1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Sorts open Util open Names open Nameops open Constr open Vars open Environ (* module RelDecl = Context.Rel.Declaration *) module NamedDecl = Context.Named.Declaration type econstr = constr type etypes = types (** Generic filters *) module Filter : sig type t val equal : t -> t -> bool val identity : t val filter_list : t -> 'a list -> 'a list val filter_array : t -> 'a array -> 'a array val extend : int -> t -> t val compose : t -> t -> t val apply_subfilter : t -> bool list -> t val restrict_upon : t -> int -> (int -> bool) -> t option val map_along : (bool -> 'a -> bool) -> t -> 'a list -> t val make : bool list -> t val repr : t -> bool list option end = struct type t = bool list option (** We guarantee through the interface that if a filter is [Some _] then it contains at least one [false] somewhere. *) let identity = None let rec equal l1 l2 = match l1, l2 with | [], [] -> true | h1 :: l1, h2 :: l2 -> (if h1 then h2 else not h2) && equal l1 l2 | _ -> false let equal l1 l2 = match l1, l2 with | None, None -> true | Some _, None | None, Some _ -> false | Some l1, Some l2 -> equal l1 l2 let rec is_identity = function | [] -> true | true :: l -> is_identity l | false :: _ -> false let normalize f = if is_identity f then None else Some f let filter_list f l = match f with | None -> l | Some f -> CList.filter_with f l let filter_array f v = match f with | None -> v | Some f -> CArray.filter_with f v let rec extend n l = if n = 0 then l else extend (pred n) (true :: l) let extend n = function | None -> None | Some f -> Some (extend n f) let compose f1 f2 = match f1 with | None -> f2 | Some f1 -> match f2 with | None -> None | Some f2 -> normalize (CList.filter_with f1 f2) let apply_subfilter_array filter subfilter = (* In both cases we statically know that the argument will contain at least one [false] *) match filter with | None -> Some (Array.to_list subfilter) | Some f -> let len = Array.length subfilter in let fold b (i, ans) = if b then let () = assert (0 <= i) in (pred i, Array.unsafe_get subfilter i :: ans) else (i, false :: ans) in Some (snd (List.fold_right fold f (pred len, []))) let apply_subfilter filter subfilter = apply_subfilter_array filter (Array.of_list subfilter) let restrict_upon f len p = let newfilter = Array.init len p in if Array.for_all (fun id -> id) newfilter then None else Some (apply_subfilter_array f newfilter) let map_along f flt l = let ans = match flt with | None -> List.map (fun x -> f true x) l | Some flt -> List.map2 f flt l in normalize ans let make l = normalize l let repr f = f end module Abstraction = struct type abstraction = | Abstract | Imitate type t = abstraction list let identity = [] let abstract_last l = Abstract :: l end (* The kinds of existential variables are now defined in [Evar_kinds] *) (* The type of mappings for existential variables *) module Store = Store.Make () let string_of_existential evk = "?X" ^ string_of_int (Evar.repr evk) type evar_body = | Evar_empty | Evar_defined of constr type evar_info = { evar_concl : constr; evar_hyps : named_context_val; evar_body : evar_body; evar_filter : Filter.t; evar_abstract_arguments : Abstraction.t; evar_source : Evar_kinds.t Loc.located; evar_candidates : constr list option; (* if not None, list of allowed instances *)} let make_evar hyps ccl = { evar_concl = ccl; evar_hyps = hyps; evar_body = Evar_empty; evar_filter = Filter.identity; evar_abstract_arguments = Abstraction.identity; evar_source = Loc.tag @@ Evar_kinds.InternalHole; evar_candidates = None; } let instance_mismatch () = anomaly (Pp.str "Signature and its instance do not match.") let evar_concl evi = evi.evar_concl let evar_filter evi = evi.evar_filter let evar_body evi = evi.evar_body let evar_context evi = named_context_of_val evi.evar_hyps let evar_filtered_context evi = Filter.filter_list (evar_filter evi) (evar_context evi) let evar_candidates evi = evi.evar_candidates let evar_hyps evi = evi.evar_hyps let evar_filtered_hyps evi = match Filter.repr (evar_filter evi) with | None -> evar_hyps evi | Some filter -> let rec make_hyps filter ctxt = match filter, ctxt with | [], [] -> empty_named_context_val | false :: filter, _ :: ctxt -> make_hyps filter ctxt | true :: filter, decl :: ctxt -> let hyps = make_hyps filter ctxt in push_named_context_val decl hyps | _ -> instance_mismatch () in make_hyps filter (evar_context evi) let evar_env evi = Global.env_of_context evi.evar_hyps let evar_filtered_env evi = match Filter.repr (evar_filter evi) with | None -> evar_env evi | Some filter -> let rec make_env filter ctxt = match filter, ctxt with | [], [] -> reset_context (Global.env ()) | false :: filter, _ :: ctxt -> make_env filter ctxt | true :: filter, decl :: ctxt -> let env = make_env filter ctxt in push_named decl env | _ -> instance_mismatch () in make_env filter (evar_context evi) let map_evar_body f = function | Evar_empty -> Evar_empty | Evar_defined d -> Evar_defined (f d) let map_evar_info f evi = {evi with evar_body = map_evar_body f evi.evar_body; evar_hyps = map_named_val (fun d -> NamedDecl.map_constr f d) evi.evar_hyps; evar_concl = f evi.evar_concl; evar_candidates = Option.map (List.map f) evi.evar_candidates } (* This exception is raised by *.existential_value *) exception NotInstantiatedEvar (* Note: let-in contributes to the instance *) let evar_instance_array test_id info args = let len = Array.length args in let rec instrec filter ctxt i = match filter, ctxt with | [], [] -> if Int.equal i len then [] else instance_mismatch () | false :: filter, _ :: ctxt -> instrec filter ctxt i | true :: filter, d :: ctxt -> if i < len then let c = Array.unsafe_get args i in if test_id d c then instrec filter ctxt (succ i) else (NamedDecl.get_id d, c) :: instrec filter ctxt (succ i) else instance_mismatch () | _ -> instance_mismatch () in match Filter.repr (evar_filter info) with | None -> let map i d = if (i < len) then let c = Array.unsafe_get args i in if test_id d c then None else Some (NamedDecl.get_id d, c) else instance_mismatch () in List.map_filter_i map (evar_context info) | Some filter -> instrec filter (evar_context info) 0 let make_evar_instance_array info args = evar_instance_array (NamedDecl.get_id %> isVarId) info args let instantiate_evar_array info c args = let inst = make_evar_instance_array info args in match inst with | [] -> c | _ -> replace_vars inst c type 'a in_evar_universe_context = 'a * UState.t (*******************************************************************) (* Metamaps *) (*******************************************************************) (* Constraints for existential variables *) (*******************************************************************) type 'a freelisted = { rebus : 'a; freemetas : Int.Set.t } (* Collects all metavars appearing in a constr *) let metavars_of c = let rec collrec acc c = match kind c with | Meta mv -> Int.Set.add mv acc | _ -> Constr.fold collrec acc c in collrec Int.Set.empty c let mk_freelisted c = { rebus = c; freemetas = metavars_of c } let map_fl f cfl = { cfl with rebus=f cfl.rebus } (* Status of an instance found by unification wrt to the meta it solves: - a supertype of the meta (e.g. the solution to ?X <= T is a supertype of ?X) - a subtype of the meta (e.g. the solution to T <= ?X is a supertype of ?X) - a term that can be eta-expanded n times while still being a solution (e.g. the solution [P] to [?X u v = P u v] can be eta-expanded twice) *) type instance_constraint = IsSuperType | IsSubType | Conv let eq_instance_constraint c1 c2 = c1 == c2 (* Status of the unification of the type of an instance against the type of the meta it instantiates: - CoerceToType means that the unification of types has not been done and that a coercion can still be inserted: the meta should not be substituted freely (this happens for instance given via the "with" binding clause). - TypeProcessed means that the information obtainable from the unification of types has been extracted. - TypeNotProcessed means that the unification of types has not been done but it is known that no coercion may be inserted: the meta can be substituted freely. *) type instance_typing_status = CoerceToType | TypeNotProcessed | TypeProcessed (* Status of an instance together with the status of its type unification *) type instance_status = instance_constraint * instance_typing_status (* Clausal environments *) type clbinding = | Cltyp of Name.t * constr freelisted | Clval of Name.t * (constr freelisted * instance_status) * constr freelisted let map_clb f = function | Cltyp (na,cfl) -> Cltyp (na,map_fl f cfl) | Clval (na,(cfl1,pb),cfl2) -> Clval (na,(map_fl f cfl1,pb),map_fl f cfl2) (* name of defined is erased (but it is pretty-printed) *) let clb_name = function Cltyp(na,_) -> (na,false) | Clval (na,_,_) -> (na,true) (***********************) module Metaset = Int.Set module Metamap = Int.Map let metamap_to_list m = Metamap.fold (fun n v l -> (n,v)::l) m [] (*************************) (* Unification state *) type conv_pb = Reduction.conv_pb type evar_constraint = conv_pb * Environ.env * constr * constr module EvMap = Evar.Map module EvNames : sig type t val empty : t val add_name_undefined : Id.t option -> Evar.t -> evar_info -> t -> t val remove_name_defined : Evar.t -> t -> t val rename : Evar.t -> Id.t -> t -> t val reassign_name_defined : Evar.t -> Evar.t -> t -> t val ident : Evar.t -> t -> Id.t option val key : Id.t -> t -> Evar.t end = struct type t = Id.t EvMap.t * Evar.t Id.Map.t let empty = (EvMap.empty, Id.Map.empty) let add_name_newly_undefined id evk evi (evtoid, idtoev as names) = match id with | None -> names | Some id -> if Id.Map.mem id idtoev then user_err (str "Already an existential evar of name " ++ Id.print id); (EvMap.add evk id evtoid, Id.Map.add id evk idtoev) let add_name_undefined naming evk evi (evtoid,idtoev as evar_names) = if EvMap.mem evk evtoid then evar_names else add_name_newly_undefined naming evk evi evar_names let remove_name_defined evk (evtoid, idtoev as names) = let id = try Some (EvMap.find evk evtoid) with Not_found -> None in match id with | None -> names | Some id -> (EvMap.remove evk evtoid, Id.Map.remove id idtoev) let rename evk id (evtoid, idtoev) = let id' = try Some (EvMap.find evk evtoid) with Not_found -> None in match id' with | None -> (EvMap.add evk id evtoid, Id.Map.add id evk idtoev) | Some id' -> if Id.Map.mem id idtoev then anomaly (str "Evar name already in use."); (EvMap.set evk id evtoid (* overwrite old name *), Id.Map.add id evk (Id.Map.remove id' idtoev)) let reassign_name_defined evk evk' (evtoid, idtoev as names) = let id = try Some (EvMap.find evk evtoid) with Not_found -> None in match id with | None -> names (* evk' must not be defined *) | Some id -> (EvMap.add evk' id (EvMap.remove evk evtoid), Id.Map.add id evk' (Id.Map.remove id idtoev)) let ident evk (evtoid, _) = try Some (EvMap.find evk evtoid) with Not_found -> None let key id (_, idtoev) = Id.Map.find id idtoev end type goal_kind = ToShelve | ToGiveUp type evar_flags = { obligation_evars : Evar.Set.t; restricted_evars : Evar.t Evar.Map.t; typeclass_evars : Evar.Set.t } type side_effect_role = | Schema of inductive * string type side_effects = { seff_private : Safe_typing.private_constants; seff_roles : side_effect_role Cmap.t; } type evar_map = { (* Existential variables *) defn_evars : evar_info EvMap.t; undf_evars : evar_info EvMap.t; evar_names : EvNames.t; (** Universes *) universes : UState.t; (** Conversion problems *) conv_pbs : evar_constraint list; last_mods : Evar.Set.t; (** Metas *) metas : clbinding Metamap.t; evar_flags : evar_flags; (** Interactive proofs *) effects : side_effects; future_goals : Evar.t list; (** list of newly created evars, to be eventually turned into goals if not solved.*) principal_future_goal : Evar.t option; (** if [Some e], [e] must be contained [future_goals]. The evar [e] will inherit properties (now: the name) of the evar which will be instantiated with a term containing [e]. *) future_goals_status : goal_kind EvMap.t; extras : Store.t; } let get_is_maybe_typeclass, (is_maybe_typeclass_hook : (evar_map -> constr -> bool) Hook.t) = Hook.make ~default:(fun evd c -> false) () let is_maybe_typeclass sigma c = Hook.get get_is_maybe_typeclass sigma c (*** Lifting primitive from Evar.Map. ***) let rename evk id evd = { evd with evar_names = EvNames.rename evk id evd.evar_names } let add_with_name ?name ?(typeclass_candidate = true) d e i = match i.evar_body with | Evar_empty -> let evar_names = EvNames.add_name_undefined name e i d.evar_names in let evar_flags = if typeclass_candidate && is_maybe_typeclass d i.evar_concl then let flags = d.evar_flags in { flags with typeclass_evars = Evar.Set.add e flags.typeclass_evars } else d.evar_flags in { d with undf_evars = EvMap.add e i d.undf_evars; evar_names; evar_flags } | Evar_defined _ -> let evar_names = EvNames.remove_name_defined e d.evar_names in { d with defn_evars = EvMap.add e i d.defn_evars; evar_names } (** Evd.add is a low-level function mainly used to update the evar_info associated to an evar, so we prevent registering its typeclass status. *) let add d e i = add_with_name ~typeclass_candidate:false d e i (*** Evar flags: typeclasses, restricted or obligation flag *) let get_typeclass_evars evd = evd.evar_flags.typeclass_evars let set_typeclass_evars evd tcs = let flags = evd.evar_flags in { evd with evar_flags = { flags with typeclass_evars = tcs } } let is_typeclass_evar evd evk = let flags = evd.evar_flags in Evar.Set.mem evk flags.typeclass_evars let get_obligation_evars evd = evd.evar_flags.obligation_evars let set_obligation_evar evd evk = let flags = evd.evar_flags in let evar_flags = { flags with obligation_evars = Evar.Set.add evk flags.obligation_evars } in { evd with evar_flags } let is_obligation_evar evd evk = let flags = evd.evar_flags in Evar.Set.mem evk flags.obligation_evars (** Inheritance of flags: for evar-evar and restriction cases *) let inherit_evar_flags evar_flags evk evk' = let evk_typeclass = Evar.Set.mem evk evar_flags.typeclass_evars in let evk_obligation = Evar.Set.mem evk evar_flags.obligation_evars in if not (evk_obligation || evk_typeclass) then evar_flags else let typeclass_evars = if evk_typeclass then let typeclass_evars = Evar.Set.remove evk evar_flags.typeclass_evars in Evar.Set.add evk' typeclass_evars else evar_flags.typeclass_evars in let obligation_evars = if evk_obligation then let obligation_evars = Evar.Set.remove evk evar_flags.obligation_evars in Evar.Set.add evk' obligation_evars else evar_flags.obligation_evars in { evar_flags with obligation_evars; typeclass_evars } (** Removal: in all other cases of definition *) let remove_evar_flags evk evar_flags = { typeclass_evars = Evar.Set.remove evk evar_flags.typeclass_evars; obligation_evars = Evar.Set.remove evk evar_flags.obligation_evars; (* Restriction information is kept. *) restricted_evars = evar_flags.restricted_evars } (** New evars *) let evar_counter_summary_name = "evar counter" (* Generator of existential names *) let evar_ctr, evar_counter_summary_tag = Summary.ref_tag 0 ~name:evar_counter_summary_name let new_untyped_evar () = incr evar_ctr; Evar.unsafe_of_int !evar_ctr let new_evar evd ?name ?typeclass_candidate evi = let evk = new_untyped_evar () in let evd = add_with_name evd ?name ?typeclass_candidate evk evi in (evd, evk) let remove d e = let undf_evars = EvMap.remove e d.undf_evars in let defn_evars = EvMap.remove e d.defn_evars in let principal_future_goal = match d.principal_future_goal with | None -> None | Some e' -> if Evar.equal e e' then None else d.principal_future_goal in let future_goals = List.filter (fun e' -> not (Evar.equal e e')) d.future_goals in let future_goals_status = EvMap.remove e d.future_goals_status in let evar_flags = remove_evar_flags e d.evar_flags in { d with undf_evars; defn_evars; principal_future_goal; future_goals; future_goals_status; evar_flags } let find d e = try EvMap.find e d.undf_evars with Not_found -> EvMap.find e d.defn_evars let find_undefined d e = EvMap.find e d.undf_evars let mem d e = EvMap.mem e d.undf_evars || EvMap.mem e d.defn_evars let undefined_map d = d.undf_evars let drop_all_defined d = { d with defn_evars = EvMap.empty } (* spiwack: not clear what folding over an evar_map, for now we shall simply fold over the inner evar_map. *) let fold f d a = EvMap.fold f d.defn_evars (EvMap.fold f d.undf_evars a) let fold_undefined f d a = EvMap.fold f d.undf_evars a let raw_map f d = let f evk info = let ans = f evk info in let () = match info.evar_body, ans.evar_body with | Evar_defined _, Evar_empty | Evar_empty, Evar_defined _ -> anomaly (str "Unrespectful mapping function.") | _ -> () in ans in let defn_evars = EvMap.Smart.mapi f d.defn_evars in let undf_evars = EvMap.Smart.mapi f d.undf_evars in { d with defn_evars; undf_evars; } let raw_map_undefined f d = let f evk info = let ans = f evk info in let () = match ans.evar_body with | Evar_defined _ -> anomaly (str "Unrespectful mapping function.") | _ -> () in ans in { d with undf_evars = EvMap.Smart.mapi f d.undf_evars; } let is_evar = mem let is_defined d e = EvMap.mem e d.defn_evars let is_undefined d e = EvMap.mem e d.undf_evars let existential_opt_value d (n, args) = match EvMap.find_opt n d.defn_evars with | None -> None | Some info -> match evar_body info with | Evar_defined c -> Some (instantiate_evar_array info c args) | Evar_empty -> None (* impossible but w/e *) let existential_value d ev = match existential_opt_value d ev with | None -> raise NotInstantiatedEvar | Some v -> v let existential_value0 = existential_value let existential_opt_value0 = existential_opt_value let existential_type d (n, args) = let info = try find d n with Not_found -> anomaly (str "Evar " ++ str (string_of_existential n) ++ str " was not declared.") in instantiate_evar_array info info.evar_concl args let existential_type0 = existential_type let add_constraints d c = { d with universes = UState.add_constraints d.universes c } let add_universe_constraints d c = { d with universes = UState.add_universe_constraints d.universes c } (*** /Lifting... ***) (* evar_map are considered empty disregarding histories *) let is_empty d = EvMap.is_empty d.defn_evars && EvMap.is_empty d.undf_evars && List.is_empty d.conv_pbs && Metamap.is_empty d.metas let cmap f evd = { evd with metas = Metamap.map (map_clb f) evd.metas; defn_evars = EvMap.map (map_evar_info f) evd.defn_evars; undf_evars = EvMap.map (map_evar_info f) evd.undf_evars } (* spiwack: deprecated *) let create_evar_defs sigma = { sigma with conv_pbs=[]; last_mods=Evar.Set.empty; metas=Metamap.empty } let empty_evar_flags = { obligation_evars = Evar.Set.empty; restricted_evars = Evar.Map.empty; typeclass_evars = Evar.Set.empty } let empty_side_effects = { seff_private = Safe_typing.empty_private_constants; seff_roles = Cmap.empty; } let empty = { defn_evars = EvMap.empty; undf_evars = EvMap.empty; universes = UState.empty; conv_pbs = []; last_mods = Evar.Set.empty; evar_flags = empty_evar_flags; metas = Metamap.empty; effects = empty_side_effects; evar_names = EvNames.empty; (* id<->key for undefined evars *) future_goals = []; principal_future_goal = None; future_goals_status = EvMap.empty; extras = Store.empty; } let from_env e = { empty with universes = UState.make ~lbound:(Environ.universes_lbound e) (Environ.universes e) } let from_ctx ctx = { empty with universes = ctx } let has_undefined evd = not (EvMap.is_empty evd.undf_evars) let evars_reset_evd ?(with_conv_pbs=false) ?(with_univs=true) evd d = let conv_pbs = if with_conv_pbs then evd.conv_pbs else d.conv_pbs in let last_mods = if with_conv_pbs then evd.last_mods else d.last_mods in let universes = if not with_univs then evd.universes else UState.union evd.universes d.universes in { evd with metas = d.metas; last_mods; conv_pbs; universes } let merge_universe_context evd uctx' = { evd with universes = UState.union evd.universes uctx' } let set_universe_context evd uctx' = { evd with universes = uctx' } (* TODO: make unique *) let add_conv_pb ?(tail=false) pb d = if tail then {d with conv_pbs = d.conv_pbs @ [pb]} else {d with conv_pbs = pb::d.conv_pbs} let conv_pbs d = d.conv_pbs let evar_source evk d = (find d evk).evar_source let evar_ident evk evd = EvNames.ident evk evd.evar_names let evar_key id evd = EvNames.key id evd.evar_names let define_aux def undef evk body = let oldinfo = try EvMap.find evk undef with Not_found -> if EvMap.mem evk def then anomaly ~label:"Evd.define" (Pp.str "cannot define an evar twice.") else anomaly ~label:"Evd.define" (Pp.str "cannot define undeclared evar.") in let () = assert (oldinfo.evar_body == Evar_empty) in let newinfo = { oldinfo with evar_body = Evar_defined body } in EvMap.add evk newinfo def, EvMap.remove evk undef (* define the existential of section path sp as the constr body *) let define_gen evk body evd evar_flags = let (defn_evars, undf_evars) = define_aux evd.defn_evars evd.undf_evars evk body in let last_mods = match evd.conv_pbs with | [] -> evd.last_mods | _ -> Evar.Set.add evk evd.last_mods in let evar_names = EvNames.remove_name_defined evk evd.evar_names in { evd with defn_evars; undf_evars; last_mods; evar_names; evar_flags } (** By default, the obligation and evar tag of the evar is removed *) let define evk body evd = let evar_flags = remove_evar_flags evk evd.evar_flags in define_gen evk body evd evar_flags (** In case of an evar-evar solution, the flags are inherited *) let define_with_evar evk body evd = let evk' = fst (destEvar body) in let evar_flags = inherit_evar_flags evd.evar_flags evk evk' in define_gen evk body evd evar_flags let is_restricted_evar evd evk = try Some (Evar.Map.find evk evd.evar_flags.restricted_evars) with Not_found -> None let declare_restricted_evar evar_flags evk evk' = { evar_flags with restricted_evars = Evar.Map.add evk evk' evar_flags.restricted_evars } (* In case of restriction, we declare the restriction and inherit the obligation and typeclass flags. *) let restrict evk filter ?candidates ?src evd = let evk' = new_untyped_evar () in let evar_info = EvMap.find evk evd.undf_evars in let evar_info' = { evar_info with evar_filter = filter; evar_candidates = candidates; evar_source = (match src with None -> evar_info.evar_source | Some src -> src) } in let last_mods = match evd.conv_pbs with | [] -> evd.last_mods | _ -> Evar.Set.add evk evd.last_mods in let evar_names = EvNames.reassign_name_defined evk evk' evd.evar_names in let ctxt = Filter.filter_list filter (evar_context evar_info) in let id_inst = Array.map_of_list (NamedDecl.get_id %> mkVar) ctxt in let body = mkEvar(evk',id_inst) in let (defn_evars, undf_evars) = define_aux evd.defn_evars evd.undf_evars evk body in let evar_flags = declare_restricted_evar evd.evar_flags evk evk' in let evar_flags = inherit_evar_flags evar_flags evk evk' in { evd with undf_evars = EvMap.add evk' evar_info' undf_evars; defn_evars; last_mods; evar_names; evar_flags }, evk' let downcast evk ccl evd = let evar_info = EvMap.find evk evd.undf_evars in let evar_info' = { evar_info with evar_concl = ccl } in { evd with undf_evars = EvMap.add evk evar_info' evd.undf_evars } (* extracts conversion problems that satisfy predicate p *) (* Note: conv_pbs not satisying p are stored back in reverse order *) let extract_conv_pbs evd p = let (pbs,pbs1) = List.fold_left (fun (pbs,pbs1) pb -> if p pb then (pb::pbs,pbs1) else (pbs,pb::pbs1)) ([],[]) evd.conv_pbs in {evd with conv_pbs = pbs1; last_mods = Evar.Set.empty}, pbs let extract_changed_conv_pbs evd p = extract_conv_pbs evd (fun pb -> p evd.last_mods pb) let extract_all_conv_pbs evd = extract_conv_pbs evd (fun _ -> true) let loc_of_conv_pb evd (pbty,env,t1,t2) = match kind (fst (decompose_app t1)) with | Evar (evk1,_) -> fst (evar_source evk1 evd) | _ -> match kind (fst (decompose_app t2)) with | Evar (evk2,_) -> fst (evar_source evk2 evd) | _ -> None (**********************************************************) (* Sort variables *) type rigid = UState.rigid = | UnivRigid | UnivFlexible of bool (** Is substitution by an algebraic ok? *) let univ_rigid = UnivRigid let univ_flexible = UnivFlexible false let univ_flexible_alg = UnivFlexible true let evar_universe_context d = d.universes let universe_context_set d = UState.context_set d.universes let to_universe_context evd = UState.context evd.universes let univ_entry ~poly evd = UState.univ_entry ~poly evd.universes let check_univ_decl ~poly evd decl = UState.check_univ_decl ~poly evd.universes decl let restrict_universe_context evd vars = { evd with universes = UState.restrict evd.universes vars } let universe_subst evd = UState.subst evd.universes let merge_context_set ?loc ?(sideff=false) rigid evd ctx' = {evd with universes = UState.merge ?loc ~sideff rigid evd.universes ctx'} let merge_universe_subst evd subst = {evd with universes = UState.merge_subst evd.universes subst } let with_context_set ?loc rigid d (a, ctx) = (merge_context_set ?loc rigid d ctx, a) let new_univ_level_variable ?loc ?name rigid evd = let uctx', u = UState.new_univ_variable ?loc rigid name evd.universes in ({evd with universes = uctx'}, u) let new_univ_variable ?loc ?name rigid evd = let uctx', u = UState.new_univ_variable ?loc rigid name evd.universes in ({evd with universes = uctx'}, Univ.Universe.make u) let new_sort_variable ?loc ?name rigid d = let (d', u) = new_univ_variable ?loc rigid ?name d in (d', Sorts.sort_of_univ u) let add_global_univ d u = { d with universes = UState.add_global_univ d.universes u } let make_flexible_variable evd ~algebraic u = { evd with universes = UState.make_flexible_variable evd.universes ~algebraic u } let make_nonalgebraic_variable evd u = { evd with universes = UState.make_nonalgebraic_variable evd.universes u } (****************************************) (* Operations on constants *) (****************************************) let fresh_sort_in_family ?loc ?(rigid=univ_flexible) evd s = with_context_set ?loc rigid evd (UnivGen.fresh_sort_in_family s) let fresh_constant_instance ?loc env evd c = with_context_set ?loc univ_flexible evd (UnivGen.fresh_constant_instance env c) let fresh_inductive_instance ?loc env evd i = with_context_set ?loc univ_flexible evd (UnivGen.fresh_inductive_instance env i) let fresh_constructor_instance ?loc env evd c = with_context_set ?loc univ_flexible evd (UnivGen.fresh_constructor_instance env c) let fresh_global ?loc ?(rigid=univ_flexible) ?names env evd gr = with_context_set ?loc rigid evd (UnivGen.fresh_global_instance ?loc ?names env gr) let is_sort_variable evd s = UState.is_sort_variable evd.universes s let is_flexible_level evd l = let uctx = evd.universes in Univ.LMap.mem l (UState.subst uctx) let is_eq_sort s1 s2 = if Sorts.equal s1 s2 then None else let u1 = univ_of_sort s1 and u2 = univ_of_sort s2 in if Univ.Universe.equal u1 u2 then None else Some (u1, u2) (* Precondition: l is not defined in the substitution *) let universe_rigidity evd l = let uctx = evd.universes in if Univ.LSet.mem l (Univ.ContextSet.levels (UState.context_set uctx)) then UnivFlexible (Univ.LSet.mem l (UState.algebraics uctx)) else UnivRigid let normalize_universe evd = let vars = UState.subst evd.universes in let normalize = UnivSubst.normalize_universe_opt_subst vars in normalize let normalize_universe_instance evd l = let vars = UState.subst evd.universes in let normalize = UnivSubst.level_subst_of (UnivSubst.normalize_univ_variable_opt_subst vars) in Univ.Instance.subst_fn normalize l let normalize_sort evars s = match s with | SProp | Prop | Set -> s | Type u -> let u' = normalize_universe evars u in if u' == u then s else Sorts.sort_of_univ u' (* FIXME inefficient *) let set_eq_sort env d s1 s2 = let s1 = normalize_sort d s1 and s2 = normalize_sort d s2 in match is_eq_sort s1 s2 with | None -> d | Some (u1, u2) -> if not (type_in_type env) then add_universe_constraints d (UnivProblem.Set.singleton (UnivProblem.UEq (u1,u2))) else d let set_eq_level d u1 u2 = add_constraints d (Univ.enforce_eq_level u1 u2 Univ.Constraint.empty) let set_leq_level d u1 u2 = add_constraints d (Univ.enforce_leq_level u1 u2 Univ.Constraint.empty) let set_eq_instances ?(flex=false) d u1 u2 = add_universe_constraints d (UnivProblem.enforce_eq_instances_univs flex u1 u2 UnivProblem.Set.empty) let set_leq_sort env evd s1 s2 = let s1 = normalize_sort evd s1 and s2 = normalize_sort evd s2 in match is_eq_sort s1 s2 with | None -> evd | Some (u1, u2) -> if not (type_in_type env) then add_universe_constraints evd (UnivProblem.Set.singleton (UnivProblem.ULe (u1,u2))) else evd let check_eq evd s s' = UGraph.check_eq (UState.ugraph evd.universes) s s' let check_leq evd s s' = UGraph.check_leq (UState.ugraph evd.universes) s s' let check_constraints evd csts = UGraph.check_constraints csts (UState.ugraph evd.universes) let fix_undefined_variables evd = { evd with universes = UState.fix_undefined_variables evd.universes } let refresh_undefined_universes evd = let uctx', subst = UState.refresh_undefined_univ_variables evd.universes in let evd' = cmap (subst_univs_level_constr subst) {evd with universes = uctx'} in evd', subst let nf_univ_variables evd = let subst, uctx' = UState.normalize_variables evd.universes in let evd' = {evd with universes = uctx'} in evd', subst let minimize_universes evd = let subst, uctx' = UState.normalize_variables evd.universes in let uctx' = UState.minimize uctx' in {evd with universes = uctx'} let universe_of_name evd s = UState.universe_of_name evd.universes s let universe_binders evd = UState.universe_binders evd.universes let universes evd = UState.ugraph evd.universes let update_sigma_env evd env = { evd with universes = UState.update_sigma_env evd.universes env } exception UniversesDiffer = UState.UniversesDiffer (**********************************************************) (* Side effects *) let concat_side_effects eff eff' = { seff_private = Safe_typing.concat_private eff.seff_private eff'.seff_private; seff_roles = Cmap.fold Cmap.add eff.seff_roles eff'.seff_roles; } let emit_side_effects eff evd = let effects = concat_side_effects eff evd.effects in { evd with effects; universes = UState.emit_side_effects eff.seff_private evd.universes } let drop_side_effects evd = { evd with effects = empty_side_effects; } let eval_side_effects evd = evd.effects (* Future goals *) let declare_future_goal ?tag evk evd = { evd with future_goals = evk::evd.future_goals; future_goals_status = Option.fold_right (EvMap.add evk) tag evd.future_goals_status } let declare_principal_goal ?tag evk evd = match evd.principal_future_goal with | None -> { evd with future_goals = evk::evd.future_goals; principal_future_goal=Some evk; future_goals_status = Option.fold_right (EvMap.add evk) tag evd.future_goals_status; } | Some _ -> CErrors.user_err Pp.(str "Only one main subgoal per instantiation.") type future_goals = Evar.t list * Evar.t option * goal_kind EvMap.t let future_goals evd = evd.future_goals let principal_future_goal evd = evd.principal_future_goal let save_future_goals evd = (evd.future_goals, evd.principal_future_goal, evd.future_goals_status) let reset_future_goals evd = { evd with future_goals = [] ; principal_future_goal = None; future_goals_status = EvMap.empty } let restore_future_goals evd (gls,pgl,map) = { evd with future_goals = gls ; principal_future_goal = pgl; future_goals_status = map } let fold_future_goals f sigma (gls,pgl,map) = List.fold_left f sigma gls let map_filter_future_goals f (gls,pgl,map) = (* Note: map is now a superset of filtered evs, but its size should not be too big, so that's probably ok not to update it *) (List.map_filter f gls,Option.bind pgl f,map) let filter_future_goals f (gls,pgl,map) = (List.filter f gls,Option.bind pgl (fun a -> if f a then Some a else None),map) let dispatch_future_goals_gen distinguish_shelf (gls,pgl,map) = let rec aux (comb,shelf,givenup as acc) = function | [] -> acc | evk :: gls -> let acc = try match EvMap.find evk map with | ToGiveUp -> (comb,shelf,evk::givenup) | ToShelve -> if distinguish_shelf then (comb,evk::shelf,givenup) else raise Not_found with Not_found -> (evk::comb,shelf,givenup) in aux acc gls in (* Note: this reverses the order of initial list on purpose *) let (comb,shelf,givenup) = aux ([],[],[]) gls in (comb,shelf,givenup,pgl) let dispatch_future_goals = dispatch_future_goals_gen true let extract_given_up_future_goals goals = let (comb,_,givenup,_) = dispatch_future_goals_gen false goals in (comb,givenup) let shelve_on_future_goals shelved (gls,pgl,map) = (shelved @ gls, pgl, List.fold_right (fun evk -> EvMap.add evk ToShelve) shelved map) (**********************************************************) (* Accessing metas *) (** We use this function to overcome OCaml compiler limitations and to prevent the use of costly in-place modifications. *) let set_metas evd metas = { defn_evars = evd.defn_evars; undf_evars = evd.undf_evars; universes = evd.universes; conv_pbs = evd.conv_pbs; last_mods = evd.last_mods; evar_flags = evd.evar_flags; metas; effects = evd.effects; evar_names = evd.evar_names; future_goals = evd.future_goals; future_goals_status = evd.future_goals_status; principal_future_goal = evd.principal_future_goal; extras = evd.extras; } let meta_list evd = metamap_to_list evd.metas let undefined_metas evd = let filter = function | (n,Clval(_,_,typ)) -> None | (n,Cltyp (_,typ)) -> Some n in let m = List.map_filter filter (meta_list evd) in List.sort Int.compare m let map_metas_fvalue f evd = let map = function | Clval(id,(c,s),typ) -> Clval(id,(mk_freelisted (f c.rebus),s),typ) | x -> x in set_metas evd (Metamap.Smart.map map evd.metas) let map_metas f evd = let map cl = map_clb f cl in set_metas evd (Metamap.Smart.map map evd.metas) let meta_opt_fvalue evd mv = match Metamap.find mv evd.metas with | Clval(_,b,_) -> Some b | Cltyp _ -> None let meta_defined evd mv = match Metamap.find mv evd.metas with | Clval _ -> true | Cltyp _ -> false let try_meta_fvalue evd mv = match Metamap.find mv evd.metas with | Clval(_,b,_) -> b | Cltyp _ -> raise Not_found let meta_fvalue evd mv = try try_meta_fvalue evd mv with Not_found -> anomaly ~label:"meta_fvalue" (Pp.str "meta has no value.") let meta_value evd mv = (fst (try_meta_fvalue evd mv)).rebus let meta_ftype evd mv = match Metamap.find mv evd.metas with | Cltyp (_,b) -> b | Clval(_,_,b) -> b let meta_type evd mv = (meta_ftype evd mv).rebus let meta_type0 = meta_type let meta_declare mv v ?(name=Anonymous) evd = let metas = Metamap.add mv (Cltyp(name,mk_freelisted v)) evd.metas in set_metas evd metas let meta_assign mv (v, pb) evd = let modify _ = function | Cltyp (na, ty) -> Clval (na, (mk_freelisted v, pb), ty) | _ -> anomaly ~label:"meta_assign" (Pp.str "already defined.") in let metas = Metamap.modify mv modify evd.metas in set_metas evd metas let meta_reassign mv (v, pb) evd = let modify _ = function | Clval(na, _, ty) -> Clval (na, (mk_freelisted v, pb), ty) | _ -> anomaly ~label:"meta_reassign" (Pp.str "not yet defined.") in let metas = Metamap.modify mv modify evd.metas in set_metas evd metas (* If the meta is defined then forget its name *) let meta_name evd mv = try fst (clb_name (Metamap.find mv evd.metas)) with Not_found -> Anonymous let clear_metas evd = {evd with metas = Metamap.empty} let meta_merge ?(with_univs = true) evd1 evd2 = let metas = Metamap.fold Metamap.add evd1.metas evd2.metas in let universes = if with_univs then UState.union evd2.universes evd1.universes else evd2.universes in {evd2 with universes; metas; } type metabinding = metavariable * constr * instance_status let retract_coercible_metas evd = let mc = ref [] in let map n v = match v with | Clval (na, (b, (Conv, CoerceToType as s)), typ) -> let () = mc := (n, b.rebus, s) :: !mc in Cltyp (na, typ) | v -> v in let metas = Metamap.Smart.mapi map evd.metas in !mc, set_metas evd metas let evar_source_of_meta mv evd = match meta_name evd mv with | Anonymous -> Loc.tag Evar_kinds.GoalEvar | Name id -> Loc.tag @@ Evar_kinds.VarInstance id let dependent_evar_ident ev evd = let evi = find evd ev in match evi.evar_source with | (_,Evar_kinds.VarInstance id) -> id | _ -> anomaly (str "Not an evar resulting of a dependent binding.") (**********************************************************) (* Extra data *) let get_extra_data evd = evd.extras let set_extra_data extras evd = { evd with extras } (*******************************************************************) type open_constr = evar_map * constr (*******************************************************************) (* The type constructor ['a sigma] adds an evar map to an object of type ['a] *) type 'a sigma = { it : 'a ; sigma : evar_map } let sig_it x = x.it let sig_sig x = x.sigma let on_sig s f = let sigma', v = f s.sigma in { s with sigma = sigma' }, v (*******************************************************************) (* The state monad with state an evar map. *) module MonadR = Monad.Make (struct type +'a t = evar_map -> evar_map * 'a let return a = fun s -> (s,a) let (>>=) x f = fun s -> let (s',a) = x s in f a s' let (>>) x y = fun s -> let (s',()) = x s in y s' let map f x = fun s -> on_snd f (x s) end) module Monad = Monad.Make (struct type +'a t = evar_map -> 'a * evar_map let return a = fun s -> (a,s) let (>>=) x f = fun s -> let (a,s') = x s in f a s' let (>>) x y = fun s -> let ((),s') = x s in y s' let map f x = fun s -> on_fst f (x s) end) (**********************************************************) (* Failure explanation *) type unsolvability_explanation = SeveralInstancesFound of int module MiniEConstr = struct module ESorts = struct type t = Sorts.t let make s = s let kind sigma = function | Sorts.Type u -> Sorts.sort_of_univ (normalize_universe sigma u) | s -> s let unsafe_to_sorts s = s end module EInstance = struct type t = Univ.Instance.t let make i = i let kind sigma i = if Univ.Instance.is_empty i then i else normalize_universe_instance sigma i let empty = Univ.Instance.empty let is_empty = Univ.Instance.is_empty let unsafe_to_instance t = t end type t = econstr let safe_evar_value sigma ev = try Some (existential_value sigma ev) with NotInstantiatedEvar | Not_found -> None let rec whd_evar sigma c = match Constr.kind c with | Evar ev -> begin match safe_evar_value sigma ev with | Some c -> whd_evar sigma c | None -> c end | App (f, args) when isEvar f -> (* Enforce smart constructor invariant on applications *) let ev = destEvar f in begin match safe_evar_value sigma ev with | None -> c | Some f -> whd_evar sigma (mkApp (f, args)) end | Cast (c0, k, t) when isEvar c0 -> (* Enforce smart constructor invariant on casts. *) let ev = destEvar c0 in begin match safe_evar_value sigma ev with | None -> c | Some c -> whd_evar sigma (mkCast (c, k, t)) end | _ -> c let kind sigma c = Constr.kind (whd_evar sigma c) let kind_upto = kind let kind_of_type sigma c = Term.kind_of_type (whd_evar sigma c) let of_kind = Constr.of_kind let of_constr c = c let of_constr_array v = v let unsafe_to_constr c = c let unsafe_to_constr_array v = v let unsafe_eq = Refl let to_constr ?(abort_on_undefined_evars=true) sigma c = let evar_value = if not abort_on_undefined_evars then fun ev -> safe_evar_value sigma ev else fun ev -> match safe_evar_value sigma ev with | Some _ as v -> v | None -> anomaly ~label:"econstr" Pp.(str "grounding a non evar-free term") in UnivSubst.nf_evars_and_universes_opt_subst evar_value (universe_subst sigma) c let to_constr_opt sigma c = let evar_value ev = Some (existential_value sigma ev) in try Some (UnivSubst.nf_evars_and_universes_opt_subst evar_value (universe_subst sigma) c) with NotInstantiatedEvar -> None let of_named_decl d = d let unsafe_to_named_decl d = d let of_rel_decl d = d let unsafe_to_rel_decl d = d let to_rel_decl sigma d = Context.Rel.Declaration.map_constr (to_constr sigma) d end (** The following functions return the set of evars immediately contained in the object *) (* excluding defined evars *) let evars_of_term evd c = let rec evrec acc c = let c = MiniEConstr.whd_evar evd c in match kind c with | Evar (n, l) -> Evar.Set.add n (Array.fold_left evrec acc l) | _ -> Constr.fold evrec acc c in evrec Evar.Set.empty c let evar_nodes_of_term c = let rec evrec acc c = match kind c with | Evar (n, l) -> Evar.Set.add n (Array.fold_left evrec acc l) | _ -> Constr.fold evrec acc c in evrec Evar.Set.empty c let evars_of_named_context evd nc = Context.Named.fold_outside (NamedDecl.fold_constr (fun constr s -> Evar.Set.union s (evars_of_term evd constr))) nc ~init:Evar.Set.empty let evars_of_filtered_evar_info evd evi = Evar.Set.union (evars_of_term evd evi.evar_concl) (Evar.Set.union (match evi.evar_body with | Evar_empty -> Evar.Set.empty | Evar_defined b -> evars_of_term evd b) (evars_of_named_context evd (evar_filtered_context evi)))