evd evi =
  Evar.Set.union (evars_of_term evd evi.evar_concl)
    (Evar.Set.union
       (match evi.evar_body with
       | Evar_empty -> Evar.Set.empty
       | Evar_defined b -> evars_of_term evd b)
       (evars_of_named_context evd (evar_filtered_context evi)))