1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) module type OrderedType = sig type t val compare : t -> t -> int end module type MonadS = sig type +'a t val return : 'a -> 'a t val (>>=) : 'a t -> ('a -> 'b t) -> 'b t end module type S = Map.S module type ExtS = sig include CSig.MapS module Set : CSig.SetS with type elt = key val get : key -> 'a t -> 'a val set : key -> 'a -> 'a t -> 'a t val modify : key -> (key -> 'a -> 'a) -> 'a t -> 'a t val domain : 'a t -> Set.t val bind : (key -> 'a) -> Set.t -> 'a t val fold_left : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b val fold_right : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b val height : 'a t -> int val filter_range : (key -> int) -> 'a t -> 'a t val update: key -> ('a option -> 'a option) -> 'a t -> 'a t module Smart : sig val map : ('a -> 'a) -> 'a t -> 'a t val mapi : (key -> 'a -> 'a) -> 'a t -> 'a t end module Unsafe : sig val map : (key -> 'a -> key * 'b) -> 'a t -> 'b t end module Monad(M : MonadS) : sig val fold : (key -> 'a -> 'b -> 'b M.t) -> 'a t -> 'b -> 'b M.t val fold_left : (key -> 'a -> 'b -> 'b M.t) -> 'a t -> 'b -> 'b M.t val fold_right : (key -> 'a -> 'b -> 'b M.t) -> 'a t -> 'b -> 'b M.t end end module MapExt (M : Map.OrderedType) : sig type 'a map = 'a Map.Make(M).t val set : M.t -> 'a -> 'a map -> 'a map val get : M.t -> 'a map -> 'a val modify : M.t -> (M.t -> 'a -> 'a) -> 'a map -> 'a map val domain : 'a map -> Set.Make(M).t val bind : (M.t -> 'a) -> Set.Make(M).t -> 'a map val fold_left : (M.t -> 'a -> 'b -> 'b) -> 'a map -> 'b -> 'b val fold_right : (M.t -> 'a -> 'b -> 'b) -> 'a map -> 'b -> 'b val height : 'a map -> int val filter_range : (M.t -> int) -> 'a map -> 'a map val update: M.t -> ('a option -> 'a option) -> 'a map -> 'a map module Smart : sig val map : ('a -> 'a) -> 'a map -> 'a map val mapi : (M.t -> 'a -> 'a) -> 'a map -> 'a map end module Unsafe : sig val map : (M.t -> 'a -> M.t * 'b) -> 'a map -> 'b map end module Monad(MS : MonadS) : sig val fold : (M.t -> 'a -> 'b -> 'b MS.t) -> 'a map -> 'b -> 'b MS.t val fold_left : (M.t -> 'a -> 'b -> 'b MS.t) -> 'a map -> 'b -> 'b MS.t val fold_right : (M.t -> 'a -> 'b -> 'b MS.t) -> 'a map -> 'b -> 'b MS.t end end = struct (** This unsafe module is a way to access to the actual implementations of OCaml sets and maps without reimplementing them ourselves. It is quite dubious that these implementations will ever be changed... Nonetheless, if this happens, we can still implement a less clever version of [domain]. *) module F = Map.Make(M) type 'a map = 'a F.t module S = Set.Make(M) type set = S.t type 'a _map = | MEmpty | MNode of {l:'a map; v:F.key; d:'a; r:'a map; h:int} type _set = | SEmpty | SNode of set * M.t * set * int let map_prj : 'a map -> 'a _map = Obj.magic let map_inj : 'a _map -> 'a map = Obj.magic let set_prj : set -> _set = Obj.magic let set_inj : _set -> set = Obj.magic let rec set k v (s : 'a map) : 'a map = match map_prj s with | MEmpty -> raise Not_found | MNode {l; v=k'; d=v'; r; h} -> let c = M.compare k k' in if c < 0 then let l' = set k v l in if l == l' then s else map_inj (MNode {l=l'; v=k'; d=v'; r; h}) else if c = 0 then if v' == v then s else map_inj (MNode {l; v=k'; d=v; r; h}) else let r' = set k v r in if r == r' then s else map_inj (MNode {l; v=k'; d=v'; r=r'; h}) let rec get k (s:'a map) : 'a = match map_prj s with | MEmpty -> assert false | MNode {l; v=k'; d=v; r; h} -> let c = M.compare k k' in if c < 0 then get k l else if c = 0 then v else get k r let rec modify k f (s : 'a map) : 'a map = match map_prj s with | MEmpty -> raise Not_found | MNode {l; v; d; r; h} -> let c = M.compare k v in if c < 0 then let l' = modify k f l in if l == l' then s else map_inj (MNode {l=l'; v; d; r; h}) else if c = 0 then let d' = f v d in if d' == d then s else map_inj (MNode {l; v; d=d'; r; h}) else let r' = modify k f r in if r == r' then s else map_inj (MNode {l; v; d; r=r'; h}) let rec domain (s : 'a map) : set = match map_prj s with | MEmpty -> set_inj SEmpty | MNode {l; v; r; h; _} -> set_inj (SNode (domain l, v, domain r, h)) (** This function is essentially identity, but OCaml current stdlib does not take advantage of the similarity of the two structures, so we introduce this unsafe loophole. *) let rec bind f (s : set) : 'a map = match set_prj s with | SEmpty -> map_inj MEmpty | SNode (l, k, r, h) -> map_inj (MNode { l=bind f l; v=k; d=f k; r=bind f r; h}) (** Dual operation of [domain]. *) let rec fold_left f (s : 'a map) accu = match map_prj s with | MEmpty -> accu | MNode {l; v=k; d=v; r; h} -> let accu = f k v (fold_left f l accu) in fold_left f r accu let rec fold_right f (s : 'a map) accu = match map_prj s with | MEmpty -> accu | MNode {l; v=k; d=v; r; h} -> let accu = f k v (fold_right f r accu) in fold_right f l accu let height s = match map_prj s with | MEmpty -> 0 | MNode {h;_} -> h (* Filter based on a range *) let filter_range in_range m = let rec aux m = function | MEmpty -> m | MNode {l; v; d; r; _} -> let vr = in_range v in (* the range is below the current value *) if vr < 0 then aux m (map_prj l) (* the range is above the current value *) else if vr > 0 then aux m (map_prj r) (* The current value is in the range *) else let m = aux m (map_prj l) in let m = aux m (map_prj r) in F.add v d m in aux F.empty (map_prj m) (* Imported from OCaml upstream until we can bump the version *) let create l x d r = let hl = height l and hr = height r in map_inj @@ MNode{l; v=x; d; r; h=(if hl >= hr then hl + 1 else hr + 1)} let bal l x d r = let hl = match map_prj l with MEmpty -> 0 | MNode {h} -> h in let hr = match map_prj r with MEmpty -> 0 | MNode {h} -> h in if hl > hr + 2 then begin match map_prj l with | MEmpty -> invalid_arg "Map.bal" | MNode{l=ll; v=lv; d=ld; r=lr} -> if height ll >= height lr then create ll lv ld (create lr x d r) else begin match map_prj lr with | MEmpty -> invalid_arg "Map.bal" | MNode{l=lrl; v=lrv; d=lrd; r=lrr}-> create (create ll lv ld lrl) lrv lrd (create lrr x d r) end end else if hr > hl + 2 then begin match map_prj r with | MEmpty -> invalid_arg "Map.bal" | MNode{l=rl; v=rv; d=rd; r=rr} -> if height rr >= height rl then create (create l x d rl) rv rd rr else begin match map_prj rl with | MEmpty -> invalid_arg "Map.bal" | MNode{l=rll; v=rlv; d=rld; r=rlr} -> create (create l x d rll) rlv rld (create rlr rv rd rr) end end else map_inj @@ MNode{l; v=x; d; r; h=(if hl >= hr then hl + 1 else hr + 1)} let rec remove_min_binding m = match map_prj m with | MEmpty -> invalid_arg "Map.remove_min_elt" | MNode {l;v;d;r;_} -> match map_prj l with | MEmpty -> r | _ -> bal (remove_min_binding l) v d r let merge t1 t2 = match (map_prj t1, map_prj t2) with (MEmpty, t) -> map_inj t | (t, MEmpty) -> map_inj t | (_, _) -> let (x, d) = F.min_binding t2 in bal t1 x d (remove_min_binding t2) let rec update x f m = match map_prj m with | MEmpty -> begin match f None with | None -> map_inj MEmpty | Some data -> map_inj @@ MNode{l=map_inj MEmpty; v=x; d=data; r=map_inj MEmpty; h=1} end | MNode {l; v; d; r; h} as m -> let c = M.compare x v in if c = 0 then begin match f (Some d) with | None -> merge l r | Some data -> if d == data then map_inj m else map_inj @@ MNode{l; v=x; d=data; r; h} end else if c < 0 then let ll = update x f l in if l == ll then map_inj m else bal ll v d r else let rr = update x f r in if r == rr then map_inj m else bal l v d rr (* End of Imported OCaml *) module Smart = struct let rec map f (s : 'a map) = match map_prj s with | MEmpty -> map_inj MEmpty | MNode {l; v=k; d=v; r; h} -> let l' = map f l in let r' = map f r in let v' = f v in if l == l' && r == r' && v == v' then s else map_inj (MNode {l=l'; v=k; d=v'; r=r'; h}) let rec mapi f (s : 'a map) = match map_prj s with | MEmpty -> map_inj MEmpty | MNode {l; v=k; d=v; r; h} -> let l' = mapi f l in let r' = mapi f r in let v' = f k v in if l == l' && r == r' && v == v' then s else map_inj (MNode {l=l'; v=k; d=v'; r=r'; h}) end module Unsafe = struct let rec map f (s : 'a map) : 'b map = match map_prj s with | MEmpty -> map_inj MEmpty | MNode {l; v=k; d=v; r; h} -> let (k, v) = f k v in map_inj (MNode {l=map f l; v=k; d=v; r=map f r; h}) end module Monad(M : MonadS) = struct open M let rec fold_left f s accu = match map_prj s with | MEmpty -> return accu | MNode {l; v=k; d=v; r; h} -> fold_left f l accu >>= fun accu -> f k v accu >>= fun accu -> fold_left f r accu let rec fold_right f s accu = match map_prj s with | MEmpty -> return accu | MNode {l; v=k; d=v; r; h} -> fold_right f r accu >>= fun accu -> f k v accu >>= fun accu -> fold_right f l accu let fold = fold_left end end module Make(M : Map.OrderedType) = struct include Map.Make(M) include MapExt(M) end