1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) type 'a cmp = 'a -> 'a -> int type 'a eq = 'a -> 'a -> bool module type S = module type of List module type ExtS = sig include S val compare : 'a cmp -> 'a list cmp val equal : 'a eq -> 'a list eq val is_empty : 'a list -> bool val mem_f : 'a eq -> 'a -> 'a list -> bool val for_all_i : (int -> 'a -> bool) -> int -> 'a list -> bool val for_all2eq : ('a -> 'b -> bool) -> 'a list -> 'b list -> bool val prefix_of : 'a eq -> 'a list -> 'a list -> bool val interval : int -> int -> int list val make : int -> 'a -> 'a list val addn : int -> 'a -> 'a list -> 'a list val init : int -> (int -> 'a) -> 'a list val append : 'a list -> 'a list -> 'a list val concat : 'a list list -> 'a list val flatten : 'a list list -> 'a list val assign : 'a list -> int -> 'a -> 'a list val filter : ('a -> bool) -> 'a list -> 'a list val filter2 : ('a -> 'b -> bool) -> 'a list -> 'b list -> 'a list * 'b list val filteri : (int -> 'a -> bool) -> 'a list -> 'a list val filter_with : bool list -> 'a list -> 'a list val map_filter : ('a -> 'b option) -> 'a list -> 'b list val map_filter_i : (int -> 'a -> 'b option) -> 'a list -> 'b list val partitioni : (int -> 'a -> bool) -> 'a list -> 'a list * 'a list val map : ('a -> 'b) -> 'a list -> 'b list val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list val map_left : ('a -> 'b) -> 'a list -> 'b list val map_i : (int -> 'a -> 'b) -> int -> 'a list -> 'b list val map2_i : (int -> 'a -> 'b -> 'c) -> int -> 'a list -> 'b list -> 'c list val map3 : ('a -> 'b -> 'c -> 'd) -> 'a list -> 'b list -> 'c list -> 'd list val map4 : ('a -> 'b -> 'c -> 'd -> 'e) -> 'a list -> 'b list -> 'c list -> 'd list -> 'e list val map_of_array : ('a -> 'b) -> 'a array -> 'b list val map_append : ('a -> 'b list) -> 'a list -> 'b list val map_append2 : ('a -> 'b -> 'c list) -> 'a list -> 'b list -> 'c list val extend : bool list -> 'a -> 'a list -> 'a list val count : ('a -> bool) -> 'a list -> int val index : 'a eq -> 'a -> 'a list -> int val safe_index : 'a eq -> 'a -> 'a list -> int option val index0 : 'a eq -> 'a -> 'a list -> int val fold_left_until : ('c -> 'a -> 'c CSig.until) -> 'c -> 'a list -> 'c val fold_right_i : (int -> 'a -> 'b -> 'b) -> int -> 'a list -> 'b -> 'b val fold_left_i : (int -> 'a -> 'b -> 'a) -> int -> 'a -> 'b list -> 'a val fold_right_and_left : ('a -> 'b -> 'b list -> 'a) -> 'b list -> 'a -> 'a val fold_left3 : ('a -> 'b -> 'c -> 'd -> 'a) -> 'a -> 'b list -> 'c list -> 'd list -> 'a val fold_left2_set : exn -> ('a -> 'b -> 'c -> 'b list -> 'c list -> 'a) -> 'a -> 'b list -> 'c list -> 'a val fold_left_map : ('a -> 'b -> 'a * 'c) -> 'a -> 'b list -> 'a * 'c list val fold_right_map : ('b -> 'a -> 'c * 'a) -> 'b list -> 'a -> 'c list * 'a val fold_left2_map : ('a -> 'b -> 'c -> 'a * 'd) -> 'a -> 'b list -> 'c list -> 'a * 'd list val fold_right2_map : ('b -> 'c -> 'a -> 'd * 'a) -> 'b list -> 'c list -> 'a -> 'd list * 'a val fold_left3_map : ('a -> 'b -> 'c -> 'd -> 'a * 'e) -> 'a -> 'b list -> 'c list -> 'd list -> 'a * 'e list val fold_left4_map : ('a -> 'b -> 'c -> 'd -> 'e -> 'a * 'r) -> 'a -> 'b list -> 'c list -> 'd list -> 'e list -> 'a * 'r list val except : 'a eq -> 'a -> 'a list -> 'a list val remove : 'a eq -> 'a -> 'a list -> 'a list val remove_first : ('a -> bool) -> 'a list -> 'a list val extract_first : ('a -> bool) -> 'a list -> 'a list * 'a val find_map : ('a -> 'b option) -> 'a list -> 'b exception IndexOutOfRange val goto : int -> 'a list -> 'a list * 'a list val split_when : ('a -> bool) -> 'a list -> 'a list * 'a list val sep_last : 'a list -> 'a * 'a list val drop_last : 'a list -> 'a list val last : 'a list -> 'a val lastn : int -> 'a list -> 'a list val chop : int -> 'a list -> 'a list * 'a list val firstn : int -> 'a list -> 'a list val skipn : int -> 'a list -> 'a list val skipn_at_least : int -> 'a list -> 'a list val drop_prefix : 'a eq -> 'a list -> 'a list -> 'a list val insert : ('a -> 'a -> bool) -> 'a -> 'a list -> 'a list val share_tails : 'a list -> 'a list -> 'a list * 'a list * 'a list val map_assoc : ('a -> 'b) -> ('c * 'a) list -> ('c * 'b) list val assoc_f : 'a eq -> 'a -> ('a * 'b) list -> 'b val remove_assoc_f : 'a eq -> 'a -> ('a * 'b) list -> ('a * 'b) list val mem_assoc_f : 'a eq -> 'a -> ('a * 'b) list -> bool val factorize_left : 'a eq -> ('a * 'b) list -> ('a * 'b list) list val split : ('a * 'b) list -> 'a list * 'b list val combine : 'a list -> 'b list -> ('a * 'b) list val split3 : ('a * 'b * 'c) list -> 'a list * 'b list * 'c list val split4 : ('a * 'b * 'c * 'd) list -> 'a list * 'b list * 'c list * 'd list val combine3 : 'a list -> 'b list -> 'c list -> ('a * 'b * 'c) list val add_set : 'a eq -> 'a -> 'a list -> 'a list val eq_set : 'a eq -> 'a list -> 'a list -> bool val subset : 'a list -> 'a list -> bool val merge_set : 'a cmp -> 'a list -> 'a list -> 'a list val intersect : 'a eq -> 'a list -> 'a list -> 'a list val union : 'a eq -> 'a list -> 'a list -> 'a list val unionq : 'a list -> 'a list -> 'a list val subtract : 'a eq -> 'a list -> 'a list -> 'a list val subtractq : 'a list -> 'a list -> 'a list val distinct : 'a list -> bool val distinct_f : 'a cmp -> 'a list -> bool val duplicates : 'a eq -> 'a list -> 'a list val uniquize : 'a list -> 'a list val sort_uniquize : 'a cmp -> 'a list -> 'a list val min : 'a cmp -> 'a list -> 'a val cartesian : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list val cartesians : ('a -> 'b -> 'b) -> 'b -> 'a list list -> 'b list val combinations : 'a list list -> 'a list list val cartesians_filter : ('a -> 'b -> 'b option) -> 'b -> 'a list list -> 'b list module Smart : sig val map : ('a -> 'a) -> 'a list -> 'a list end module type MonoS = sig type elt val equal : elt list -> elt list -> bool val mem : elt -> elt list -> bool val assoc : elt -> (elt * 'a) list -> 'a val mem_assoc : elt -> (elt * 'a) list -> bool val remove_assoc : elt -> (elt * 'a) list -> (elt * 'a) list val mem_assoc_sym : elt -> ('a * elt) list -> bool end end include List (** Tail-rec implementation of usual functions. This is a well-known trick used in, for instance, ExtLib and Batteries. *) type 'a cell = { head : 'a; mutable tail : 'a list; } external cast : 'a cell -> 'a list = "%identity" (** Extensions and redefinitions of OCaml Stdlib *) (** {6 Equality, testing} *) let rec compare cmp l1 l2 = if l1 == l2 then 0 else match l1,l2 with | [], [] -> 0 | _::_, [] -> 1 | [], _::_ -> -1 | x1::l1, x2::l2 -> match cmp x1 x2 with | 0 -> compare cmp l1 l2 | c -> c let rec equal cmp l1 l2 = l1 == l2 || match l1, l2 with | [], [] -> true | x1 :: l1, x2 :: l2 -> cmp x1 x2 && equal cmp l1 l2 | _ -> false let is_empty = function | [] -> true | _ -> false let mem_f cmp x l = List.exists (cmp x) l let for_all_i p = let rec for_all_p i = function | [] -> true | a::l -> p i a && for_all_p (i+1) l in for_all_p let for_all2eq f l1 l2 = try List.for_all2 f l1 l2 with Invalid_argument _ -> false let prefix_of cmp prefl l = let rec prefrec = function | (h1::t1, h2::t2) -> cmp h1 h2 && prefrec (t1,t2) | ([], _) -> true | _ -> false in prefrec (prefl,l) (** {6 Creating lists} *) let interval n m = let rec interval_n (l,m) = if n > m then l else interval_n (m::l, pred m) in interval_n ([], m) let addn n v = let rec aux n l = if Int.equal n 0 then l else aux (pred n) (v :: l) in if n < 0 then invalid_arg "List.addn" else aux n let make n v = addn n v [] let rec init_loop len f p i = if Int.equal i len then () else let c = { head = f i; tail = [] } in p.tail <- cast c; init_loop len f c (succ i) let init len f = if len < 0 then invalid_arg "List.init" else if Int.equal len 0 then [] else let c = { head = f 0; tail = [] } in init_loop len f c 1; cast c let rec append_loop p tl = function | [] -> p.tail <- tl | x :: l -> let c = { head = x; tail = [] } in p.tail <- cast c; append_loop c tl l let append l1 l2 = match l1 with | [] -> l2 | x :: l -> let c = { head = x; tail = [] } in append_loop c l2 l; cast c let rec copy p = function | [] -> p | x :: l -> let c = { head = x; tail = [] } in p.tail <- cast c; copy c l let rec concat_loop p = function | [] -> () | x :: l -> concat_loop (copy p x) l let concat l = let dummy = { head = Obj.magic 0; tail = [] } in concat_loop dummy l; dummy.tail let flatten = concat (** {6 Lists as arrays} *) let assign l n e = let rec assrec stk l i = match l, i with | (h :: t, 0) -> List.rev_append stk (e :: t) | (h :: t, n) -> assrec (h :: stk) t (pred n) | ([], _) -> failwith "List.assign" in assrec [] l n (** {6 Filtering} *) let rec filter_loop f p = function | [] -> () | x :: l' as l -> let b = f x in filter_loop f p l'; if b then if p.tail == l' then p.tail <- l else p.tail <- x :: p.tail let rec filter f = function | [] -> [] | x :: l' as l -> if f x then let c = { head = x; tail = [] } in filter_loop f c l'; if c.tail == l' then l else cast c else filter f l' let rec filter2_loop f p q l1 l2 = match l1, l2 with | [], [] -> () | x :: l1', y :: l2' -> let b = f x y in filter2_loop f p q l1' l2'; if b then if p.tail == l1' then begin p.tail <- l1; q.tail <- l2 end else begin p.tail <- x :: p.tail; q.tail <- y :: q.tail end | _ -> invalid_arg "List.filter2" let rec filter2 f l1 l2 = match l1, l2 with | [], [] -> ([],[]) | x1 :: l1', x2 :: l2' -> let b = f x1 x2 in if b then let c1 = { head = x1; tail = [] } in let c2 = { head = x2; tail = [] } in filter2_loop f c1 c2 l1' l2'; if c1.tail == l1' then (l1, l2) else (cast c1, cast c2) else filter2 f l1' l2' | _ -> invalid_arg "List.filter2" let filteri p = let rec filter_i_rec i = function | [] -> [] | x :: l -> let l' = filter_i_rec (succ i) l in if p i x then x :: l' else l' in filter_i_rec 0 let rec filter_with_loop filter p l = match filter, l with | [], [] -> () | b :: filter, x :: l' -> filter_with_loop filter p l'; if b then if p.tail == l' then p.tail <- l else p.tail <- x :: p.tail | _ -> invalid_arg "List.filter_with" let rec filter_with filter l = match filter, l with | [], [] -> [] | b :: filter, x :: l' -> if b then let c = { head = x; tail = [] } in filter_with_loop filter c l'; if c.tail == l' then l else cast c else filter_with filter l' | _ -> invalid_arg "List.filter_with" let rec map_filter_loop f p = function | [] -> () | x :: l -> match f x with | None -> map_filter_loop f p l | Some y -> let c = { head = y; tail = [] } in p.tail <- cast c; map_filter_loop f c l let rec map_filter f = function | [] -> [] | x :: l' -> match f x with | None -> map_filter f l' | Some y -> let c = { head = y; tail = [] } in map_filter_loop f c l'; cast c let rec map_filter_i_loop f i p = function | [] -> () | x :: l -> match f i x with | None -> map_filter_i_loop f (succ i) p l | Some y -> let c = { head = y; tail = [] } in p.tail <- cast c; map_filter_i_loop f (succ i) c l let rec map_filter_i_loop' f i = function | [] -> [] | x :: l' -> match f i x with | None -> map_filter_i_loop' f (succ i) l' | Some y -> let c = { head = y; tail = [] } in map_filter_i_loop f (succ i) c l'; cast c let map_filter_i f l = map_filter_i_loop' f 0 l let partitioni p = let rec aux i = function | [] -> [], [] | x :: l -> let (l1, l2) = aux (succ i) l in if p i x then (x :: l1, l2) else (l1, x :: l2) in aux 0 (** {6 Applying functorially} *) let rec map_loop f p = function | [] -> () | x :: l -> let c = { head = f x; tail = [] } in p.tail <- cast c; map_loop f c l let map f = function | [] -> [] | x :: l -> let c = { head = f x; tail = [] } in map_loop f c l; cast c let rec map2_loop f p l1 l2 = match l1, l2 with | [], [] -> () | x :: l1, y :: l2 -> let c = { head = f x y; tail = [] } in p.tail <- cast c; map2_loop f c l1 l2 | _ -> invalid_arg "List.map2" let map2 f l1 l2 = match l1, l2 with | [], [] -> [] | x :: l1, y :: l2 -> let c = { head = f x y; tail = [] } in map2_loop f c l1 l2; cast c | _ -> invalid_arg "List.map2" (** Like OCaml [List.mapi] but tail-recursive *) let rec map_i_loop f i p = function | [] -> () | x :: l -> let c = { head = f i x; tail = [] } in p.tail <- cast c; map_i_loop f (succ i) c l let map_i f i = function | [] -> [] | x :: l -> let c = { head = f i x; tail = [] } in map_i_loop f (succ i) c l; cast c let map_left = map let map2_i f i l1 l2 = let rec map_i i = function | ([], []) -> [] | (h1 :: t1, h2 :: t2) -> let v = f i h1 h2 in v :: map_i (succ i) (t1,t2) | (_, _) -> invalid_arg "map2_i" in map_i i (l1,l2) let rec map3_loop f p l1 l2 l3 = match l1, l2, l3 with | [], [], [] -> () | x :: l1, y :: l2, z :: l3 -> let c = { head = f x y z; tail = [] } in p.tail <- cast c; map3_loop f c l1 l2 l3 | _ -> invalid_arg "List.map3" let map3 f l1 l2 l3 = match l1, l2, l3 with | [], [], [] -> [] | x :: l1, y :: l2, z :: l3 -> let c = { head = f x y z; tail = [] } in map3_loop f c l1 l2 l3; cast c | _ -> invalid_arg "List.map3" let rec map4_loop f p l1 l2 l3 l4 = match l1, l2, l3, l4 with | [], [], [], [] -> () | x :: l1, y :: l2, z :: l3, t :: l4 -> let c = { head = f x y z t; tail = [] } in p.tail <- cast c; map4_loop f c l1 l2 l3 l4 | _ -> invalid_arg "List.map4" let map4 f l1 l2 l3 l4 = match l1, l2, l3, l4 with | [], [], [], [] -> [] | x :: l1, y :: l2, z :: l3, t :: l4 -> let c = { head = f x y z t; tail = [] } in map4_loop f c l1 l2 l3 l4; cast c | _ -> invalid_arg "List.map4" let rec map_of_array_loop f p a i l = if Int.equal i l then () else let c = { head = f (Array.unsafe_get a i); tail = [] } in p.tail <- cast c; map_of_array_loop f c a (i + 1) l let map_of_array f a = let l = Array.length a in if Int.equal l 0 then [] else let c = { head = f (Array.unsafe_get a 0); tail = [] } in map_of_array_loop f c a 1 l; cast c let map_append f l = flatten (map f l) let map_append2 f l1 l2 = flatten (map2 f l1 l2) let rec extend l a l' = match l,l' with | true :: l, b :: l' -> b :: extend l a l' | false :: l, l' -> a :: extend l a l' | [], [] -> [] | _ -> invalid_arg "extend" let count f l = let rec aux acc = function | [] -> acc | h :: t -> if f h then aux (acc + 1) t else aux acc t in aux 0 l (** {6 Finding position} *) let rec index_f f x l n = match l with | [] -> raise Not_found | y :: l -> if f x y then n else index_f f x l (succ n) let index f x l = index_f f x l 1 let safe_index f x l = try Some (index f x l) with Not_found -> None let index0 f x l = index_f f x l 0 (** {6 Folding} *) let fold_left_until f accu s = let rec aux accu = function | [] -> accu | x :: xs -> match f accu x with CSig.Stop x -> x | CSig.Cont i -> aux i xs in aux accu s let fold_right_i f i l = let rec it_f i l a = match l with | [] -> a | b :: l -> f (i-1) b (it_f (i-1) l a) in it_f (List.length l + i) l let fold_left_i f = let rec it_list_f i a = function | [] -> a | b :: l -> it_list_f (i+1) (f i a b) l in it_list_f let rec fold_left3 f accu l1 l2 l3 = match (l1, l2, l3) with | ([], [], []) -> accu | (a1 :: l1, a2 :: l2, a3 :: l3) -> fold_left3 f (f accu a1 a2 a3) l1 l2 l3 | (_, _, _) -> invalid_arg "List.fold_left3" let rec fold_left4 f accu l1 l2 l3 l4 = match (l1, l2, l3, l4) with | ([], [], [], []) -> accu | (a1 :: l1, a2 :: l2, a3 :: l3, a4 :: l4) -> fold_left4 f (f accu a1 a2 a3 a4) l1 l2 l3 l4 | (_,_, _, _) -> invalid_arg "List.fold_left4" (* [fold_right_and_left f [a1;...;an] hd = f (f (... (f (f hd an [an-1;...;a1]) an-1 [an-2;...;a1]) ...) a2 [a1]) a1 []] *) let fold_right_and_left f l hd = let rec aux tl = function | [] -> hd | a :: l -> let hd = aux (a :: tl) l in f hd a tl in aux [] l (* Match sets as lists according to a matching function, also folding a side effect *) let rec fold_left2_set e f x l1 l2 = match l1 with | a1 :: l1 -> let rec find seen = function | [] -> raise e | a2 :: l2 -> try fold_left2_set e f (f x a1 a2 l1 l2) l1 (List.rev_append seen l2) with e' when e' = e -> find (a2 :: seen) l2 in find [] l2 | [] -> if l2 = [] then x else raise e (* Poor man's monadic map *) let rec fold_left_map f e = function | [] -> (e,[]) | h :: t -> let e',h' = f e h in let e'',t' = fold_left_map f e' t in e'',h' :: t' (* (* tail-recursive version of the above function *) let fold_left_map f e l = let g (e,b') h = let (e',h') = f e h in (e',h'::b') in let (e',lrev) = List.fold_left g (e,[]) l in (e',List.rev lrev) *) (* The same, based on fold_right, with the effect accumulated on the right *) let fold_right_map f l e = List.fold_right (fun x (l,e) -> let (y,e) = f x e in (y::l,e)) l ([],e) let on_snd f (x,y) = (x,f y) let fold_left2_map f e l l' = on_snd List.rev @@ List.fold_left2 (fun (e,l) x x' -> let (e,y) = f e x x' in (e, y::l) ) (e, []) l l' let fold_right2_map f l l' e = List.fold_right2 (fun x x' (l,e) -> let (y,e) = f x x' e in (y::l,e)) l l' ([],e) let fold_left3_map f e l l' l'' = on_snd List.rev @@ fold_left3 (fun (e,l) x x' x'' -> let (e,y) = f e x x' x'' in (e,y::l)) (e,[]) l l' l'' let fold_left4_map f e l1 l2 l3 l4 = on_snd List.rev @@ fold_left4 (fun (e,l) x1 x2 x3 x4 -> let (e,y) = f e x1 x2 x3 x4 in (e,y::l)) (e,[]) l1 l2 l3 l4 (** {6 Splitting} *) let except cmp x l = List.filter (fun y -> not (cmp x y)) l let remove = except (* Alias *) let rec remove_first p = function | b :: l when p b -> l | b :: l -> b :: remove_first p l | [] -> raise Not_found let extract_first p li = let rec loop rev_left = function | [] -> raise Not_found | x :: right -> if p x then List.rev_append rev_left right, x else loop (x :: rev_left) right in loop [] li let insert p v l = let rec insrec = function | [] -> [v] | h :: tl -> if p v h then v :: h :: tl else h :: insrec tl in insrec l let rec find_map f = function | [] -> raise Not_found | x :: l -> match f x with | None -> find_map f l | Some y -> y (* FIXME: again, generic hash function *) let subset l1 l2 = let t2 = Hashtbl.create 151 in List.iter (fun x -> Hashtbl.add t2 x ()) l2; let rec look = function | [] -> true | x :: ll -> try Hashtbl.find t2 x; look ll with Not_found -> false in look l1 (** [goto i l] splits [l] into two lists [(l1,l2)] such that [(List.rev l1)++l2=l] and [l1] has length [i]. It raises [IndexOutOfRange] when [i] is negative or greater than the length of [l]. *) exception IndexOutOfRange let goto n l = let rec goto i acc = function | tl when Int.equal i 0 -> (acc, tl) | h :: t -> goto (pred i) (h :: acc) t | [] -> raise IndexOutOfRange in goto n [] l (* [chop i l] splits [l] into two lists [(l1,l2)] such that [l1++l2=l] and [l1] has length [i]. It raises [Failure] when [i] is negative or greater than the length of [l] *) let chop n l = try let (h,t) = goto n l in (List.rev h,t) with IndexOutOfRange -> failwith "List.chop" (* spiwack: should raise [IndexOutOfRange] but I'm afraid of missing a try/with when replacing the exception. *) (* [split_when p l] splits [l] into two lists [(l1,a::l2)] such that [l1++(a::l2)=l], [p a=true] and [p b = false] for every element [b] of [l1]. If there is no such [a], then it returns [(l,[])] instead *) let split_when p = let rec split_when_loop x y = match y with | [] -> (List.rev x,[]) | (a :: l) -> if (p a) then (List.rev x,y) else split_when_loop (a :: x) l in split_when_loop [] let firstn n l = let rec aux acc n l = match n, l with | 0, _ -> List.rev acc | n, h :: t -> aux (h :: acc) (pred n) t | _ -> failwith "firstn" in aux [] n l let rec sep_last = function | [] -> failwith "sep_last" | hd :: [] -> (hd,[]) | hd :: tl -> let (l,tl) = sep_last tl in (l,hd :: tl) (* Drop the last element of a list *) let rec drop_last = function | [] -> failwith "drop_last" | hd :: [] -> [] | hd :: tl -> hd :: drop_last tl let rec last = function | [] -> failwith "List.last" | hd :: [] -> hd | _ :: tl -> last tl let lastn n l = let len = List.length l in let rec aux m l = if Int.equal m n then l else aux (m - 1) (List.tl l) in if len < n then failwith "lastn" else aux len l let rec skipn n l = match n,l with | 0, _ -> l | _, [] -> failwith "List.skipn" | n, _ :: l -> skipn (pred n) l let skipn_at_least n l = try skipn n l with Failure _ when n >= 0 -> [] (** if [l=p++t] then [drop_prefix p l] is [t] else [l] *) let drop_prefix cmp p l = let rec drop_prefix_rec = function | (h1 :: tp, h2 :: tl) when cmp h1 h2 -> drop_prefix_rec (tp,tl) | ([], tl) -> tl | _ -> l in drop_prefix_rec (p,l) let share_tails l1 l2 = let rec shr_rev acc = function | (x1 :: l1, x2 :: l2) when x1 == x2 -> shr_rev (x1 :: acc) (l1,l2) | (l1, l2) -> (List.rev l1, List.rev l2, acc) in shr_rev [] (List.rev l1, List.rev l2) (** {6 Association lists} *) let map_assoc f = map (fun (x,a) -> (x,f a)) let rec assoc_f f a = function | (x, e) :: xs -> if f a x then e else assoc_f f a xs | [] -> raise Not_found let remove_assoc_f f a l = try remove_first (fun (x,_) -> f a x) l with Not_found -> l let mem_assoc_f f a l = List.exists (fun (x,_) -> f a x) l (** {6 Operations on lists of tuples} *) let rec split_loop p q = function | [] -> () | (x, y) :: l -> let cl = { head = x; tail = [] } in let cr = { head = y; tail = [] } in p.tail <- cast cl; q.tail <- cast cr; split_loop cl cr l let split = function | [] -> [], [] | (x, y) :: l -> let cl = { head = x; tail = [] } in let cr = { head = y; tail = [] } in split_loop cl cr l; (cast cl, cast cr) let rec combine_loop p l1 l2 = match l1, l2 with | [], [] -> () | x :: l1, y :: l2 -> let c = { head = (x, y); tail = [] } in p.tail <- cast c; combine_loop c l1 l2 | _ -> invalid_arg "List.combine" let combine l1 l2 = match l1, l2 with | [], [] -> [] | x :: l1, y :: l2 -> let c = { head = (x, y); tail = [] } in combine_loop c l1 l2; cast c | _ -> invalid_arg "List.combine" let rec split3_loop p q r = function | [] -> () | (x, y, z) :: l -> let cp = { head = x; tail = [] } in let cq = { head = y; tail = [] } in let cr = { head = z; tail = [] } in p.tail <- cast cp; q.tail <- cast cq; r.tail <- cast cr; split3_loop cp cq cr l let split3 = function | [] -> [], [], [] | (x, y, z) :: l -> let cp = { head = x; tail = [] } in let cq = { head = y; tail = [] } in let cr = { head = z; tail = [] } in split3_loop cp cq cr l; (cast cp, cast cq, cast cr) (** XXX TODO tailrec *) let rec split4 = function | [] -> ([], [], [], []) | (a,b,c,d)::l -> let (ra, rb, rc, rd) = split4 l in (a::ra, b::rb, c::rc, d::rd) let rec combine3_loop p l1 l2 l3 = match l1, l2, l3 with | [], [], [] -> () | x :: l1, y :: l2, z :: l3 -> let c = { head = (x, y, z); tail = [] } in p.tail <- cast c; combine3_loop c l1 l2 l3 | _ -> invalid_arg "List.combine3" let combine3 l1 l2 l3 = match l1, l2, l3 with | [], [], [] -> [] | x :: l1, y :: l2, z :: l3 -> let c = { head = (x, y, z); tail = [] } in combine3_loop c l1 l2 l3; cast c | _ -> invalid_arg "List.combine3" (** {6 Operations on lists seen as sets, preserving uniqueness of elements} *) (** Add an element, preserving uniqueness of elements *) let add_set cmp x l = if mem_f cmp x l then l else x :: l (** List equality up to permutation (but considering multiple occurrences) *) let eq_set cmp l1 l2 = let rec aux l1 = function | [] -> is_empty l1 | a :: l2 -> aux (remove_first (cmp a) l1) l2 in try aux l1 l2 with Not_found -> false let rec merge_set cmp l1 l2 = match l1, l2 with | [], l2 -> l2 | l1, [] -> l1 | h1 :: t1, h2 :: t2 -> let c = cmp h1 h2 in if Int.equal c 0 then h1 :: merge_set cmp t1 t2 else if c <= 0 then h1 :: merge_set cmp t1 l2 else h2 :: merge_set cmp l1 t2 let intersect cmp l1 l2 = filter (fun x -> mem_f cmp x l2) l1 let union cmp l1 l2 = let rec urec = function | [] -> l2 | a :: l -> if mem_f cmp a l2 then urec l else a :: urec l in urec l1 let subtract cmp l1 l2 = if is_empty l2 then l1 else List.filter (fun x -> not (mem_f cmp x l2)) l1 let unionq l1 l2 = union (==) l1 l2 let subtractq l1 l2 = subtract (==) l1 l2 (** {6 Uniqueness and duplication} *) (* FIXME: we should avoid relying on the generic hash function, just as we'd better avoid Pervasives.compare *) let distinct l = let visited = Hashtbl.create 23 in let rec loop = function | h :: t -> if Hashtbl.mem visited h then false else begin Hashtbl.add visited h h; loop t end | [] -> true in loop l let distinct_f cmp l = let rec loop = function | a :: b :: _ when Int.equal (cmp a b) 0 -> false | a :: l -> loop l | [] -> true in loop (List.sort cmp l) (* FIXME: again, generic hash function *) let uniquize l = let visited = Hashtbl.create 23 in let rec aux acc changed = function | h :: t -> if Hashtbl.mem visited h then aux acc true t else begin Hashtbl.add visited h h; aux (h :: acc) changed t end | [] -> if changed then List.rev acc else l in aux [] false l (** [sort_uniquize] might be an alternative to the hashtbl-based [uniquize], when the order of the elements is irrelevant *) let rec uniquize_sorted cmp = function | a :: b :: l when Int.equal (cmp a b) 0 -> uniquize_sorted cmp (a :: l) | a :: l -> a :: uniquize_sorted cmp l | [] -> [] let sort_uniquize cmp l = uniquize_sorted cmp (List.sort cmp l) let min cmp l = let rec aux cur = function | [] -> cur | x :: l -> if cmp x cur < 0 then aux x l else aux cur l in match l with | x :: l -> aux x l | [] -> raise Not_found let rec duplicates cmp = function | [] -> [] | x :: l -> let l' = duplicates cmp l in if mem_f cmp x l then add_set cmp x l' else l' (** {6 Cartesian product} *) (* A generic cartesian product: for any operator (**), [cartesian (**) [x1;x2] [y1;y2] = [x1**y1; x1**y2; x2**y1; x2**y1]], and so on if there are more elements in the lists. *) let cartesian op l1 l2 = map_append (fun x -> map (op x) l2) l1 (* [cartesians] is an n-ary cartesian product: it iterates [cartesian] over a list of lists. *) let cartesians op init ll = List.fold_right (cartesian op) ll [init] (* combinations [[a;b];[c;d]] gives [[a;c];[a;d];[b;c];[b;d]] *) let combinations l = cartesians (fun x l -> x :: l) [] l (* Keep only those products that do not return None *) let cartesian_filter op l1 l2 = map_append (fun x -> map_filter (op x) l2) l1 (* Keep only those products that do not return None *) let cartesians_filter op init ll = List.fold_right (cartesian_filter op) ll [init] (* Factorize lists of pairs according to the left argument *) let rec factorize_left cmp = function | (a,b) :: l -> let al,l' = partition (fun (a',_) -> cmp a a') l in (a,(b :: map snd al)) :: factorize_left cmp l' | [] -> [] module Smart = struct let rec map_loop f p = function | [] -> () | x :: l' as l -> let x' = f x in map_loop f p l'; if x' == x && !p == l' then p := l else p := x' :: !p let map f = function | [] -> [] | x :: l' as l -> let p = ref [] in let x' = f x in map_loop f p l'; if x' == x && !p == l' then l else x' :: !p end module type MonoS = sig type elt val equal : elt list -> elt list -> bool val mem : elt -> elt list -> bool val assoc : elt -> (elt * 'a) list -> 'a val mem_assoc : elt -> (elt * 'a) list -> bool val remove_assoc : elt -> (elt * 'a) list -> (elt * 'a) list val mem_assoc_sym : elt -> ('a * elt) list -> bool end