1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Util open Names open Context open Constr open Environ open Evd open Termops open Namegen module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration let safe_evar_value sigma ev = let ev = EConstr.of_existential ev in try Some (EConstr.Unsafe.to_constr @@ Evd.existential_value sigma ev) with NotInstantiatedEvar | Not_found -> None let new_global evd x = let (evd, c) = Evd.fresh_global (Global.env()) evd x in (evd, c) (****************************************************) (* Expanding/testing/exposing existential variables *) (****************************************************) let finalize ?abort_on_undefined_evars sigma f = let sigma = minimize_universes sigma in let uvars = ref Univ.LSet.empty in let v = f (fun c -> let varsc = EConstr.universes_of_constr sigma c in let c = EConstr.to_constr ?abort_on_undefined_evars sigma c in uvars := Univ.LSet.union !uvars varsc; c) in let sigma = restrict_universe_context sigma !uvars in sigma, v (* flush_and_check_evars fails if an existential is undefined *) exception Uninstantiated_evar of Evar.t let rec flush_and_check_evars sigma c = match kind c with | Evar (evk,_ as ev) -> (match existential_opt_value0 sigma ev with | None -> raise (Uninstantiated_evar evk) | Some c -> flush_and_check_evars sigma c) | _ -> Constr.map (flush_and_check_evars sigma) c let flush_and_check_evars sigma c = flush_and_check_evars sigma (EConstr.Unsafe.to_constr c) (** Term exploration up to instantiation. *) let kind_of_term_upto = EConstr.kind_upto let nf_evar0 sigma t = EConstr.to_constr ~abort_on_undefined_evars:false sigma (EConstr.of_constr t) let whd_evar = EConstr.whd_evar let nf_evar sigma c = EConstr.of_constr (EConstr.to_constr ~abort_on_undefined_evars:false sigma c) let j_nf_evar sigma j = { uj_val = nf_evar sigma j.uj_val; uj_type = nf_evar sigma j.uj_type } let jl_nf_evar sigma jl = List.map (j_nf_evar sigma) jl let jv_nf_evar sigma = Array.map (j_nf_evar sigma) let tj_nf_evar sigma {utj_val=v;utj_type=t} = {utj_val=nf_evar sigma v;utj_type=t} let nf_evars_universes evm = UnivSubst.nf_evars_and_universes_opt_subst (safe_evar_value evm) (Evd.universe_subst evm) let nf_named_context_evar sigma ctx = Context.Named.map (nf_evar0 sigma) ctx let nf_rel_context_evar sigma ctx = Context.Rel.map (nf_evar sigma) ctx let nf_env_evar sigma env = let nc' = nf_named_context_evar sigma (Environ.named_context env) in let rel' = nf_rel_context_evar sigma (EConstr.rel_context env) in EConstr.push_rel_context rel' (reset_with_named_context (val_of_named_context nc') env) let nf_evar_info evc info = map_evar_info (nf_evar evc) info let nf_evar_map evm = Evd.raw_map (fun _ evi -> nf_evar_info evm evi) evm let nf_evar_map_undefined evm = Evd.raw_map_undefined (fun _ evi -> nf_evar_info evm evi) evm (*-------------------*) (* Auxiliary functions for the conversion algorithms modulo evars *) let has_undefined_evars evd t = let rec has_ev t = match EConstr.kind evd t with | Evar _ -> raise NotInstantiatedEvar | _ -> EConstr.iter evd has_ev t in try let _ = has_ev t in false with (Not_found | NotInstantiatedEvar) -> true let is_ground_term evd t = not (has_undefined_evars evd t) let is_ground_env evd env = let is_ground_rel_decl = function | RelDecl.LocalDef (_,b,_) -> is_ground_term evd (EConstr.of_constr b) | _ -> true in let is_ground_named_decl = function | NamedDecl.LocalDef (_,b,_) -> is_ground_term evd (EConstr.of_constr b) | _ -> true in List.for_all is_ground_rel_decl (rel_context env) && List.for_all is_ground_named_decl (named_context env) (* Memoization is safe since evar_map and environ are applicative structures *) let memo f = let m = ref None in fun x y -> match !m with | Some (x', y', r) when x == x' && y == y' -> r | _ -> let r = f x y in m := Some (x, y, r); r let is_ground_env = memo is_ground_env (* Return the head evar if any *) exception NoHeadEvar let head_evar sigma c = (* FIXME: this breaks if using evar-insensitive code *) let c = EConstr.Unsafe.to_constr c in let rec hrec c = match kind c with | Evar (evk,_) -> evk | Case (_,_,c,_) -> hrec c | App (c,_) -> hrec c | Cast (c,_,_) -> hrec c | Proj (p, c) -> hrec c | _ -> raise NoHeadEvar in hrec c (* Expand head evar if any (currently consider only applications but I guess it should consider Case too) *) let whd_head_evar_stack sigma c = let rec whrec (c, l) = match EConstr.kind sigma c with | Cast (c,_,_) -> whrec (c, l) | App (f,args) -> whrec (f, args :: l) | c -> (EConstr.of_kind c, l) in whrec (c, []) let whd_head_evar sigma c = let open EConstr in let (f, args) = whd_head_evar_stack sigma c in match args with | [arg] -> mkApp (f, arg) | _ -> mkApp (f, Array.concat args) (**********************) (* Creating new metas *) (**********************) let meta_counter_summary_name = "meta counter" (* Generator of metavariables *) let meta_ctr, meta_counter_summary_tag = Summary.ref_tag 0 ~name:meta_counter_summary_name let new_meta () = incr meta_ctr; !meta_ctr let mk_new_meta () = EConstr.mkMeta(new_meta()) (* The list of non-instantiated existential declarations (order is important) *) let non_instantiated sigma = let listev = Evd.undefined_map sigma in Evar.Map.Smart.map (fun evi -> nf_evar_info sigma evi) listev (************************) (* Manipulating filters *) (************************) let make_pure_subst evi args = snd (List.fold_right (fun decl (args,l) -> match args with | a::rest -> (rest, (NamedDecl.get_id decl, a)::l) | _ -> anomaly (Pp.str "Instance does not match its signature.")) (evar_filtered_context evi) (Array.rev_to_list args,[])) (*------------------------------------* * functional operations on evar sets * *------------------------------------*) (* [push_rel_context_to_named_context] builds the defining context and the * initial instance of an evar. If the evar is to be used in context * * Gamma = a1 ... an xp ... x1 * \- named part -/ \- de Bruijn part -/ * * then the x1...xp are turned into variables so that the evar is declared in * context * * a1 ... an xp ... x1 * \----------- named part ------------/ * * but used applied to the initial instance "a1 ... an Rel(p) ... Rel(1)" * so that ev[a1:=a1 ... an:=an xp:=Rel(p) ... x1:=Rel(1)] is correctly typed * in context Gamma. * * Remark 1: The instance is reverted in practice (i.e. Rel(1) comes first) * Remark 2: If some of the ai or xj are definitions, we keep them in the * instance. This is necessary so that no unfolding of local definitions * happens when inferring implicit arguments (consider e.g. the problem * "x:nat; x':=x; f:forall y, y=y -> Prop |- f _ (refl_equal x')" which * produces the equation "?y[x,x']=?y[x,x']" =? "x'=x'": we want * the hole to be instantiated by x', not by x (which would have been * the case in [invert_definition] if x' had disappeared from the instance). * Note that at any time, if, in some context env, the instance of * declaration x:A is t and the instance of definition x':=phi(x) is u, then * we have the property that u and phi(t) are convertible in env. *) let next_ident_away id avoid = let avoid id = Id.Set.mem id avoid in next_ident_away_from id avoid let next_name_away na avoid = let avoid id = Id.Set.mem id avoid in let id = match na with Name id -> id | Anonymous -> default_non_dependent_ident in next_ident_away_from id avoid type subst_val = | SRel of int | SVar of Id.t type csubst = { csubst_len : int; (** Cardinal of [csubst_rel] *) csubst_var : Constr.t Id.Map.t; (** A mapping of variables to variables. We use the more general [Constr.t] to share allocations, but all values are of shape [Var _]. *) csubst_rel : Constr.t Int.Map.t; (** A contiguous mapping of integers to variables. Same remark for values. *) csubst_rev : subst_val Id.Map.t; (** Reverse mapping of the substitution *) } (** This type represents a name substitution for the named and De Bruijn parts of an environment. For efficiency we also store the reverse substitution. Invariant: all identifiers in the codomain of [csubst_var] and [csubst_rel] must be pairwise distinct. *) let empty_csubst = { csubst_len = 0; csubst_rel = Int.Map.empty; csubst_var = Id.Map.empty; csubst_rev = Id.Map.empty; } let csubst_subst { csubst_len = k; csubst_var = v; csubst_rel = s } c = (* Safe because this is a substitution *) let c = EConstr.Unsafe.to_constr c in let rec subst n c = match Constr.kind c with | Rel m -> if m <= n then c else if m - n <= k then Int.Map.find (k - m + n) s else mkRel (m - k) | Var id -> begin try Id.Map.find id v with Not_found -> c end | _ -> Constr.map_with_binders succ subst n c in let c = if k = 0 && Id.Map.is_empty v then c else subst 0 c in EConstr.of_constr c type ext_named_context = csubst * Id.Set.t * EConstr.named_context let push_var id { csubst_len = n; csubst_var = v; csubst_rel = s; csubst_rev = r } = let s = Int.Map.add n (Constr.mkVar id) s in let r = Id.Map.add id (SRel n) r in { csubst_len = succ n; csubst_var = v; csubst_rel = s; csubst_rev = r } (** Post-compose the substitution with the generator [src ↦ tgt] *) let update_var src tgt subst = let cur = try Some (Id.Map.find src subst.csubst_rev) with Not_found -> None in match cur with | None -> (* Missing keys stand for identity substitution [src ↦ src] *) let csubst_var = Id.Map.add src (Constr.mkVar tgt) subst.csubst_var in let csubst_rev = Id.Map.add tgt (SVar src) subst.csubst_rev in { subst with csubst_var; csubst_rev } | Some bnd -> let csubst_rev = Id.Map.add tgt bnd (Id.Map.remove src subst.csubst_rev) in match bnd with | SRel m -> let csubst_rel = Int.Map.add m (Constr.mkVar tgt) subst.csubst_rel in { subst with csubst_rel; csubst_rev } | SVar id -> let csubst_var = Id.Map.add id (Constr.mkVar tgt) subst.csubst_var in { subst with csubst_var; csubst_rev } type naming_mode = | KeepUserNameAndRenameExistingButSectionNames | KeepUserNameAndRenameExistingEvenSectionNames | KeepExistingNames | FailIfConflict | ProgramNaming let push_rel_decl_to_named_context ?(hypnaming=KeepUserNameAndRenameExistingButSectionNames) sigma decl (subst, avoid, nc) = let open EConstr in let open Vars in let map_decl f d = NamedDecl.map_constr f d in let rec replace_var_named_declaration id0 id = function | [] -> [] | decl :: nc -> if Id.equal id0 (NamedDecl.get_id decl) then (* Stop here, the variable cannot occur before its definition *) (NamedDecl.set_id id decl) :: nc else let nc = replace_var_named_declaration id0 id nc in let vsubst = [id0 , mkVar id] in map_decl (fun c -> replace_vars vsubst c) decl :: nc in let extract_if_neq id = function | Anonymous -> None | Name id' when Id.compare id id' = 0 -> None | Name id' -> Some id' in let na = RelDecl.get_name decl in let id = (* ppedrot: we want to infer nicer names for the refine tactic, but keeping at the same time backward compatibility in other code using this function. For now, we only attempt to preserve the old behaviour of Program, but ultimately, one should do something about this whole name generation problem. *) if hypnaming = ProgramNaming then next_name_away na avoid else (* id_of_name_using_hdchar only depends on the rel context which is empty here *) next_ident_away (id_of_name_using_hdchar empty_env sigma (RelDecl.get_type decl) na) avoid in match extract_if_neq id na with | Some id0 when hypnaming = KeepUserNameAndRenameExistingEvenSectionNames || (hypnaming = KeepUserNameAndRenameExistingButSectionNames || hypnaming = ProgramNaming) && not (is_section_variable id0) -> (* spiwack: if [id<>id0], rather than introducing a new binding named [id], we will keep [id0] (the name given by the user) and rename [id0] into [id] in the named context. Unless [id] is a section variable. *) let subst = update_var id0 id subst in let d = decl |> NamedDecl.of_rel_decl (fun _ -> id0) |> map_decl (csubst_subst subst) in let nc = replace_var_named_declaration id0 id nc in (push_var id0 subst, Id.Set.add id avoid, d :: nc) | Some id0 when hypnaming = FailIfConflict -> user_err Pp.(Id.print id0 ++ str " is already used.") | _ -> (* spiwack: if [id0] is a section variable renaming it is incorrect. We revert to a less robust behaviour where the new binder has name [id]. Which amounts to the same behaviour than when [id=id0]. *) let d = decl |> NamedDecl.of_rel_decl (fun _ -> id) |> map_decl (csubst_subst subst) in (push_var id subst, Id.Set.add id avoid, d :: nc) let push_rel_context_to_named_context ?hypnaming env sigma typ = (* compute the instances relative to the named context and rel_context *) let open Context.Named.Declaration in let open EConstr in let ids = List.map get_id (named_context env) in let inst_vars = List.map mkVar ids in if List.is_empty (Environ.rel_context env) then (named_context_val env, typ, inst_vars, empty_csubst) else let avoid = List.fold_right Id.Set.add ids Id.Set.empty in let inst_rels = List.rev (rel_list 0 (nb_rel env)) in (* move the rel context to a named context and extend the named instance *) (* with vars of the rel context *) (* We do keep the instances corresponding to local definition (see above) *) let (subst, _, env) = Context.Rel.fold_outside (fun d acc -> push_rel_decl_to_named_context ?hypnaming sigma d acc) (rel_context env) ~init:(empty_csubst, avoid, named_context env) in (val_of_named_context env, csubst_subst subst typ, inst_rels@inst_vars, subst) (*------------------------------------* * Entry points to define new evars * *------------------------------------*) let default_source = Loc.tag @@ Evar_kinds.InternalHole let new_pure_evar_full evd ?typeclass_candidate evi = let (evd, evk) = Evd.new_evar evd ?typeclass_candidate evi in let evd = Evd.declare_future_goal evk evd in (evd, evk) let new_pure_evar?(src=default_source) ?(filter = Filter.identity) ?(abstract_arguments = Abstraction.identity) ?candidates ?naming ?typeclass_candidate ?(principal=false) sign evd typ = let default_naming = IntroAnonymous in let naming = Option.default default_naming naming in let name = match naming with | IntroAnonymous -> None | IntroIdentifier id -> Some id | IntroFresh id -> let has_name id = try let _ = Evd.evar_key id evd in true with Not_found -> false in let id = Namegen.next_ident_away_from id has_name in Some id in let evi = { evar_hyps = sign; evar_concl = typ; evar_body = Evar_empty; evar_filter = filter; evar_abstract_arguments = abstract_arguments; evar_source = src; evar_candidates = candidates } in let typeclass_candidate = if principal then Some false else typeclass_candidate in let (evd, newevk) = Evd.new_evar evd ?name ?typeclass_candidate evi in let evd = if principal then Evd.declare_principal_goal newevk evd else Evd.declare_future_goal newevk evd in (evd, newevk) let new_evar_instance ?src ?filter ?abstract_arguments ?candidates ?naming ?typeclass_candidate ?principal sign evd typ instance = let open EConstr in assert (not !Flags.debug || List.distinct (ids_of_named_context (named_context_of_val sign))); let (evd, newevk) = new_pure_evar sign evd ?src ?filter ?abstract_arguments ?candidates ?naming ?typeclass_candidate ?principal typ in evd, mkEvar (newevk,Array.of_list instance) let new_evar_from_context ?src ?filter ?candidates ?naming ?typeclass_candidate ?principal sign evd typ = let instance = List.map (NamedDecl.get_id %> EConstr.mkVar) (named_context_of_val sign) in let instance = match filter with | None -> instance | Some filter -> Filter.filter_list filter instance in new_evar_instance sign evd typ ?src ?filter ?candidates ?naming ?principal instance (* [new_evar] declares a new existential in an env env with type typ *) (* Converting the env into the sign of the evar to define *) let new_evar ?src ?filter ?abstract_arguments ?candidates ?naming ?typeclass_candidate ?principal ?hypnaming env evd typ = let sign,typ',instance,subst = push_rel_context_to_named_context ?hypnaming env evd typ in let map c = csubst_subst subst c in let candidates = Option.map (fun l -> List.map map l) candidates in let instance = match filter with | None -> instance | Some filter -> Filter.filter_list filter instance in new_evar_instance sign evd typ' ?src ?filter ?abstract_arguments ?candidates ?naming ?typeclass_candidate ?principal instance let new_type_evar ?src ?filter ?naming ?principal ?hypnaming env evd rigid = let (evd', s) = new_sort_variable rigid evd in let (evd', e) = new_evar env evd' ?src ?filter ?naming ~typeclass_candidate:false ?principal ?hypnaming (EConstr.mkSort s) in evd', (e, s) let new_Type ?(rigid=Evd.univ_flexible) evd = let open EConstr in let (evd, s) = new_sort_variable rigid evd in (evd, mkSort s) (* Safe interface to unification problems *) type unification_pb = conv_pb * env * EConstr.constr * EConstr.constr let eq_unification_pb evd (pbty,env,t1,t2) (pbty',env',t1',t2') = pbty == pbty' && env == env' && EConstr.eq_constr evd t1 t1' && EConstr.eq_constr evd t2 t2' let add_unification_pb ?(tail=false) pb evd = let conv_pbs = Evd.conv_pbs evd in if not (List.exists (eq_unification_pb evd pb) conv_pbs) then let (pbty,env,t1,t2) = pb in Evd.add_conv_pb ~tail (pbty,env,t1,t2) evd else evd (* This assumes an evar with identity instance and generalizes it over only the de Bruijn part of the context *) let generalize_evar_over_rels sigma (ev,args) = let open EConstr in let evi = Evd.find sigma ev in let sign = named_context_of_val evi.evar_hyps in List.fold_left2 (fun (c,inst as x) a d -> if isRel sigma a then (mkNamedProd_or_LetIn d c,a::inst) else x) (evi.evar_concl,[]) (Array.to_list args) sign (************************************) (* Removing a dependency in an evar *) (************************************) type clear_dependency_error = | OccurHypInSimpleClause of Id.t option | EvarTypingBreak of existential | NoCandidatesLeft of Evar.t exception ClearDependencyError of Id.t * clear_dependency_error * GlobRef.t option exception Depends of Id.t let set_of_evctx l = List.fold_left (fun s decl -> Id.Set.add (NamedDecl.get_id decl) s) Id.Set.empty l let filter_effective_candidates evd evi filter candidates = let ids = set_of_evctx (Filter.filter_list filter (evar_context evi)) in List.filter (fun a -> Id.Set.subset (collect_vars evd a) ids) candidates let restrict_evar evd evk filter ?src candidates = let evar_info = Evd.find_undefined evd evk in let candidates = Option.map (filter_effective_candidates evd evar_info filter) candidates in match candidates with | Some [] -> raise (ClearDependencyError (*FIXME*)(Id.of_string "blah", (NoCandidatesLeft evk), None)) | _ -> let evd, evk' = Evd.restrict evk filter ?candidates ?src evd in (* Mark new evar as future goal, removing previous one, circumventing Proofview.advance but making Proof.run_tactic catch these. *) let future_goals = Evd.save_future_goals evd in let future_goals = Evd.filter_future_goals (fun evk' -> not (Evar.equal evk evk')) future_goals in let evd = Evd.restore_future_goals evd future_goals in (Evd.declare_future_goal evk' evd, evk') let rec check_and_clear_in_constr env evdref err ids global c = (* returns a new constr where all the evars have been 'cleaned' (ie the hypotheses ids have been removed from the contexts of evars). [global] should be true iff there is some variable of [ids] which is a section variable *) match kind c with | Var id' -> if Id.Set.mem id' ids then raise (ClearDependencyError (id', err, None)) else c | ( Const _ | Ind _ | Construct _ ) -> let () = if global then let check id' = if Id.Set.mem id' ids then raise (ClearDependencyError (id',err,Some (Globnames.global_of_constr c))) in Id.Set.iter check (Environ.vars_of_global env (fst @@ destRef c)) in c | Evar (evk,l as ev) -> if Evd.is_defined !evdref evk then (* If evk is already defined we replace it by its definition *) let nc = Evd.existential_value !evdref (EConstr.of_existential ev) in let nc = EConstr.Unsafe.to_constr nc in (check_and_clear_in_constr env evdref err ids global nc) else (* We check for dependencies to elements of ids in the evar_info corresponding to e and in the instance of arguments. Concurrently, we build a new evar corresponding to e where hypotheses of ids have been removed *) let evi = Evd.find_undefined !evdref evk in let ctxt = Evd.evar_filtered_context evi in let (rids,filter) = List.fold_right2 (fun h a (ri,filter) -> try (* Check if some id to clear occurs in the instance a of rid in ev and remember the dependency *) let check id = if Id.Set.mem id ids then raise (Depends id) in let () = Id.Set.iter check (collect_vars !evdref (EConstr.of_constr a)) in (* Check if some rid to clear in the context of ev has dependencies in another hyp of the context of ev and transitively remember the dependency *) let check id _ = if occur_var_in_decl env !evdref id h then raise (Depends id) in let () = Id.Map.iter check ri in (* No dependency at all, we can keep this ev's context hyp *) (ri, true::filter) with Depends id -> (Id.Map.add (NamedDecl.get_id h) id ri, false::filter)) ctxt (Array.to_list l) (Id.Map.empty,[]) in (* Check if some rid to clear in the context of ev has dependencies in the type of ev and adjust the source of the dependency *) let _nconcl = try let nids = Id.Map.domain rids in let global = Id.Set.exists is_section_variable nids in let concl = EConstr.Unsafe.to_constr (evar_concl evi) in check_and_clear_in_constr env evdref (EvarTypingBreak ev) nids global concl with ClearDependencyError (rid,err,where) -> raise (ClearDependencyError (Id.Map.find rid rids,err,where)) in if Id.Map.is_empty rids then c else let origfilter = Evd.evar_filter evi in let filter = Evd.Filter.apply_subfilter origfilter filter in let evd = !evdref in let candidates = Evd.evar_candidates evi in let candidates = Option.map (List.map EConstr.of_constr) candidates in let (evd,_) = restrict_evar evd evk filter candidates in evdref := evd; Evd.existential_value0 !evdref ev | _ -> Constr.map (check_and_clear_in_constr env evdref err ids global) c let clear_hyps_in_evi_main env sigma hyps terms ids = (* clear_hyps_in_evi erases hypotheses ids in hyps, checking if some hypothesis does not depend on a element of ids, and erases ids in the contexts of the evars occurring in evi *) let evdref = ref sigma in let terms = List.map EConstr.Unsafe.to_constr terms in let global = Id.Set.exists is_section_variable ids in let terms = List.map (check_and_clear_in_constr env evdref (OccurHypInSimpleClause None) ids global) terms in let nhyps = let check_context decl = let err = OccurHypInSimpleClause (Some (NamedDecl.get_id decl)) in NamedDecl.map_constr (check_and_clear_in_constr env evdref err ids global) decl in let check_value vk = match force_lazy_val vk with | None -> vk | Some (_, d) -> if (Id.Set.for_all (fun e -> not (Id.Set.mem e d)) ids) then (* v does depend on any of ids, it's ok *) vk else (* v depends on one of the cleared hyps: we forget the computed value *) dummy_lazy_val () in remove_hyps ids check_context check_value hyps in (!evdref, nhyps,List.map EConstr.of_constr terms) let clear_hyps_in_evi env sigma hyps concl ids = match clear_hyps_in_evi_main env sigma hyps [concl] ids with | (sigma,nhyps,[nconcl]) -> (sigma,nhyps,nconcl) | _ -> assert false let clear_hyps2_in_evi env sigma hyps t concl ids = match clear_hyps_in_evi_main env sigma hyps [t;concl] ids with | (sigma,nhyps,[t;nconcl]) -> (sigma,nhyps,t,nconcl) | _ -> assert false (* spiwack: a few functions to gather evars on which goals depend. *) let queue_set q is_dependent set = Evar.Set.iter (fun a -> Queue.push (is_dependent,a) q) set let queue_term q is_dependent c = queue_set q is_dependent (evar_nodes_of_term c) let process_dependent_evar q acc evm is_dependent e = let evi = Evd.find evm e in (* Queues evars appearing in the types of the goal (conclusion, then hypotheses), they are all dependent. *) queue_term q true evi.evar_concl; List.iter begin fun decl -> let open NamedDecl in queue_term q true (NamedDecl.get_type decl); match decl with | LocalAssum _ -> () | LocalDef (_,b,_) -> queue_term q true b end (EConstr.named_context_of_val evi.evar_hyps); match evi.evar_body with | Evar_empty -> if is_dependent then Evar.Map.add e None acc else acc | Evar_defined b -> let subevars = evar_nodes_of_term b in (* evars appearing in the definition of an evar [e] are marked as dependent when [e] is dependent itself: if [e] is a non-dependent goal, then, unless they are reach from another path, these evars are just other non-dependent goals. *) queue_set q is_dependent subevars; if is_dependent then Evar.Map.add e (Some subevars) acc else acc let gather_dependent_evars q evm = let acc = ref Evar.Map.empty in while not (Queue.is_empty q) do let (is_dependent,e) = Queue.pop q in (* checks if [e] has already been added to [!acc] *) begin if not (Evar.Map.mem e !acc) then acc := process_dependent_evar q !acc evm is_dependent e end done; !acc let gather_dependent_evars evm l = let q = Queue.create () in List.iter (fun a -> Queue.add (false,a) q) l; gather_dependent_evars q evm (* /spiwack *) (** [advance sigma g] returns [Some g'] if [g'] is undefined and is the current avatar of [g] (for instance [g] was changed by [clear] into [g']). It returns [None] if [g] has been (partially) solved. *) (* spiwack: [advance] is probably performance critical, and the good behaviour of its definition may depend sensitively to the actual definition of [Evd.find]. Currently, [Evd.find] starts looking for a value in the heap of undefined variable, which is small. Hence in the most common case, where [advance] is applied to an unsolved goal ([advance] is used to figure if a side effect has modified the goal) it terminates quickly. *) let rec advance sigma evk = let evi = Evd.find sigma evk in match evi.evar_body with | Evar_empty -> Some evk | Evar_defined v -> match is_restricted_evar sigma evk with | Some evk -> advance sigma evk | None -> None (** The following functions return the set of undefined evars contained in the object, the defined evars being traversed. This is roughly a combination of the previous functions and [nf_evar]. *) let undefined_evars_of_term evd t = let rec evrec acc c = match EConstr.kind evd c with | Evar (n, l) -> let acc = Evar.Set.add n acc in Array.fold_left evrec acc l | _ -> EConstr.fold evd evrec acc c in evrec Evar.Set.empty t let undefined_evars_of_named_context evd nc = Context.Named.fold_outside (NamedDecl.fold_constr (fun c s -> Evar.Set.union s (undefined_evars_of_term evd (EConstr.of_constr c)))) nc ~init:Evar.Set.empty let undefined_evars_of_evar_info evd evi = Evar.Set.union (undefined_evars_of_term evd evi.evar_concl) (Evar.Set.union (match evi.evar_body with | Evar_empty -> Evar.Set.empty | Evar_defined b -> undefined_evars_of_term evd b) (undefined_evars_of_named_context evd (named_context_of_val evi.evar_hyps))) type undefined_evars_cache = { mutable cache : (EConstr.named_declaration * Evar.Set.t) ref Id.Map.t; } let create_undefined_evars_cache () = { cache = Id.Map.empty; } let cached_evar_of_hyp cache sigma decl accu = match cache with | None -> let fold c acc = let evs = undefined_evars_of_term sigma c in Evar.Set.union evs acc in NamedDecl.fold_constr fold decl accu | Some cache -> let id = NamedDecl.get_annot decl in let r = try Id.Map.find id.binder_name cache.cache with Not_found -> (* Dummy value *) let r = ref (NamedDecl.LocalAssum (id, EConstr.mkProp), Evar.Set.empty) in let () = cache.cache <- Id.Map.add id.binder_name r cache.cache in r in let (decl', evs) = !r in let evs = if NamedDecl.equal (==) decl decl' then snd !r else let fold c acc = let evs = undefined_evars_of_term sigma c in Evar.Set.union evs acc in let evs = NamedDecl.fold_constr fold decl Evar.Set.empty in let () = r := (decl, evs) in evs in Evar.Set.fold Evar.Set.add evs accu let filtered_undefined_evars_of_evar_info ?cache sigma evi = let evars_of_named_context cache accu nc = let fold decl accu = cached_evar_of_hyp cache sigma (EConstr.of_named_decl decl) accu in Context.Named.fold_outside fold nc ~init:accu in let accu = match evi.evar_body with | Evar_empty -> Evar.Set.empty | Evar_defined b -> evars_of_term sigma b in let accu = Evar.Set.union (undefined_evars_of_term sigma evi.evar_concl) accu in let ctxt = EConstr.Unsafe.to_named_context (evar_filtered_context evi) in evars_of_named_context cache accu ctxt (* spiwack: this is a more complete version of {!Termops.occur_evar}. The latter does not look recursively into an [evar_map]. If unification only need to check superficially, tactics do not have this luxury, and need the more complete version. *) let occur_evar_upto sigma n c = let c = EConstr.Unsafe.to_constr c in let rec occur_rec c = match kind c with | Evar (sp,_) when Evar.equal sp n -> raise Occur | Evar e -> Option.iter occur_rec (existential_opt_value0 sigma e) | _ -> Constr.iter occur_rec c in try occur_rec c; false with Occur -> true (* We don't try to guess in which sort the type should be defined, since any type has type Type. May cause some trouble, but not so far... *) let judge_of_new_Type evd = let open EConstr in let (evd', s) = new_univ_variable univ_rigid evd in (evd', { uj_val = mkType s; uj_type = mkType (Univ.super s) }) let subterm_source evk ?where (loc,k) = let evk = match k with | Evar_kinds.SubEvar (None,evk) when where = None -> evk | _ -> evk in (loc,Evar_kinds.SubEvar (where,evk)) (* Add equality constraints for covariant/invariant positions. For irrelevant positions, unify universes when flexible. *) let compare_cumulative_instances cv_pb variances u u' sigma = let open UnivProblem in let cstrs = Univ.Constraint.empty in let soft = Set.empty in let cstrs, soft = Array.fold_left3 (fun (cstrs, soft) v u u' -> let open Univ.Variance in match v with | Irrelevant -> cstrs, Set.add (UWeak (u,u')) soft | Covariant when cv_pb == Reduction.CUMUL -> Univ.Constraint.add (u,Univ.Le,u') cstrs, soft | Covariant | Invariant -> Univ.Constraint.add (u,Univ.Eq,u') cstrs, soft) (cstrs,soft) variances (Univ.Instance.to_array u) (Univ.Instance.to_array u') in match Evd.add_constraints sigma cstrs with | sigma -> Inl (Evd.add_universe_constraints sigma soft) | exception Univ.UniverseInconsistency p -> Inr p let compare_constructor_instances evd u u' = let open UnivProblem in let soft = Array.fold_left2 (fun cs u u' -> Set.add (UWeak (u,u')) cs) Set.empty (Univ.Instance.to_array u) (Univ.Instance.to_array u') in Evd.add_universe_constraints evd soft (** [eq_constr_univs_test ~evd ~extended_evd t u] tests equality of [t] and [u] up to existential variable instantiation and equalisable universes. The term [t] is interpreted in [evd] while [u] is interpreted in [extended_evd]. The universe constraints in [extended_evd] are assumed to be an extension of those in [evd]. *) let eq_constr_univs_test ~evd ~extended_evd t u = (* spiwack: mild code duplication with {!Evd.eq_constr_univs}. *) let open Evd in let t = EConstr.Unsafe.to_constr t and u = EConstr.Unsafe.to_constr u in let fold cstr sigma = try Some (add_universe_constraints sigma cstr) with Univ.UniverseInconsistency _ | UniversesDiffer -> None in let ans = UnivProblem.eq_constr_univs_infer_with (fun t -> kind_of_term_upto evd t) (fun u -> kind_of_term_upto extended_evd u) (universes extended_evd) fold t u extended_evd in match ans with None -> false | Some _ -> true