1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Hash consing of datastructures *) (* [t] is the type of object to hash-cons * [u] is the type of hash-cons functions for the sub-structures * of objects of type t (u usually has the form (t1->t1)*(t2->t2)*...). * [hashcons u x] is a function that hash-cons the sub-structures of x using * the hash-consing functions u provides. * [eq] is a comparison function. It is allowed to use physical equality * on the sub-terms hash-consed by the hashcons function. * [hash] is the hash function given to the Hashtbl.Make function * * Note that this module type coerces to the argument of Hashtbl.Make. *) module type HashconsedType = sig type t type u val hashcons : u -> t -> t val eq : t -> t -> bool val hash : t -> int end (** The output is a function [generate] such that [generate args] creates a hash-table of the hash-consed objects, together with [hcons], a function taking a table and an object, and hashcons it. For simplicity of use, we use the wrapper functions defined below. *) module type S = sig type t type u type table val generate : u -> table val hcons : table -> t -> t val stats : table -> Hashset.statistics end module Make (X : HashconsedType) : (S with type t = X.t and type u = X.u) = struct type t = X.t type u = X.u (* We create the type of hashtables for t, with our comparison fun. * An invariant is that the table never contains two entries equals * w.r.t (=), although the equality on keys is X.eq. This is * granted since we hcons the subterms before looking up in the table. *) module Htbl = Hashset.Make(X) type table = (Htbl.t * u) let generate u = let tab = Htbl.create 97 in (tab, u) let hcons (tab, u) x = let y = X.hashcons u x in Htbl.repr (X.hash y) y tab let stats (tab, _) = Htbl.stats tab end (* A few useful wrappers: * takes as argument the function [generate] above and build a function of type * u -> t -> t that creates a fresh table each time it is applied to the * sub-hcons functions. *) (* For non-recursive types it is quite easy. *) let simple_hcons h f u = let table = h u in fun x -> f table x (* For a recursive type T, we write the module of sig Comp with u equals * to (T -> T) * u0 * The first component will be used to hash-cons the recursive subterms * The second one to hashcons the other sub-structures. * We just have to take the fixpoint of h *) let recursive_hcons h f u = let loop = ref (fun _ -> assert false) in let self x = !loop x in let table = h (self, u) in let hrec x = f table x in let () = loop := hrec in hrec (* Basic hashcons modules for string and obj. Integers do not need be hashconsed. *) module type HashedType = sig type t val hash : t -> int end (* list *) module Hlist (D:HashedType) = Make( struct type t = D.t list type u = (t -> t) * (D.t -> D.t) let hashcons (hrec,hdata) = function | x :: l -> hdata x :: hrec l | l -> l let eq l1 l2 = l1 == l2 || match l1, l2 with | [], [] -> true | x1::l1, x2::l2 -> x1==x2 && l1==l2 | _ -> false let rec hash accu = function | [] -> accu | x :: l -> let accu = Hashset.Combine.combine (D.hash x) accu in hash accu l let hash l = hash 0 l end) (* string *) module Hstring = Make( struct type t = string type u = unit let hashcons () s =(* incr accesstr;*) s let eq = String.equal (** Copy from CString *) let rec hash len s i accu = if i = len then accu else let c = Char.code (String.unsafe_get s i) in hash len s (succ i) (accu * 19 + c) let hash s = let len = String.length s in hash len s 0 0 end)