1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (*s Heaps *) module type Ordered = sig type t val compare : t -> t -> int end module type S =sig (* Type of functional heaps *) type t (* Type of elements *) type elt (* The empty heap *) val empty : t (* [add x h] returns a new heap containing the elements of [h], plus [x]; complexity $O(log(n))$ *) val add : elt -> t -> t (* [maximum h] returns the maximum element of [h]; raises [EmptyHeap] when [h] is empty; complexity $O(1)$ *) val maximum : t -> elt (* [remove h] returns a new heap containing the elements of [h], except the maximum of [h]; raises [EmptyHeap] when [h] is empty; complexity $O(log(n))$ *) val remove : t -> t (* usual iterators and combinators; elements are presented in arbitrary order *) val iter : (elt -> unit) -> t -> unit val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a end exception EmptyHeap (*s Functional implementation *) module Functional(X : Ordered) = struct (* Heaps are encoded as Braun trees, that are binary trees where size r <= size l <= size r + 1 for each node Node (l, x, r) *) type t = | Leaf | Node of t * X.t * t type elt = X.t let empty = Leaf let rec add x = function | Leaf -> Node (Leaf, x, Leaf) | Node (l, y, r) -> if X.compare x y >= 0 then Node (add y r, x, l) else Node (add x r, y, l) let rec extract = function | Leaf -> assert false | Node (Leaf, y, r) -> assert (r = Leaf); y, Leaf | Node (l, y, r) -> let x, l = extract l in x, Node (r, y, l) let is_above x = function | Leaf -> true | Node (_, y, _) -> X.compare x y >= 0 let rec replace_min x = function | Node (l, _, r) when is_above x l && is_above x r -> Node (l, x, r) | Node ((Node (_, lx, _) as l), _, r) when is_above lx r -> (* lx <= x, rx necessarily *) Node (replace_min x l, lx, r) | Node (l, _, (Node (_, rx, _) as r)) -> (* rx <= x, lx necessarily *) Node (l, rx, replace_min x r) | Leaf | Node (Leaf, _, _) | Node (_, _, Leaf) -> assert false (* merges two Braun trees [l] and [r], with the assumption that [size r <= size l <= size r + 1] *) let rec merge l r = match l, r with | _, Leaf -> l | Node (ll, lx, lr), Node (_, ly, _) -> if X.compare lx ly >= 0 then Node (r, lx, merge ll lr) else let x, l = extract l in Node (replace_min x r, ly, l) | Leaf, _ -> assert false (* contradicts the assumption *) let maximum = function | Leaf -> raise EmptyHeap | Node (_, x, _) -> x let remove = function | Leaf -> raise EmptyHeap | Node (l, _, r) -> merge l r let rec iter f = function | Leaf -> () | Node (l, x, r) -> iter f l; f x; iter f r let rec fold f h x0 = match h with | Leaf -> x0 | Node (l, x, r) -> fold f l (fold f r (f x x0)) end