1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) type t = int external equal : int -> int -> bool = "%eq" external compare : int -> int -> int = "caml_int_compare" let hash i = i land 0x3FFFFFFF module Self = struct type t = int let compare = compare end module Set = Set.Make(Self) module Map = struct include CMap.Make(Self) type 'a map = 'a CMap.Make(Self).t type 'a _map = | MEmpty | MNode of 'a map * int * 'a * 'a map * int let map_prj : 'a map -> 'a _map = Obj.magic let rec find i s = match map_prj s with | MEmpty -> raise Not_found | MNode (l, k, v, r, h) -> if i < k then find i l else if i = k then v else find i r let rec get i s = match map_prj s with | MEmpty -> assert false | MNode (l, k, v, r, h) -> if i < k then get i l else if i = k then v else get i r let rec find_opt i s = match map_prj s with | MEmpty -> None | MNode (l, k, v, r, h) -> if i < k then find_opt i l else if i = k then Some v else find_opt i r end module List = struct let mem = List.memq let assoc = List.assq let mem_assoc = List.mem_assq let remove_assoc = List.remove_assq end let min (i : int) j = if i < j then i else j (** Utility function *) let rec next from upto = if from < upto then next (2 * from + 1) upto else from module PArray = struct type 'a t = 'a data ref and 'a data = | Root of 'a option array | DSet of int * 'a option * 'a t let empty n = ref (Root (Array.make n None)) let rec rerootk t k = match !t with | Root _ -> k () | DSet (i, v, t') -> let next () = match !t' with | Root a as n -> let v' = Array.unsafe_get a i in let () = Array.unsafe_set a i v in let () = t := n in let () = t' := DSet (i, v', t) in k () | DSet _ -> assert false in rerootk t' next let reroot t = rerootk t (fun () -> ()) let get t i = let () = assert (0 <= i) in match !t with | Root a -> if Array.length a <= i then None else Array.unsafe_get a i | DSet _ -> let () = reroot t in match !t with | Root a -> if Array.length a <= i then None else Array.unsafe_get a i | DSet _ -> assert false let set t i v = let () = assert (0 <= i) in let () = reroot t in match !t with | DSet _ -> assert false | Root a as n -> let len = Array.length a in if i < len then let old = Array.unsafe_get a i in if old == v then t else let () = Array.unsafe_set a i v in let res = ref n in let () = t := DSet (i, old, res) in res else match v with | None -> t (* Nothing to do! *) | Some _ -> (* we must resize *) let nlen = next len (succ i) in let nlen = min nlen Sys.max_array_length in let () = assert (i < nlen) in let a' = Array.make nlen None in let () = Array.blit a 0 a' 0 len in let () = Array.unsafe_set a' i v in let res = ref (Root a') in let () = t := DSet (i, None, res) in res end module PMap = struct type key = int (** Invariants: 1. an empty map is always [Empty]. 2. the set of the [Map] constructor remembers the present keys. *) type 'a t = Empty | Map of Set.t * 'a PArray.t let empty = Empty let is_empty = function | Empty -> true | Map _ -> false let singleton k x = let len = next 19 (k + 1) in let len = min Sys.max_array_length len in let v = PArray.empty len in let v = PArray.set v k (Some x) in let s = Set.singleton k in Map (s, v) let add k x = function | Empty -> singleton k x | Map (s, v) -> let s = match PArray.get v k with | None -> Set.add k s | Some _ -> s in let v = PArray.set v k (Some x) in Map (s, v) let remove k = function | Empty -> Empty | Map (s, v) -> let s = Set.remove k s in if Set.is_empty s then Empty else let v = PArray.set v k None in Map (s, v) let mem k = function | Empty -> false | Map (_, v) -> match PArray.get v k with | None -> false | Some _ -> true let find k = function | Empty -> raise Not_found | Map (_, v) -> match PArray.get v k with | None -> raise Not_found | Some x -> x let iter f = function | Empty -> () | Map (s, v) -> let iter k = match PArray.get v k with | None -> () | Some x -> f k x in Set.iter iter s let fold f m accu = match m with | Empty -> accu | Map (s, v) -> let fold k accu = match PArray.get v k with | None -> accu | Some x -> f k x accu in Set.fold fold s accu let exists f m = match m with | Empty -> false | Map (s, v) -> let exists k = match PArray.get v k with | None -> false | Some x -> f k x in Set.exists exists s let for_all f m = match m with | Empty -> true | Map (s, v) -> let for_all k = match PArray.get v k with | None -> true | Some x -> f k x in Set.for_all for_all s let cast = function | Empty -> Map.empty | Map (s, v) -> let bind k = match PArray.get v k with | None -> assert false | Some x -> x in Map.bind bind s let domain = function | Empty -> Set.empty | Map (s, _) -> s end