1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Util open Names open Constr open Context module ESorts = struct include Evd.MiniEConstr.ESorts let equal sigma s1 s2 = Sorts.equal (kind sigma s1) (kind sigma s2) end module EInstance = struct include Evd.MiniEConstr.EInstance let equal sigma i1 i2 = Univ.Instance.equal (kind sigma i1) (kind sigma i2) end include (Evd.MiniEConstr : module type of Evd.MiniEConstr with module ESorts := ESorts and module EInstance := EInstance) type types = t type constr = t type existential = t pexistential type fixpoint = (t, t) pfixpoint type cofixpoint = (t, t) pcofixpoint type unsafe_judgment = (constr, types) Environ.punsafe_judgment type unsafe_type_judgment = types Environ.punsafe_type_judgment type named_declaration = (constr, types) Context.Named.Declaration.pt type rel_declaration = (constr, types) Context.Rel.Declaration.pt type named_context = (constr, types) Context.Named.pt type rel_context = (constr, types) Context.Rel.pt type 'a puniverses = 'a * EInstance.t let in_punivs a = (a, EInstance.empty) let mkSProp = of_kind (Sort (ESorts.make Sorts.sprop)) let mkProp = of_kind (Sort (ESorts.make Sorts.prop)) let mkSet = of_kind (Sort (ESorts.make Sorts.set)) let mkType u = of_kind (Sort (ESorts.make (Sorts.sort_of_univ u))) let mkRel n = of_kind (Rel n) let mkVar id = of_kind (Var id) let mkMeta n = of_kind (Meta n) let mkEvar e = of_kind (Evar e) let mkSort s = of_kind (Sort (ESorts.make s)) let mkCast (b, k, t) = of_kind (Cast (b, k, t)) let mkProd (na, t, u) = of_kind (Prod (na, t, u)) let mkLambda (na, t, c) = of_kind (Lambda (na, t, c)) let mkLetIn (na, b, t, c) = of_kind (LetIn (na, b, t, c)) let mkApp (f, arg) = of_kind (App (f, arg)) let mkConstU pc = of_kind (Const pc) let mkConst c = of_kind (Const (in_punivs c)) let mkIndU pi = of_kind (Ind pi) let mkInd i = of_kind (Ind (in_punivs i)) let mkConstructU pc = of_kind (Construct pc) let mkConstruct c = of_kind (Construct (in_punivs c)) let mkConstructUi ((ind,u),i) = of_kind (Construct ((ind,i),u)) let mkCase (ci, c, r, p) = of_kind (Case (ci, c, r, p)) let mkFix f = of_kind (Fix f) let mkCoFix f = of_kind (CoFix f) let mkProj (p, c) = of_kind (Proj (p, c)) let mkArrow t1 r t2 = of_kind (Prod (make_annot Anonymous r, t1, t2)) let mkArrowR t1 t2 = mkArrow t1 Sorts.Relevant t2 let mkInt i = of_kind (Int i) let mkRef (gr,u) = let open GlobRef in match gr with | ConstRef c -> mkConstU (c,u) | IndRef ind -> mkIndU (ind,u) | ConstructRef c -> mkConstructU (c,u) | VarRef x -> mkVar x let type1 = mkSort Sorts.type1 let applist (f, arg) = mkApp (f, Array.of_list arg) let applistc f arg = mkApp (f, Array.of_list arg) let isRel sigma c = match kind sigma c with Rel _ -> true | _ -> false let isVar sigma c = match kind sigma c with Var _ -> true | _ -> false let isInd sigma c = match kind sigma c with Ind _ -> true | _ -> false let isEvar sigma c = match kind sigma c with Evar _ -> true | _ -> false let isMeta sigma c = match kind sigma c with Meta _ -> true | _ -> false let isSort sigma c = match kind sigma c with Sort _ -> true | _ -> false let isCast sigma c = match kind sigma c with Cast _ -> true | _ -> false let isApp sigma c = match kind sigma c with App _ -> true | _ -> false let isLambda sigma c = match kind sigma c with Lambda _ -> true | _ -> false let isLetIn sigma c = match kind sigma c with LetIn _ -> true | _ -> false let isProd sigma c = match kind sigma c with Prod _ -> true | _ -> false let isConst sigma c = match kind sigma c with Const _ -> true | _ -> false let isConstruct sigma c = match kind sigma c with Construct _ -> true | _ -> false let isFix sigma c = match kind sigma c with Fix _ -> true | _ -> false let isCoFix sigma c = match kind sigma c with CoFix _ -> true | _ -> false let isCase sigma c = match kind sigma c with Case _ -> true | _ -> false let isProj sigma c = match kind sigma c with Proj _ -> true | _ -> false let rec isType sigma c = match kind sigma c with | Sort s -> (match ESorts.kind sigma s with | Sorts.Type _ -> true | _ -> false ) | Cast (c,_,_) -> isType sigma c | _ -> false let isVarId sigma id c = match kind sigma c with Var id' -> Id.equal id id' | _ -> false let isRelN sigma n c = match kind sigma c with Rel n' -> Int.equal n n' | _ -> false let destRel sigma c = match kind sigma c with | Rel p -> p | _ -> raise DestKO let destVar sigma c = match kind sigma c with | Var p -> p | _ -> raise DestKO let destInd sigma c = match kind sigma c with | Ind p -> p | _ -> raise DestKO let destEvar sigma c = match kind sigma c with | Evar p -> p | _ -> raise DestKO let destMeta sigma c = match kind sigma c with | Meta p -> p | _ -> raise DestKO let destSort sigma c = match kind sigma c with | Sort p -> p | _ -> raise DestKO let destCast sigma c = match kind sigma c with | Cast (c, k, t) -> (c, k, t) | _ -> raise DestKO let destApp sigma c = match kind sigma c with | App (f, a) -> (f, a) | _ -> raise DestKO let destLambda sigma c = match kind sigma c with | Lambda (na, t, c) -> (na, t, c) | _ -> raise DestKO let destLetIn sigma c = match kind sigma c with | LetIn (na, b, t, c) -> (na, b, t, c) | _ -> raise DestKO let destProd sigma c = match kind sigma c with | Prod (na, t, c) -> (na, t, c) | _ -> raise DestKO let destConst sigma c = match kind sigma c with | Const p -> p | _ -> raise DestKO let destConstruct sigma c = match kind sigma c with | Construct p -> p | _ -> raise DestKO let destFix sigma c = match kind sigma c with | Fix p -> p | _ -> raise DestKO let destCoFix sigma c = match kind sigma c with | CoFix p -> p | _ -> raise DestKO let destCase sigma c = match kind sigma c with | Case (ci, t, c, p) -> (ci, t, c, p) | _ -> raise DestKO let destProj sigma c = match kind sigma c with | Proj (p, c) -> (p, c) | _ -> raise DestKO let destRef sigma c = let open GlobRef in match kind sigma c with | Var x -> VarRef x, EInstance.empty | Const (c,u) -> ConstRef c, u | Ind (ind,u) -> IndRef ind, u | Construct (c,u) -> ConstructRef c, u | _ -> raise DestKO let decompose_app sigma c = match kind sigma c with | App (f,cl) -> (f, Array.to_list cl) | _ -> (c,[]) let decompose_lam sigma c = let rec lamdec_rec l c = match kind sigma c with | Lambda (x,t,c) -> lamdec_rec ((x,t)::l) c | Cast (c,_,_) -> lamdec_rec l c | _ -> l,c in lamdec_rec [] c let decompose_lam_assum sigma c = let open Rel.Declaration in let rec lamdec_rec l c = match kind sigma c with | Lambda (x,t,c) -> lamdec_rec (Context.Rel.add (LocalAssum (x,t)) l) c | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (LocalDef (x,b,t)) l) c | Cast (c,_,_) -> lamdec_rec l c | _ -> l,c in lamdec_rec Context.Rel.empty c let decompose_lam_n_assum sigma n c = let open Rel.Declaration in if n < 0 then user_err Pp.(str "decompose_lam_n_assum: integer parameter must be positive"); let rec lamdec_rec l n c = if Int.equal n 0 then l,c else match kind sigma c with | Lambda (x,t,c) -> lamdec_rec (Context.Rel.add (LocalAssum (x,t)) l) (n-1) c | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (LocalDef (x,b,t)) l) n c | Cast (c,_,_) -> lamdec_rec l n c | c -> user_err Pp.(str "decompose_lam_n_assum: not enough abstractions") in lamdec_rec Context.Rel.empty n c let decompose_lam_n_decls sigma n = let open Rel.Declaration in if n < 0 then user_err Pp.(str "decompose_lam_n_decls: integer parameter must be positive"); let rec lamdec_rec l n c = if Int.equal n 0 then l,c else match kind sigma c with | Lambda (x,t,c) -> lamdec_rec (Context.Rel.add (LocalAssum (x,t)) l) (n-1) c | LetIn (x,b,t,c) -> lamdec_rec (Context.Rel.add (LocalDef (x,b,t)) l) (n-1) c | Cast (c,_,_) -> lamdec_rec l n c | c -> user_err Pp.(str "decompose_lam_n_decls: not enough abstractions") in lamdec_rec Context.Rel.empty n let lamn n env b = let rec lamrec = function | (0, env, b) -> b | (n, ((v,t)::l), b) -> lamrec (n-1, l, mkLambda (v,t,b)) | _ -> assert false in lamrec (n,env,b) let compose_lam l b = lamn (List.length l) l b let rec to_lambda sigma n prod = if Int.equal n 0 then prod else match kind sigma prod with | Prod (na,ty,bd) -> mkLambda (na,ty,to_lambda sigma (n-1) bd) | Cast (c,_,_) -> to_lambda sigma n c | _ -> user_err ~hdr:"to_lambda" (Pp.mt ()) let decompose_prod sigma c = let rec proddec_rec l c = match kind sigma c with | Prod (x,t,c) -> proddec_rec ((x,t)::l) c | Cast (c,_,_) -> proddec_rec l c | _ -> l,c in proddec_rec [] c let decompose_prod_assum sigma c = let open Rel.Declaration in let rec proddec_rec l c = match kind sigma c with | Prod (x,t,c) -> proddec_rec (Context.Rel.add (LocalAssum (x,t)) l) c | LetIn (x,b,t,c) -> proddec_rec (Context.Rel.add (LocalDef (x,b,t)) l) c | Cast (c,_,_) -> proddec_rec l c | _ -> l,c in proddec_rec Context.Rel.empty c let decompose_prod_n_assum sigma n c = let open Rel.Declaration in if n < 0 then user_err Pp.(str "decompose_prod_n_assum: integer parameter must be positive"); let rec prodec_rec l n c = if Int.equal n 0 then l,c else match kind sigma c with | Prod (x,t,c) -> prodec_rec (Context.Rel.add (LocalAssum (x,t)) l) (n-1) c | LetIn (x,b,t,c) -> prodec_rec (Context.Rel.add (LocalDef (x,b,t)) l) (n-1) c | Cast (c,_,_) -> prodec_rec l n c | c -> user_err Pp.(str "decompose_prod_n_assum: not enough assumptions") in prodec_rec Context.Rel.empty n c let existential_type = Evd.existential_type let lift n c = of_constr (Vars.lift n (unsafe_to_constr c)) let map_under_context f n c = let f c = unsafe_to_constr (f (of_constr c)) in of_constr (Constr.map_under_context f n (unsafe_to_constr c)) let map_branches f ci br = let f c = unsafe_to_constr (f (of_constr c)) in of_constr_array (Constr.map_branches f ci (unsafe_to_constr_array br)) let map_return_predicate f ci p = let f c = unsafe_to_constr (f (of_constr c)) in of_constr (Constr.map_return_predicate f ci (unsafe_to_constr p)) let map_user_view sigma f c = let f c = unsafe_to_constr (f (of_constr c)) in of_constr (Constr.map_user_view f (unsafe_to_constr (whd_evar sigma c))) let map sigma f c = let f c = unsafe_to_constr (f (of_constr c)) in of_constr (Constr.map f (unsafe_to_constr (whd_evar sigma c))) let map_with_binders sigma g f l c = let f l c = unsafe_to_constr (f l (of_constr c)) in of_constr (Constr.map_with_binders g f l (unsafe_to_constr (whd_evar sigma c))) let iter sigma f c = let f c = f (of_constr c) in Constr.iter f (unsafe_to_constr (whd_evar sigma c)) let iter_with_full_binders sigma g f n c = let open Context.Rel.Declaration in match kind sigma c with | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _ | Int _) -> () | Cast (c,_,t) -> f n c; f n t | Prod (na,t,c) -> f n t; f (g (LocalAssum (na, t)) n) c | Lambda (na,t,c) -> f n t; f (g (LocalAssum (na, t)) n) c | LetIn (na,b,t,c) -> f n b; f n t; f (g (LocalDef (na, b, t)) n) c | App (c,l) -> f n c; Array.Fun1.iter f n l | Evar (_,l) -> Array.Fun1.iter f n l | Case (_,p,c,bl) -> f n p; f n c; Array.Fun1.iter f n bl | Proj (p,c) -> f n c | Fix (_,(lna,tl,bl)) -> Array.iter (f n) tl; let n' = Array.fold_left2_i (fun i n na t -> g (LocalAssum (na, lift i t)) n) n lna tl in Array.iter (f n') bl | CoFix (_,(lna,tl,bl)) -> Array.iter (f n) tl; let n' = Array.fold_left2_i (fun i n na t -> g (LocalAssum (na,lift i t)) n) n lna tl in Array.iter (f n') bl let iter_with_binders sigma g f n c = let f l c = f l (of_constr c) in Constr.iter_with_binders g f n (unsafe_to_constr (whd_evar sigma c)) let fold sigma f acc c = let f acc c = f acc (of_constr c) in Constr.fold f acc (unsafe_to_constr (whd_evar sigma c)) let compare_gen k eq_inst eq_sort eq_constr nargs c1 c2 = (c1 == c2) || Constr.compare_head_gen_with k k eq_inst eq_sort eq_constr nargs c1 c2 let eq_constr sigma c1 c2 = let kind c = kind sigma c in let eq_inst _ _ i1 i2 = EInstance.equal sigma i1 i2 in let eq_sorts s1 s2 = ESorts.equal sigma s1 s2 in let rec eq_constr nargs c1 c2 = compare_gen kind eq_inst eq_sorts eq_constr nargs c1 c2 in eq_constr 0 c1 c2 let eq_constr_nounivs sigma c1 c2 = let kind c = kind sigma c in let rec eq_constr nargs c1 c2 = compare_gen kind (fun _ _ _ _ -> true) (fun _ _ -> true) eq_constr nargs c1 c2 in eq_constr 0 c1 c2 let compare_constr sigma cmp c1 c2 = let kind c = kind sigma c in let eq_inst _ _ i1 i2 = EInstance.equal sigma i1 i2 in let eq_sorts s1 s2 = ESorts.equal sigma s1 s2 in let cmp nargs c1 c2 = cmp c1 c2 in compare_gen kind eq_inst eq_sorts cmp 0 c1 c2 let compare_cumulative_instances cv_pb nargs_ok variances u u' cstrs = let open UnivProblem in if not nargs_ok then enforce_eq_instances_univs false u u' cstrs else CArray.fold_left3 (fun cstrs v u u' -> let open Univ.Variance in match v with | Irrelevant -> Set.add (UWeak (u,u')) cstrs | Covariant -> let u = Univ.Universe.make u in let u' = Univ.Universe.make u' in (match cv_pb with | Reduction.CONV -> Set.add (UEq (u,u')) cstrs | Reduction.CUMUL -> Set.add (ULe (u,u')) cstrs) | Invariant -> let u = Univ.Universe.make u in let u' = Univ.Universe.make u' in Set.add (UEq (u,u')) cstrs) cstrs variances (Univ.Instance.to_array u) (Univ.Instance.to_array u') let cmp_inductives cv_pb (mind,ind as spec) nargs u1 u2 cstrs = let open UnivProblem in match mind.Declarations.mind_variance with | None -> enforce_eq_instances_univs false u1 u2 cstrs | Some variances -> let num_param_arity = Reduction.inductive_cumulativity_arguments spec in compare_cumulative_instances cv_pb (Int.equal num_param_arity nargs) variances u1 u2 cstrs let cmp_constructors (mind, ind, cns as spec) nargs u1 u2 cstrs = let open UnivProblem in match mind.Declarations.mind_variance with | None -> enforce_eq_instances_univs false u1 u2 cstrs | Some _ -> let num_cnstr_args = Reduction.constructor_cumulativity_arguments spec in if not (Int.equal num_cnstr_args nargs) then enforce_eq_instances_univs false u1 u2 cstrs else Array.fold_left2 (fun cstrs u1 u2 -> UnivProblem.(Set.add (UWeak (u1,u2)) cstrs)) cstrs (Univ.Instance.to_array u1) (Univ.Instance.to_array u2) let eq_universes env sigma cstrs cv_pb ref nargs l l' = if EInstance.is_empty l then (assert (EInstance.is_empty l'); true) else let l = EInstance.kind sigma l and l' = EInstance.kind sigma l' in let open GlobRef in let open UnivProblem in match ref with | VarRef _ -> assert false (* variables don't have instances *) | ConstRef _ -> cstrs := enforce_eq_instances_univs true l l' !cstrs; true | IndRef ind -> let mind = Environ.lookup_mind (fst ind) env in cstrs := cmp_inductives cv_pb (mind,snd ind) nargs l l' !cstrs; true | ConstructRef ((mi,ind),ctor) -> let mind = Environ.lookup_mind mi env in cstrs := cmp_constructors (mind,ind,ctor) nargs l l' !cstrs; true let test_constr_universes env sigma leq m n = let open UnivProblem in let kind c = kind sigma c in if m == n then Some Set.empty else let cstrs = ref Set.empty in let cv_pb = if leq then Reduction.CUMUL else Reduction.CONV in let eq_universes ref nargs l l' = eq_universes env sigma cstrs Reduction.CONV ref nargs l l' and leq_universes ref nargs l l' = eq_universes env sigma cstrs cv_pb ref nargs l l' in let eq_sorts s1 s2 = let s1 = ESorts.kind sigma s1 in let s2 = ESorts.kind sigma s2 in if Sorts.equal s1 s2 then true else (cstrs := Set.add (UEq (Sorts.univ_of_sort s1,Sorts.univ_of_sort s2)) !cstrs; true) in let leq_sorts s1 s2 = let s1 = ESorts.kind sigma s1 in let s2 = ESorts.kind sigma s2 in if Sorts.equal s1 s2 then true else (cstrs := Set.add (ULe (Sorts.univ_of_sort s1,Sorts.univ_of_sort s2)) !cstrs; true) in let rec eq_constr' nargs m n = compare_gen kind eq_universes eq_sorts eq_constr' nargs m n in let res = if leq then let rec compare_leq nargs m n = Constr.compare_head_gen_leq_with kind kind leq_universes leq_sorts eq_constr' leq_constr' nargs m n and leq_constr' nargs m n = m == n || compare_leq nargs m n in compare_leq 0 m n else Constr.compare_head_gen_with kind kind eq_universes eq_sorts eq_constr' 0 m n in if res then Some !cstrs else None let eq_constr_universes env sigma m n = test_constr_universes env sigma false m n let leq_constr_universes env sigma m n = test_constr_universes env sigma true m n let compare_head_gen_proj env sigma equ eqs eqc' nargs m n = let kind c = kind sigma c in match kind m, kind n with | Proj (p, c), App (f, args) | App (f, args), Proj (p, c) -> (match kind f with | Const (p', u) when Constant.equal (Projection.constant p) p' -> let npars = Projection.npars p in if Array.length args == npars + 1 then eqc' 0 c args.(npars) else false | _ -> false) | _ -> Constr.compare_head_gen_with kind kind equ eqs eqc' nargs m n let eq_constr_universes_proj env sigma m n = let open UnivProblem in if m == n then Some Set.empty else let cstrs = ref Set.empty in let eq_universes ref l l' = eq_universes env sigma cstrs Reduction.CONV ref l l' in let eq_sorts s1 s2 = let s1 = ESorts.kind sigma s1 in let s2 = ESorts.kind sigma s2 in if Sorts.equal s1 s2 then true else (cstrs := Set.add (UEq (Sorts.univ_of_sort s1, Sorts.univ_of_sort s2)) !cstrs; true) in let rec eq_constr' nargs m n = m == n || compare_head_gen_proj env sigma eq_universes eq_sorts eq_constr' nargs m n in let res = eq_constr' 0 m n in if res then Some !cstrs else None let universes_of_constr sigma c = let open Univ in let rec aux s c = match kind sigma c with | Const (c, u) -> LSet.fold LSet.add (Instance.levels (EInstance.kind sigma u)) s | Ind ((mind,_), u) | Construct (((mind,_),_), u) -> LSet.fold LSet.add (Instance.levels (EInstance.kind sigma u)) s | Sort u -> let sort = ESorts.kind sigma u in if Sorts.is_small sort then s else let u = Sorts.univ_of_sort sort in LSet.fold LSet.add (Universe.levels u) s | Evar (k, args) -> let concl = Evd.evar_concl (Evd.find sigma k) in fold sigma aux (aux s concl) c | _ -> fold sigma aux s c in aux LSet.empty c open Context open Environ let cast_list : type a b. (a,b) eq -> a list -> b list = fun Refl x -> x let cast_list_snd : type a b. (a,b) eq -> ('c * a) list -> ('c * b) list = fun Refl x -> x let cast_rel_decl : type a b. (a,b) eq -> (a, a) Rel.Declaration.pt -> (b, b) Rel.Declaration.pt = fun Refl x -> x let cast_rel_context : type a b. (a,b) eq -> (a, a) Rel.pt -> (b, b) Rel.pt = fun Refl x -> x let cast_rec_decl : type a b. (a,b) eq -> (a, a) Constr.prec_declaration -> (b, b) Constr.prec_declaration = fun Refl x -> x let cast_named_decl : type a b. (a,b) eq -> (a, a) Named.Declaration.pt -> (b, b) Named.Declaration.pt = fun Refl x -> x let cast_named_context : type a b. (a,b) eq -> (a, a) Named.pt -> (b, b) Named.pt = fun Refl x -> x module Vars = struct exception LocalOccur let to_constr = unsafe_to_constr let to_rel_decl = unsafe_to_rel_decl type substl = t list (** Operations that commute with evar-normalization *) let lift = lift let liftn n m c = of_constr (Vars.liftn n m (to_constr c)) let substnl subst n c = of_constr (Vars.substnl (cast_list unsafe_eq subst) n (to_constr c)) let substl subst c = of_constr (Vars.substl (cast_list unsafe_eq subst) (to_constr c)) let subst1 c r = of_constr (Vars.subst1 (to_constr c) (to_constr r)) let substnl_decl subst n d = of_rel_decl (Vars.substnl_decl (cast_list unsafe_eq subst) n (to_rel_decl d)) let substl_decl subst d = of_rel_decl (Vars.substl_decl (cast_list unsafe_eq subst) (to_rel_decl d)) let subst1_decl c d = of_rel_decl (Vars.subst1_decl (to_constr c) (to_rel_decl d)) let replace_vars subst c = of_constr (Vars.replace_vars (cast_list_snd unsafe_eq subst) (to_constr c)) let substn_vars n subst c = of_constr (Vars.substn_vars n subst (to_constr c)) let subst_vars subst c = of_constr (Vars.subst_vars subst (to_constr c)) let subst_var subst c = of_constr (Vars.subst_var subst (to_constr c)) let subst_univs_level_constr subst c = of_constr (Vars.subst_univs_level_constr subst (to_constr c)) (** Operations that dot NOT commute with evar-normalization *) let noccurn sigma n term = let rec occur_rec n c = match kind sigma c with | Rel m -> if Int.equal m n then raise LocalOccur | _ -> iter_with_binders sigma succ occur_rec n c in try occur_rec n term; true with LocalOccur -> false let noccur_between sigma n m term = let rec occur_rec n c = match kind sigma c with | Rel p -> if n<=p && p<n+m then raise LocalOccur | _ -> iter_with_binders sigma succ occur_rec n c in try occur_rec n term; true with LocalOccur -> false let closedn sigma n c = let rec closed_rec n c = match kind sigma c with | Rel m -> if m>n then raise LocalOccur | _ -> iter_with_binders sigma succ closed_rec n c in try closed_rec n c; true with LocalOccur -> false let closed0 sigma c = closedn sigma 0 c let subst_of_rel_context_instance ctx subst = cast_list (sym unsafe_eq) (Vars.subst_of_rel_context_instance (cast_rel_context unsafe_eq ctx) (cast_list unsafe_eq subst)) end let rec isArity sigma c = match kind sigma c with | Prod (_,_,c) -> isArity sigma c | LetIn (_,b,_,c) -> isArity sigma (Vars.subst1 b c) | Cast (c,_,_) -> isArity sigma c | Sort _ -> true | _ -> false type arity = rel_context * ESorts.t let destArity sigma = let open Context.Rel.Declaration in let rec prodec_rec l c = match kind sigma c with | Prod (x,t,c) -> prodec_rec (LocalAssum (x,t) :: l) c | LetIn (x,b,t,c) -> prodec_rec (LocalDef (x,b,t) :: l) c | Cast (c,_,_) -> prodec_rec l c | Sort s -> l,s | _ -> anomaly ~label:"destArity" (Pp.str "not an arity.") in prodec_rec [] let mkProd_or_LetIn decl c = let open Context.Rel.Declaration in match decl with | LocalAssum (na,t) -> mkProd (na, t, c) | LocalDef (na,b,t) -> mkLetIn (na, b, t, c) let mkLambda_or_LetIn decl c = let open Context.Rel.Declaration in match decl with | LocalAssum (na,t) -> mkLambda (na, t, c) | LocalDef (na,b,t) -> mkLetIn (na, b, t, c) let mkNamedProd id typ c = mkProd (map_annot Name.mk_name id, typ, Vars.subst_var id.binder_name c) let mkNamedLambda id typ c = mkLambda (map_annot Name.mk_name id, typ, Vars.subst_var id.binder_name c) let mkNamedLetIn id c1 t c2 = mkLetIn (map_annot Name.mk_name id, c1, t, Vars.subst_var id.binder_name c2) let mkNamedProd_or_LetIn decl c = let open Context.Named.Declaration in match decl with | LocalAssum (id,t) -> mkNamedProd id t c | LocalDef (id,b,t) -> mkNamedLetIn id b t c let mkNamedLambda_or_LetIn decl c = let open Context.Named.Declaration in match decl with | LocalAssum (id,t) -> mkNamedLambda id t c | LocalDef (id,b,t) -> mkNamedLetIn id b t c let it_mkProd_or_LetIn t ctx = List.fold_left (fun c d -> mkProd_or_LetIn d c) t ctx let it_mkLambda_or_LetIn t ctx = List.fold_left (fun c d -> mkLambda_or_LetIn d c) t ctx let push_rel d e = push_rel (cast_rel_decl unsafe_eq d) e let push_rel_context d e = push_rel_context (cast_rel_context unsafe_eq d) e let push_rec_types d e = push_rec_types (cast_rec_decl unsafe_eq d) e let push_named d e = push_named (cast_named_decl unsafe_eq d) e let push_named_context d e = push_named_context (cast_named_context unsafe_eq d) e let push_named_context_val d e = push_named_context_val (cast_named_decl unsafe_eq d) e let rel_context e = cast_rel_context (sym unsafe_eq) (rel_context e) let named_context e = cast_named_context (sym unsafe_eq) (named_context e) let val_of_named_context e = val_of_named_context (cast_named_context unsafe_eq e) let named_context_of_val e = cast_named_context (sym unsafe_eq) (named_context_of_val e) let of_existential : Constr.existential -> existential = let gen : type a b. (a,b) eq -> 'c * b array -> 'c * a array = fun Refl x -> x in gen unsafe_eq let lookup_rel i e = cast_rel_decl (sym unsafe_eq) (lookup_rel i e) let lookup_named n e = cast_named_decl (sym unsafe_eq) (lookup_named n e) let lookup_named_val n e = cast_named_decl (sym unsafe_eq) (lookup_named_ctxt n e) let map_rel_context_in_env f env sign = let rec aux env acc = function | d::sign -> aux (push_rel d env) (Context.Rel.Declaration.map_constr (f env) d :: acc) sign | [] -> acc in aux env [] (List.rev sign) let fresh_global ?loc ?rigid ?names env sigma reference = let (evd,t) = Evd.fresh_global ?loc ?rigid ?names env sigma reference in evd, t let is_global sigma gr c = Globnames.is_global gr (to_constr sigma c) module Unsafe = struct let to_sorts = ESorts.unsafe_to_sorts let to_instance = EInstance.unsafe_to_instance let to_constr = unsafe_to_constr let to_constr_array = unsafe_to_constr_array let to_rel_decl = unsafe_to_rel_decl let to_named_decl = unsafe_to_named_decl let to_named_context = let gen : type a b. (a, b) eq -> (a,a) Context.Named.pt -> (b,b) Context.Named.pt = fun Refl x -> x in gen unsafe_eq let eq = unsafe_eq end