1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2019       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

type 'a cmp = 'a -> 'a -> int
type 'a eq = 'a -> 'a -> bool

module type S = module type of List

module type ExtS =
sig
  include S
  val compare : 'a cmp -> 'a list cmp
  val equal : 'a eq -> 'a list eq
  val is_empty : 'a list -> bool
  val mem_f : 'a eq -> 'a -> 'a list -> bool
  val for_all_i : (int -> 'a -> bool) -> int -> 'a list -> bool
  val for_all2eq : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool
  val prefix_of : 'a eq -> 'a list -> 'a list -> bool
  val interval : int -> int -> int list
  val make : int -> 'a -> 'a list
  val addn : int -> 'a -> 'a list -> 'a list
  val init : int -> (int -> 'a) -> 'a list
  val append : 'a list -> 'a list -> 'a list
  val concat : 'a list list -> 'a list
  val flatten : 'a list list -> 'a list
  val assign : 'a list -> int -> 'a -> 'a list
  val filter : ('a -> bool) -> 'a list -> 'a list
  val filter2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> 'a list * 'b list
  val filteri :
    (int -> 'a -> bool) -> 'a list -> 'a list
  val filter_with : bool list -> 'a list -> 'a list
  val map_filter : ('a -> 'b option) -> 'a list -> 'b list
  val map_filter_i : (int -> 'a -> 'b option) -> 'a list -> 'b list
  val partitioni :
    (int -> 'a -> bool) -> 'a list -> 'a list * 'a list
  val map : ('a -> 'b) -> 'a list -> 'b list
  val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
  val map_left : ('a -> 'b) -> 'a list -> 'b list
  val map_i : (int -> 'a -> 'b) -> int -> 'a list -> 'b list
  val map2_i :
    (int -> 'a -> 'b -> 'c) -> int -> 'a list -> 'b list -> 'c list
  val map3 :
    ('a -> 'b -> 'c -> 'd) -> 'a list -> 'b list -> 'c list -> 'd list
  val map4 :
    ('a -> 'b -> 'c -> 'd -> 'e) -> 'a list -> 'b list -> 'c list -> 'd list -> 'e list
  val map_of_array : ('a -> 'b) -> 'a array -> 'b list
  val map_append : ('a -> 'b list) -> 'a list -> 'b list
  val map_append2 : ('a -> 'b -> 'c list) -> 'a list -> 'b list -> 'c list
  val extend : bool list -> 'a -> 'a list -> 'a list
  val count : ('a -> bool) -> 'a list -> int
  val index : 'a eq -> 'a -> 'a list -> int
  val safe_index : 'a eq -> 'a -> 'a list -> int option
  val index0 : 'a eq -> 'a -> 'a list -> int
  val fold_left_until : ('c -> 'a -> 'c CSig.until) -> 'c -> 'a list -> 'c
  val fold_right_i :  (int -> 'a -> 'b -> 'b) -> int -> 'a list -> 'b -> 'b
  val fold_left_i :  (int -> 'a -> 'b -> 'a) -> int -> 'a -> 'b list -> 'a
  val fold_right_and_left :
      ('a -> 'b -> 'b list -> 'a) -> 'b list -> 'a -> 'a
  val fold_left3 : ('a -> 'b -> 'c -> 'd -> 'a) -> 'a -> 'b list -> 'c list -> 'd list -> 'a
  val fold_left2_set : exn -> ('a -> 'b -> 'c -> 'b list -> 'c list -> 'a) -> 'a -> 'b list -> 'c list -> 'a
  val fold_left_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b list -> 'a * 'c list
  val fold_right_map : ('b -> 'a -> 'c * 'a) -> 'b list -> 'a -> 'c list * 'a
  val fold_left2_map : ('a -> 'b -> 'c -> 'a * 'd) -> 'a -> 'b list -> 'c list -> 'a * 'd list
  val fold_right2_map : ('b -> 'c -> 'a -> 'd * 'a) -> 'b list -> 'c list -> 'a -> 'd list * 'a
  val fold_left3_map : ('a -> 'b -> 'c -> 'd -> 'a * 'e) -> 'a -> 'b list -> 'c list -> 'd list -> 'a * 'e list
  val fold_left4_map : ('a -> 'b -> 'c -> 'd -> 'e -> 'a * 'r) -> 'a -> 'b list -> 'c list -> 'd list -> 'e list -> 'a * 'r list
  val except : 'a eq -> 'a -> 'a list -> 'a list
  val remove : 'a eq -> 'a -> 'a list -> 'a list
  val remove_first : ('a -> bool) -> 'a list -> 'a list
  val extract_first : ('a -> bool) -> 'a list -> 'a list * 'a
  val find_map : ('a -> 'b option) -> 'a list -> 'b
  exception IndexOutOfRange
  val goto : int -> 'a list -> 'a list * 'a list
  val split_when : ('a -> bool) -> 'a list -> 'a list * 'a list
  val sep_last : 'a list -> 'a * 'a list
  val drop_last : 'a list -> 'a list
  val last : 'a list -> 'a
  val lastn : int -> 'a list -> 'a list
  val chop : int -> 'a list -> 'a list * 'a list
  val firstn : int -> 'a list -> 'a list
  val skipn : int -> 'a list -> 'a list
  val skipn_at_least : int -> 'a list -> 'a list
  val drop_prefix : 'a eq -> 'a list -> 'a list -> 'a list
  val insert : ('a -> 'a -> bool) -> 'a -> 'a list -> 'a list
  val share_tails : 'a list -> 'a list -> 'a list * 'a list * 'a list
  val map_assoc : ('a -> 'b) -> ('c * 'a) list -> ('c * 'b) list
  val assoc_f : 'a eq -> 'a -> ('a * 'b) list -> 'b
  val remove_assoc_f : 'a eq -> 'a -> ('a * 'b) list -> ('a * 'b) list
  val mem_assoc_f : 'a eq -> 'a -> ('a * 'b) list -> bool
  val factorize_left : 'a eq -> ('a * 'b) list -> ('a * 'b list) list
  val split : ('a * 'b) list -> 'a list * 'b list
  val combine : 'a list -> 'b list -> ('a * 'b) list
  val split3 : ('a * 'b * 'c) list -> 'a list * 'b list * 'c list
  val split4 : ('a * 'b * 'c * 'd) list -> 'a list * 'b list * 'c list * 'd list
  val combine3 : 'a list -> 'b list -> 'c list -> ('a * 'b * 'c) list
  val add_set : 'a eq -> 'a -> 'a list -> 'a list
  val eq_set : 'a eq -> 'a list -> 'a list -> bool
  val subset : 'a list -> 'a list -> bool
  val merge_set : 'a cmp -> 'a list -> 'a list -> 'a list
  val intersect : 'a eq -> 'a list -> 'a list -> 'a list
  val union : 'a eq -> 'a list -> 'a list -> 'a list
  val unionq : 'a list -> 'a list -> 'a list
  val subtract : 'a eq -> 'a list -> 'a list -> 'a list
  val subtractq : 'a list -> 'a list -> 'a list
  val distinct : 'a list -> bool
  val distinct_f : 'a cmp -> 'a list -> bool
  val duplicates : 'a eq -> 'a list -> 'a list
  val uniquize : 'a list -> 'a list
  val sort_uniquize : 'a cmp -> 'a list -> 'a list
  val min : 'a cmp -> 'a list -> 'a
  val cartesian : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list
  val cartesians : ('a -> 'b -> 'b) -> 'b -> 'a list list -> 'b list
  val combinations : 'a list list -> 'a list list
  val cartesians_filter :
    ('a -> 'b -> 'b option) -> 'b -> 'a list list -> 'b list

  module Smart :
  sig
    val map : ('a -> 'a) -> 'a list -> 'a list
  end

  module type MonoS = sig
    type elt
    val equal : elt list -> elt list -> bool
    val mem : elt -> elt list -> bool
    val assoc : elt -> (elt * 'a) list -> 'a
    val mem_assoc : elt -> (elt * 'a) list -> bool
    val remove_assoc : elt -> (elt * 'a) list -> (elt * 'a) list
    val mem_assoc_sym : elt -> ('a * elt) list -> bool
  end

end

include List

(** Tail-rec implementation of usual functions. This is a well-known trick used
    in, for instance, ExtLib and Batteries. *)

type 'a cell = {
  head : 'a;
  mutable tail : 'a list;
}

external cast : 'a cell -> 'a list = "%identity"

(** Extensions and redefinitions of OCaml Stdlib *)

(** {6 Equality, testing} *)

let rec compare cmp l1 l2 =
  if l1 == l2 then 0 else
  match l1,l2 with
  | [], [] -> 0
  | _::_, [] -> 1
  | [], _::_ -> -1
  | x1::l1, x2::l2 ->
    match cmp x1 x2 with
    | 0 -> compare cmp l1 l2
    | c -> c

let rec equal cmp l1 l2 =
  l1 == l2 ||
  match l1, l2 with
  | [], [] -> true
  | x1 :: l1, x2 :: l2 -> cmp x1 x2 && equal cmp l1 l2
  | _ -> false

let is_empty = function
  | [] -> true
  | _ -> false

let mem_f cmp x l =
  List.exists (cmp x) l

let for_all_i p =
  let rec for_all_p i = function
    | [] -> true
    | a::l -> p i a && for_all_p (i+1) l
  in
  for_all_p

let for_all2eq f l1 l2 =
  try List.for_all2 f l1 l2 with Invalid_argument _ -> false

let prefix_of cmp prefl l =
  let rec prefrec = function
    | (h1::t1, h2::t2) -> cmp h1 h2 && prefrec (t1,t2)
    | ([], _) -> true
    | _ -> false
  in
  prefrec (prefl,l)

(** {6 Creating lists} *)

let interval n m =
  let rec interval_n (l,m) =
    if n > m then l else interval_n (m::l, pred m)
  in
  interval_n ([], m)

let addn n v =
  let rec aux n l =
    if Int.equal n 0 then l
    else aux (pred n) (v :: l)
  in
  if n < 0 then invalid_arg "List.addn"
  else aux n

let make n v =
  addn n v []

let rec init_loop len f p i =
  if Int.equal i len then ()
  else
    let c = { head = f i; tail = [] } in
    p.tail <- cast c;
    init_loop len f c (succ i)

let init len f =
  if len < 0 then invalid_arg "List.init"
  else if Int.equal len 0 then []
  else
    let c = { head = f 0; tail = [] } in
    init_loop len f c 1;
    cast c

let rec append_loop p tl = function
  | [] -> p.tail <- tl
  | x :: l ->
    let c = { head = x; tail = [] } in
    p.tail <- cast c;
    append_loop c tl l

let append l1 l2 = match l1 with
  | [] -> l2
  | x :: l ->
    let c = { head = x; tail = [] } in
    append_loop c l2 l;
    cast c

let rec copy p = function
  | [] -> p
  | x :: l ->
    let c = { head = x; tail = [] } in
    p.tail <- cast c;
    copy c l

let rec concat_loop p = function
  | [] -> ()
  | x :: l -> concat_loop (copy p x) l

let concat l =
  let dummy = { head = Obj.magic 0; tail = [] } in
  concat_loop dummy l;
  dummy.tail

let flatten = concat

(** {6 Lists as arrays} *)

let assign l n e =
  let rec assrec stk l i = match l, i with
    | (h :: t, 0) -> List.rev_append stk (e :: t)
    | (h :: t, n) -> assrec (h :: stk) t (pred n)
    | ([], _) -> failwith "List.assign"
  in
  assrec [] l n

(** {6 Filtering} *)

let rec filter_loop f p = function
  | [] -> ()
  | x :: l' as l ->
    let b = f x in
    filter_loop f p l';
    if b then if p.tail == l' then p.tail <- l else p.tail <- x :: p.tail

let rec filter f = function
  | [] -> []
  | x :: l' as l ->
    if f x then
      let c = { head = x; tail = [] } in
      filter_loop f c l';
      if c.tail == l' then l else cast c
    else
      filter f l'

let rec filter2_loop f p q l1 l2 = match l1, l2 with
  | [], [] -> ()
  | x :: l1', y :: l2' ->
    let b = f x y in
    filter2_loop f p q l1' l2';
    if b then
      if p.tail == l1' then begin
          p.tail <- l1;
          q.tail <- l2
        end
      else begin
          p.tail <- x :: p.tail;
          q.tail <- y :: q.tail
        end
  | _ -> invalid_arg "List.filter2"

let rec filter2 f l1 l2 = match l1, l2 with
  | [], [] -> ([],[])
  | x1 :: l1', x2 :: l2' ->
    let b = f x1 x2 in
    if b then
      let c1 = { head = x1; tail = [] } in
      let c2 = { head = x2; tail = [] } in
      filter2_loop f c1 c2 l1' l2';
      if c1.tail == l1' then (l1, l2) else (cast c1, cast c2)
    else
      filter2 f l1' l2'
  | _ -> invalid_arg "List.filter2"

let filteri p =
  let rec filter_i_rec i = function
    | [] -> []
    | x :: l -> let l' = filter_i_rec (succ i) l in if p i x then x :: l' else l'
  in
  filter_i_rec 0

let rec filter_with_loop filter p l = match filter, l with
  | [], [] -> ()
  | b :: filter, x :: l' ->
    filter_with_loop filter p l';
    if b then if p.tail == l' then p.tail <- l else p.tail <- x :: p.tail
  | _ -> invalid_arg "List.filter_with"

let rec filter_with filter l = match filter, l with
  | [], [] -> []
  | b :: filter, x :: l' ->
    if b then
      let c = { head = x; tail = [] } in
      filter_with_loop filter c l';
      if c.tail == l' then l else cast c
    else filter_with filter l'
  | _ -> invalid_arg "List.filter_with"

let rec map_filter_loop f p = function
  | [] -> ()
  | x :: l ->
    match f x with
    | None -> map_filter_loop f p l
    | Some y ->
      let c = { head = y; tail = [] } in
      p.tail <- cast c;
      map_filter_loop f c l

let rec map_filter f = function
  | [] -> []
  | x :: l' ->
    match f x with
    | None -> map_filter f l'
    | Some y ->
      let c = { head = y; tail = [] } in
      map_filter_loop f c l';
      cast c

let rec map_filter_i_loop f i p = function
  | [] -> ()
  | x :: l ->
    match f i x with
    | None -> map_filter_i_loop f (succ i) p l
    | Some y ->
      let c = { head = y; tail = [] } in
      p.tail <- cast c;
      map_filter_i_loop f (succ i) c l

let rec map_filter_i_loop' f i = function
  | [] -> []
  | x :: l' ->
    match f i x with
    | None -> map_filter_i_loop' f (succ i) l'
    | Some y ->
      let c = { head = y; tail = [] } in
      map_filter_i_loop f (succ i) c l';
      cast c

let map_filter_i f l =
  map_filter_i_loop' f 0 l

let partitioni p =
  let rec aux i = function
    | [] -> [], []
    | x :: l ->
      let (l1, l2) = aux (succ i) l in
      if p i x then (x :: l1, l2)
      else (l1, x :: l2)
  in
  aux 0

(** {6 Applying functorially} *)

let rec map_loop f p = function
  | [] -> ()
  | x :: l ->
    let c = { head = f x; tail = [] } in
    p.tail <- cast c;
    map_loop f c l

let map f = function
  | [] -> []
  | x :: l ->
    let c = { head = f x; tail = [] } in
    map_loop f c l;
    cast c

let rec map2_loop f p l1 l2 = match l1, l2 with
  | [], [] -> ()
  | x :: l1, y :: l2 ->
    let c = { head = f x y; tail = [] } in
    p.tail <- cast c;
    map2_loop f c l1 l2
  | _ -> invalid_arg "List.map2"

let map2 f l1 l2 = match l1, l2 with
  | [], [] -> []
  | x :: l1, y :: l2 ->
    let c = { head = f x y; tail = [] } in
    map2_loop f c l1 l2;
    cast c
  | _ -> invalid_arg "List.map2"

(** Like OCaml [List.mapi] but tail-recursive *)

let rec map_i_loop f i p = function
  | [] -> ()
  | x :: l ->
    let c = { head = f i x; tail = [] } in
    p.tail <- cast c;
    map_i_loop f (succ i) c l

let map_i f i = function
  | [] -> []
  | x :: l ->
    let c = { head = f i x; tail = [] } in
    map_i_loop f (succ i) c l;
    cast c

let map_left = map

let map2_i f i l1 l2 =
  let rec map_i i = function
    | ([], []) -> []
    | (h1 :: t1, h2 :: t2) -> let v = f i h1 h2 in v :: map_i (succ i) (t1,t2)
    | (_, _) -> invalid_arg "map2_i"
  in
  map_i i (l1,l2)

let rec map3_loop f p l1 l2 l3 = match l1, l2, l3 with
  | [], [], [] -> ()
  | x :: l1, y :: l2, z :: l3 ->
    let c = { head = f x y z; tail = [] } in
    p.tail <- cast c;
    map3_loop f c l1 l2 l3
  | _ -> invalid_arg "List.map3"

let map3 f l1 l2 l3 = match l1, l2, l3 with
  | [], [], [] -> []
  | x :: l1, y :: l2, z :: l3 ->
    let c = { head = f x y z; tail = [] } in
    map3_loop f c l1 l2 l3;
    cast c
  | _ -> invalid_arg "List.map3"

let rec map4_loop f p l1 l2 l3 l4 = match l1, l2, l3, l4 with
  | [], [], [], [] -> ()
  | x :: l1, y :: l2, z :: l3, t :: l4 ->
    let c = { head = f x y z t; tail = [] } in
    p.tail <- cast c;
    map4_loop f c l1 l2 l3 l4
  | _ -> invalid_arg "List.map4"

let map4 f l1 l2 l3 l4 = match l1, l2, l3, l4 with
  | [], [], [], [] -> []
  | x :: l1, y :: l2, z :: l3, t :: l4 ->
    let c = { head = f x y z t; tail = [] } in
    map4_loop f c l1 l2 l3 l4;
    cast c
  | _ -> invalid_arg "List.map4"

let rec map_of_array_loop f p a i l =
  if Int.equal i l then ()
  else
    let c = { head = f (Array.unsafe_get a i); tail = [] } in
    p.tail <- cast c;
    map_of_array_loop f c a (i + 1) l

let map_of_array f a =
  let l = Array.length a in
  if Int.equal l 0 then []
  else
    let c = { head = f (Array.unsafe_get a 0); tail = [] } in
    map_of_array_loop f c a 1 l;
    cast c

let map_append f l = flatten (map f l)

let map_append2 f l1 l2 = flatten (map2 f l1 l2)

let rec extend l a l' = match l,l' with
  | true :: l, b :: l' -> b :: extend l a l'
  | false :: l, l' -> a :: extend l a l'
  | [], [] -> []
  | _ -> invalid_arg "extend"

let count f l =
  let rec aux acc = function
    | [] -> acc
    | h :: t -> if f h then aux (acc + 1) t else aux acc t
  in
  aux 0 l

(** {6 Finding position} *)

let rec index_f f x l n = match l with
  | [] -> raise Not_found
  | y :: l -> if f x y then n else index_f f x l (succ n)

let index f x l = index_f f x l 1

let safe_index f x l = try Some (index f x l) with Not_found -> None

let index0 f x l = index_f f x l 0

(** {6 Folding} *)

let fold_left_until f accu s =
  let rec aux accu = function
    | [] -> accu
    | x :: xs -> match f accu x with CSig.Stop x -> x | CSig.Cont i -> aux i xs
  in
  aux accu s

let fold_right_i f i l =
  let rec it_f i l a = match l with
    | [] -> a
    | b :: l -> f (i-1) b (it_f (i-1) l a)
  in
  it_f (List.length l + i) l

let fold_left_i f =
  let rec it_list_f i a = function
    | [] -> a
    | b :: l -> it_list_f (i+1) (f i a b) l
  in
  it_list_f

let rec fold_left3 f accu l1 l2 l3 =
  match (l1, l2, l3) with
  | ([], [], []) -> accu
  | (a1 :: l1, a2 :: l2, a3 :: l3) -> fold_left3 f (f accu a1 a2 a3) l1 l2 l3
  | (_, _, _) -> invalid_arg "List.fold_left3"

let rec fold_left4 f accu l1 l2 l3 l4 =
  match (l1, l2, l3, l4) with
  | ([], [], [], []) -> accu
  | (a1 :: l1, a2 :: l2, a3 :: l3, a4 :: l4) -> fold_left4 f (f accu a1 a2 a3 a4) l1 l2 l3 l4
  | (_,_, _, _) -> invalid_arg "List.fold_left4"

(* [fold_right_and_left f [a1;...;an] hd =
   f (f (... (f (f hd
                   an
                   [an-1;...;a1])
              an-1
              [an-2;...;a1])
         ...)
        a2
        [a1])
     a1
     []] *)

let fold_right_and_left f l hd =
  let rec aux tl = function
    | [] -> hd
    | a :: l -> let hd = aux (a :: tl) l in f hd a tl
  in
  aux [] l

(* Match sets as lists according to a matching function, also folding a side effect *)
let rec fold_left2_set e f x l1 l2 =
  match l1 with
  | a1 :: l1 ->
      let rec find seen = function
        | [] -> raise e
        | a2 :: l2 ->
            try fold_left2_set e f (f x a1 a2 l1 l2) l1 (List.rev_append seen l2)
            with e' when e' = e -> find (a2 :: seen) l2 in
      find [] l2
  | [] ->
      if l2 = [] then x else raise e

(* Poor man's monadic map *)
let rec fold_left_map f e = function
  | []  -> (e,[])
  | h :: t ->
    let e',h' = f e h in
    let e'',t' = fold_left_map f e' t in
    e'',h' :: t'

(* (* tail-recursive version of the above function *)
let fold_left_map f e l =
  let g (e,b') h =
    let (e',h') = f e h in
      (e',h'::b')
  in
  let (e',lrev) = List.fold_left g (e,[]) l in
    (e',List.rev lrev)
*)

(* The same, based on fold_right, with the effect accumulated on the right *)
let fold_right_map f l e =
  List.fold_right (fun x (l,e) -> let (y,e) = f x e in (y::l,e)) l ([],e)

let on_snd f (x,y) = (x,f y)

let fold_left2_map f e l l' =
  on_snd List.rev @@
  List.fold_left2 (fun (e,l) x x' ->
      let (e,y) = f e x x' in
      (e, y::l)
    ) (e, []) l l'

let fold_right2_map f l l' e =
  List.fold_right2 (fun x x' (l,e) -> let (y,e) = f x x' e in (y::l,e)) l l' ([],e)

let fold_left3_map f e l l' l'' =
  on_snd List.rev @@
  fold_left3 (fun (e,l) x x' x'' -> let (e,y) = f e x x' x'' in (e,y::l)) (e,[]) l l' l''

let fold_left4_map f e l1 l2 l3 l4 =
  on_snd List.rev @@
  fold_left4 (fun (e,l) x1 x2 x3 x4 -> let (e,y) = f e x1 x2 x3 x4 in (e,y::l)) (e,[]) l1 l2 l3 l4

(** {6 Splitting} *)

let except cmp x l =
  List.filter (fun y -> not (cmp x y)) l

let remove = except (* Alias *)

let rec remove_first p = function
  | b :: l when p b -> l
  | b :: l -> b :: remove_first p l
  | [] -> raise Not_found

let extract_first p li =
  let rec loop rev_left = function
    | [] -> raise Not_found
    | x :: right ->
       if p x then List.rev_append rev_left right, x
       else loop (x :: rev_left) right
  in
  loop [] li

let insert p v l =
  let rec insrec = function
    | [] -> [v]
    | h :: tl -> if p v h then v :: h :: tl else h :: insrec tl
  in
  insrec l

let rec find_map f = function
  | [] -> raise Not_found
  | x :: l ->
    match f x with
    | None -> find_map f l
    | Some y -> y

(* FIXME: again, generic hash function *)

let subset l1 l2 =
  let t2 = Hashtbl.create 151 in
  List.iter (fun x -> Hashtbl.add t2 x ()) l2;
  let rec look = function
    | [] -> true
    | x :: ll -> try Hashtbl.find t2 x; look ll with Not_found -> false
  in
  look l1

(** [goto i l] splits [l] into two lists [(l1,l2)] such that
    [(List.rev l1)++l2=l] and [l1] has length [i].  It raises
    [IndexOutOfRange] when [i] is negative or greater than the
    length of [l]. *)
exception IndexOutOfRange
let goto n l =
  let rec goto i acc = function
    | tl when Int.equal i 0 -> (acc, tl)
    | h :: t -> goto (pred i) (h :: acc) t
    | [] -> raise IndexOutOfRange
  in
  goto n [] l

(* [chop i l] splits [l] into two lists [(l1,l2)] such that
   [l1++l2=l] and [l1] has length [i].
   It raises [Failure] when [i] is negative or greater than the length of [l]  *)

let chop n l =
  try let (h,t) = goto n l in (List.rev h,t)
  with IndexOutOfRange -> failwith "List.chop"
    (* spiwack: should raise [IndexOutOfRange] but I'm afraid of missing
       a try/with when replacing the exception. *)

(* [split_when p l] splits [l] into two lists [(l1,a::l2)] such that
    [l1++(a::l2)=l], [p a=true] and [p b = false] for every element [b] of [l1].
    If there is no such [a], then it returns [(l,[])] instead *)
let split_when p =
  let rec split_when_loop x y =
    match y with
    | [] -> (List.rev x,[])
    | (a :: l)  -> if (p a) then (List.rev x,y) else split_when_loop (a :: x) l
  in
  split_when_loop []

let firstn n l =
  let rec aux acc n l =
    match n, l with
    | 0, _ -> List.rev acc
    | n, h :: t -> aux (h :: acc) (pred n) t
    | _ -> failwith "firstn"
  in
  aux [] n l

let rec sep_last = function
  | [] -> failwith "sep_last"
  | hd :: [] -> (hd,[])
  | hd :: tl -> let (l,tl) = sep_last tl in (l,hd :: tl)

(* Drop the last element of a list *)

let rec drop_last = function
  | [] -> failwith "drop_last"
  | hd :: [] -> []
  | hd :: tl -> hd :: drop_last tl

let rec last = function
  | [] -> failwith "List.last"
  | hd :: [] -> hd
  | _ :: tl -> last tl

let lastn n l =
  let len = List.length l in
  let rec aux m l =
    if Int.equal m n then l else aux (m - 1) (List.tl l)
  in
  if len < n then failwith "lastn" else aux len l

let rec skipn n l = match n,l with
  | 0, _ -> l
  | _, [] -> failwith "List.skipn"
  | n, _ :: l -> skipn (pred n) l

let skipn_at_least n l =
  try skipn n l with Failure _ when n >= 0 -> []

(** if [l=p++t] then [drop_prefix p l] is [t] else [l] *)

let drop_prefix cmp p l =
  let rec drop_prefix_rec = function
    | (h1 :: tp, h2 :: tl) when cmp h1 h2 -> drop_prefix_rec (tp,tl)
    | ([], tl) -> tl
    | _ -> l
  in
  drop_prefix_rec (p,l)

let share_tails l1 l2 =
  let rec shr_rev acc = function
    | (x1 :: l1, x2 :: l2) when x1 == x2 -> shr_rev (x1 :: acc) (l1,l2)
    | (l1, l2) -> (List.rev l1, List.rev l2, acc)
  in
  shr_rev [] (List.rev l1, List.rev l2)

(** {6 Association lists} *)

let map_assoc f = map (fun (x,a) -> (x,f a))

let rec assoc_f f a = function
  | (x, e) :: xs -> if f a x then e else assoc_f f a xs
  | [] -> raise Not_found

let remove_assoc_f f a l =
  try remove_first (fun (x,_) -> f a x) l with Not_found -> l

let mem_assoc_f f a l = List.exists (fun (x,_) -> f a x) l

(** {6 Operations on lists of tuples} *)

let rec split_loop p q = function
  | [] -> ()
  | (x, y) :: l ->
    let cl = { head = x; tail = [] } in
    let cr = { head = y; tail = [] } in
    p.tail <- cast cl;
    q.tail <- cast cr;
    split_loop cl cr l

let split = function
  | [] -> [], []
  | (x, y) :: l ->
    let cl = { head = x; tail = [] } in
    let cr = { head = y; tail = [] } in
    split_loop cl cr l;
    (cast cl, cast cr)

let rec combine_loop p l1 l2 = match l1, l2 with
  | [], [] -> ()
  | x :: l1, y :: l2 ->
    let c = { head = (x, y); tail = [] } in
    p.tail <- cast c;
    combine_loop c l1 l2
  | _ -> invalid_arg "List.combine"

let combine l1 l2 = match l1, l2 with
  | [], [] -> []
  | x :: l1, y :: l2 ->
    let c = { head = (x, y); tail = [] } in
    combine_loop c l1 l2;
    cast c
  | _ -> invalid_arg "List.combine"

let rec split3_loop p q r = function
  | [] -> ()
  | (x, y, z) :: l ->
    let cp = { head = x; tail = [] } in
    let cq = { head = y; tail = [] } in
    let cr = { head = z; tail = [] } in
    p.tail <- cast cp;
    q.tail <- cast cq;
    r.tail <- cast cr;
    split3_loop cp cq cr l

let split3 = function
  | [] -> [], [], []
  | (x, y, z) :: l ->
    let cp = { head = x; tail = [] } in
    let cq = { head = y; tail = [] } in
    let cr = { head = z; tail = [] } in
    split3_loop cp cq cr l;
    (cast cp, cast cq, cast cr)

(** XXX TODO tailrec *)
let rec split4 = function
  | [] -> ([], [], [], [])
  | (a,b,c,d)::l ->
      let (ra, rb, rc, rd) = split4 l in (a::ra, b::rb, c::rc, d::rd)

let rec combine3_loop p l1 l2 l3 = match l1, l2, l3 with
  | [], [], [] -> ()
  | x :: l1, y :: l2, z :: l3 ->
    let c = { head = (x, y, z); tail = [] } in
    p.tail <- cast c;
    combine3_loop c l1 l2 l3
  | _ -> invalid_arg "List.combine3"

let combine3 l1 l2 l3 = match l1, l2, l3 with
  | [], [], [] -> []
  | x :: l1, y :: l2, z :: l3 ->
    let c = { head = (x, y, z); tail = [] } in
    combine3_loop c l1 l2 l3;
    cast c
  | _ -> invalid_arg "List.combine3"

(** {6 Operations on lists seen as sets, preserving uniqueness of elements} *)

(** Add an element, preserving uniqueness of elements *)

let add_set cmp x l =
  if mem_f cmp x l then l else x :: l

(** List equality up to permutation (but considering multiple occurrences) *)

let eq_set cmp l1 l2 =
  let rec aux l1 = function
  | [] -> is_empty l1
  | a :: l2 -> aux (remove_first (cmp a) l1) l2
  in
  try aux l1 l2 with Not_found -> false

let rec merge_set cmp l1 l2 = match l1, l2 with
  | [], l2 -> l2
  | l1, [] -> l1
  | h1 :: t1, h2 :: t2 ->
    let c = cmp h1 h2 in
    if Int.equal c 0
    then h1 :: merge_set cmp t1 t2
    else if c <= 0
    then h1 :: merge_set cmp t1 l2
    else h2 :: merge_set cmp l1 t2

let intersect cmp l1 l2 =
  filter (fun x -> mem_f cmp x l2) l1

let union cmp l1 l2 =
  let rec urec = function
    | [] -> l2
    | a :: l -> if mem_f cmp a l2 then urec l else a :: urec l
  in
  urec l1

let subtract cmp l1 l2 =
  if is_empty l2 then l1
  else List.filter (fun x -> not (mem_f cmp x l2)) l1

let unionq l1 l2 = union (==) l1 l2
let subtractq l1 l2 = subtract (==) l1 l2

(** {6 Uniqueness and duplication} *)

(* FIXME: we should avoid relying on the generic hash function,
   just as we'd better avoid Pervasives.compare *)

let distinct l =
  let visited = Hashtbl.create 23 in
  let rec loop = function
    | h :: t ->
        if Hashtbl.mem visited h then false
        else
          begin
            Hashtbl.add visited h h;
            loop t
          end
    | [] -> true
  in
  loop l

let distinct_f cmp l =
  let rec loop = function
    | a :: b :: _ when Int.equal (cmp a b) 0 -> false
    | a :: l -> loop l
    | [] -> true
  in loop (List.sort cmp l)

(* FIXME: again, generic hash function *)

let uniquize l =
  let visited = Hashtbl.create 23 in
  let rec aux acc changed = function
    | h :: t -> if Hashtbl.mem visited h then aux acc true t else
          begin
            Hashtbl.add visited h h;
            aux (h :: acc) changed t
          end
    | [] -> if changed then List.rev acc else l
  in
  aux [] false l

(** [sort_uniquize] might be an alternative to the hashtbl-based
    [uniquize], when the order of the elements is irrelevant *)

let rec uniquize_sorted cmp = function
  | a :: b :: l when Int.equal (cmp a b) 0 -> uniquize_sorted cmp (a :: l)
  | a :: l -> a :: uniquize_sorted cmp l
  | [] -> []

let sort_uniquize cmp l =
  uniquize_sorted cmp (List.sort cmp l)

let min cmp l =
  let rec aux cur = function
    | [] -> cur
    | x :: l -> if cmp x cur < 0 then aux x l else aux cur l
  in
  match l with
  | x :: l -> aux x l
  | [] -> raise Not_found

let rec duplicates cmp = function
  | [] -> []
  | x :: l ->
      let l' = duplicates cmp l in
      if mem_f cmp x l then add_set cmp x l' else l'

(** {6 Cartesian product} *)

(* A generic cartesian product: for any operator (**),
   [cartesian (**) [x1;x2] [y1;y2] = [x1**y1; x1**y2; x2**y1; x2**y1]],
   and so on if there are more elements in the lists. *)

let cartesian op l1 l2 =
  map_append (fun x -> map (op x) l2) l1

(* [cartesians] is an n-ary cartesian product: it iterates
   [cartesian] over a list of lists.  *)

let cartesians op init ll =
  List.fold_right (cartesian op) ll [init]

(* combinations [[a;b];[c;d]] gives [[a;c];[a;d];[b;c];[b;d]] *)

let combinations l =
  cartesians (fun x l -> x :: l) [] l

(* Keep only those products that do not return None *)

let cartesian_filter op l1 l2 =
  map_append (fun x -> map_filter (op x) l2) l1

(* Keep only those products that do not return None *)

let cartesians_filter op init ll =
  List.fold_right (cartesian_filter op) ll [init]

(* Factorize lists of pairs according to the left argument *)
let rec factorize_left cmp = function
  | (a,b) :: l ->
      let al,l' = partition (fun (a',_) -> cmp a a') l in
      (a,(b :: map snd al)) :: factorize_left cmp l'
  | [] -> []

module Smart =
struct

  let rec map_loop f p = function
    | [] -> ()
    | x :: l' as l ->
      let x' = f x in
      map_loop f p l';
      if x' == x && !p == l' then p := l else p := x' :: !p

  let map f = function
    | [] -> []
    | x :: l' as l ->
      let p = ref [] in
      let x' = f x in
      map_loop f p l';
      if x' == x && !p == l' then l else x' :: !p

end

module type MonoS = sig
  type elt
  val equal : elt list -> elt list -> bool
  val mem : elt -> elt list -> bool
  val assoc : elt -> (elt * 'a) list -> 'a
  val mem_assoc : elt -> (elt * 'a) list -> bool
  val remove_assoc : elt -> (elt * 'a) list -> (elt * 'a) list
  val mem_assoc_sym : elt -> ('a * elt) list -> bool
end