1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2019 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (***************************************************) (* Basic operations on (unbounded) integer numbers *) (***************************************************) (* An integer is canonically represented as an array of k-digits blocs, i.e. in base 10^k. 0 is represented by the empty array and -1 by the singleton [|-1|]. The first bloc is in the range ]0;base[ for positive numbers. The first bloc is in the range [-base;-1[ for numbers < -1. All other blocs are numbers in the range [0;base[. Negative numbers are represented using 2's complementation : one unit is "borrowed" from the top block for complementing the other blocs. For instance, with 4-digits blocs, [|-5;6789|] denotes -43211 since -5.10^4+6789=-((4.10^4)+(10000-6789)) = -43211 The base is a power of 10 in order to facilitate the parsing and printing of numbers in digital notation. All functions, to the exception of to_string and of_string should work with an arbitrary base, even if not a power of 10. In practice, we set k=4 on 32-bits machines, so that no overflow in ocaml machine words (i.e. the interval [-2^30;2^30-1]) occur when multiplying two numbers less than (10^k). On 64-bits machines, k=9. *) (* The main parameters *) let size = let rec log10 n = if n < 10 then 0 else 1 + log10 (n / 10) in (log10 max_int) / 2 let format_size = (* How to parametrize a printf format *) if Int.equal size 4 then Printf.sprintf "%04d" else if Int.equal size 9 then Printf.sprintf "%09d" else fun n -> let rec aux j l n = if Int.equal j size then l else aux (j+1) (string_of_int (n mod 10) :: l) (n/10) in String.concat "" (aux 0 [] n) (* The base is 10^size *) let base = let rec exp10 = function 0 -> 1 | n -> 10 * exp10 (n-1) in exp10 size (******************************************************************) (* First, we represent all numbers by int arrays. Later, we will optimize the particular case of small integers *) (******************************************************************) module ArrayInt = struct (* Basic numbers *) let zero = [||] let is_zero = function | [||] -> true | _ -> false (* An array is canonical when - it is empty - it is [|-1|] - its first bloc is in [-base;-1[U]0;base[ and the other blocs are in [0;base[. *) (* let canonical n = let ok x = (0 <= x && x < base) in let rec ok_tail k = (Int.equal k 0) || (ok n.(k) && ok_tail (k-1)) in let ok_init x = (-base <= x && x < base && not (Int.equal x (-1)) && not (Int.equal x 0)) in (is_zero n) || (match n with [|-1|] -> true | _ -> false) || (ok_init n.(0) && ok_tail (Array.length n - 1)) *) (* [normalize_pos] : removing initial blocks of 0 *) let normalize_pos n = let k = ref 0 in while !k < Array.length n && Int.equal n.(!k) 0 do incr k done; Array.sub n !k (Array.length n - !k) (* [normalize_neg] : avoid (-1) as first bloc. input: an array with -1 as first bloc and other blocs in [0;base[ output: a canonical array *) let normalize_neg n = let k = ref 1 in while !k < Array.length n && Int.equal n.(!k) (base - 1) do incr k done; let n' = Array.sub n !k (Array.length n - !k) in if Int.equal (Array.length n') 0 then [|-1|] else (n'.(0) <- n'.(0) - base; n') (* [normalize] : avoid 0 and (-1) as first bloc. input: an array with first bloc in [-base;base[ and others in [0;base[ output: a canonical array *) let normalize n = if Int.equal (Array.length n) 0 then n else if Int.equal n.(0) (-1) then normalize_neg n else if Int.equal n.(0) 0 then normalize_pos n else n (* Opposite (expects and returns canonical arrays) *) let neg m = if is_zero m then zero else let n = Array.copy m in let i = ref (Array.length m - 1) in while !i > 0 && Int.equal n.(!i) 0 do decr i done; if Int.equal !i 0 then begin n.(0) <- - n.(0); (* n.(0) cannot be 0 since m is canonical *) if Int.equal n.(0) (-1) then normalize_neg n else if Int.equal n.(0) base then (n.(0) <- 0; Array.append [| 1 |] n) else n end else begin (* here n.(!i) <> 0, hence 0 < base - n.(!i) < base for n canonical *) n.(!i) <- base - n.(!i); decr i; while !i > 0 do n.(!i) <- base - 1 - n.(!i); decr i done; (* since -base <= n.(0) <= base-1, hence -base <= -n.(0)-1 <= base-1 *) n.(0) <- - n.(0) - 1; (* since m is canonical, m.(0)<>0 hence n.(0)<>-1, and m=-1 is already handled above, so here m.(0)<>-1 hence n.(0)<>0 *) n end let push_carry r j = let j = ref j in while !j > 0 && r.(!j) < 0 do r.(!j) <- r.(!j) + base; decr j; r.(!j) <- r.(!j) - 1 done; while !j > 0 && r.(!j) >= base do r.(!j) <- r.(!j) - base; decr j; r.(!j) <- r.(!j) + 1 done; (* here r.(0) could be in [-2*base;2*base-1] *) if r.(0) >= base then (r.(0) <- r.(0) - base; Array.append [| 1 |] r) else if r.(0) < -base then (r.(0) <- r.(0) + 2*base; Array.append [| -2 |] r) else normalize r (* in case r.(0) is 0 or -1 *) let add_to r a j = if is_zero a then r else begin for i = Array.length r - 1 downto j+1 do r.(i) <- r.(i) + a.(i-j); if r.(i) >= base then (r.(i) <- r.(i) - base; r.(i-1) <- r.(i-1) + 1) done; r.(j) <- r.(j) + a.(0); push_carry r j end let add n m = let d = Array.length n - Array.length m in if d > 0 then add_to (Array.copy n) m d else add_to (Array.copy m) n (-d) let sub_to r a j = if is_zero a then r else begin for i = Array.length r - 1 downto j+1 do r.(i) <- r.(i) - a.(i-j); if r.(i) < 0 then (r.(i) <- r.(i) + base; r.(i-1) <- r.(i-1) - 1) done; r.(j) <- r.(j) - a.(0); push_carry r j end let sub n m = let d = Array.length n - Array.length m in if d >= 0 then sub_to (Array.copy n) m d else let r = neg m in add_to r n (Array.length r - Array.length n) let mult m n = if is_zero m || is_zero n then zero else let l = Array.length m + Array.length n in let r = Array.make l 0 in for i = Array.length m - 1 downto 0 do for j = Array.length n - 1 downto 0 do let p = m.(i) * n.(j) + r.(i+j+1) in let (q,s) = if p < 0 then (p + 1) / base - 1, (p + 1) mod base + base - 1 else p / base, p mod base in r.(i+j+1) <- s; if not (Int.equal q 0) then r.(i+j) <- r.(i+j) + q; done done; normalize r (* Comparisons *) let is_strictly_neg n = not (is_zero n) && n.(0) < 0 let is_strictly_pos n = not (is_zero n) && n.(0) > 0 let is_neg_or_zero n = is_zero n || n.(0) < 0 let is_pos_or_zero n = is_zero n || n.(0) > 0 (* Is m without its i first blocs less then n without its j first blocs ? Invariant : |m|-i = |n|-j *) let rec less_than_same_size m n i j = i < Array.length m && (m.(i) < n.(j) || (Int.equal m.(i) n.(j) && less_than_same_size m n (i+1) (j+1))) let less_than m n = if is_strictly_neg m then is_pos_or_zero n || Array.length m > Array.length n || (Int.equal (Array.length m) (Array.length n) && less_than_same_size m n 0 0) else is_strictly_pos n && (Array.length m < Array.length n || (Int.equal (Array.length m) (Array.length n) && less_than_same_size m n 0 0)) (* For this equality test it is critical that n and m are canonical *) let rec array_eq len v1 v2 i = if Int.equal len i then true else Int.equal v1.(i) v2.(i) && array_eq len v1 v2 (succ i) let equal m n = let lenm = Array.length m in let lenn = Array.length n in (Int.equal lenm lenn) && (array_eq lenm m n 0) (* Is m without its k top blocs less than n ? *) let less_than_shift_pos k m n = (Array.length m - k < Array.length n) || (Int.equal (Array.length m - k) (Array.length n) && less_than_same_size m n k 0) let rec can_divide k m d i = (Int.equal i (Array.length d)) || (m.(k+i) > d.(i)) || (Int.equal m.(k+i) d.(i) && can_divide k m d (i+1)) (* For two big nums m and d and a small number q, computes m - d * q * base^(|m|-|d|-k) in-place (in m). Both m d and q are positive. *) let sub_mult m d q k = if not (Int.equal q 0) then for i = Array.length d - 1 downto 0 do let v = d.(i) * q in m.(k+i) <- m.(k+i) - v mod base; if m.(k+i) < 0 then (m.(k+i) <- m.(k+i) + base; m.(k+i-1) <- m.(k+i-1) -1); if v >= base then begin m.(k+i-1) <- m.(k+i-1) - v / base; let j = ref (i-1) in while m.(k + !j) < 0 do (* result is positive, hence !j remains >= 0 *) m.(k + !j) <- m.(k + !j) + base; decr j; m.(k + !j) <- m.(k + !j) -1 done end done (** Euclid division m/d = (q,r), with m = q*d+r and |r|<|q|. This is the "Trunc" variant (a.k.a "Truncated-Toward-Zero"), as with ocaml's / (but not as ocaml's Big_int.quomod_big_int). We have sign r = sign m *) let euclid m d = let isnegm, m = if is_strictly_neg m then (-1),neg m else 1,Array.copy m in let isnegd, d = if is_strictly_neg d then (-1),neg d else 1,d in if is_zero d then raise Division_by_zero; let q,r = if less_than m d then (zero,m) else let ql = Array.length m - Array.length d in let q = Array.make (ql+1) 0 in let i = ref 0 in while not (less_than_shift_pos !i m d) do if Int.equal m.(!i) 0 then incr i else if can_divide !i m d 0 then begin let v = if Array.length d > 1 && not (Int.equal d.(0) m.(!i)) then (m.(!i) * base + m.(!i+1)) / (d.(0) * base + d.(1) + 1) else m.(!i) / d.(0) in q.(!i) <- q.(!i) + v; sub_mult m d v !i end else begin let v = (m.(!i) * base + m.(!i+1)) / (d.(0) + 1) in q.(!i) <- q.(!i) + v / base; sub_mult m d (v / base) !i; q.(!i+1) <- q.(!i+1) + v mod base; if q.(!i+1) >= base then (q.(!i+1) <- q.(!i+1)-base; q.(!i) <- q.(!i)+1); sub_mult m d (v mod base) (!i+1) end done; (normalize q, normalize m) in (if Int.equal (isnegd * isnegm) (-1) then neg q else q), (if Int.equal isnegm (-1) then neg r else r) (* Parsing/printing ordinary 10-based numbers *) let of_string s = let len = String.length s in let isneg = len > 1 && s.[0] == '-' in let d = ref (if isneg then 1 else 0) in while !d < len && s.[!d] == '0' do incr d done; if Int.equal !d len then zero else let r = (len - !d) mod size in let h = String.sub s (!d) r in let e = match h with "" -> 0 | _ -> 1 in let l = (len - !d) / size in let a = Array.make (l + e) 0 in if Int.equal e 1 then a.(0) <- int_of_string h; for i = 1 to l do a.(i+e-1) <- int_of_string (String.sub s ((i-1)*size + !d + r) size) done; if isneg then neg a else a let to_string_pos sgn n = if Int.equal (Array.length n) 0 then "0" else sgn ^ String.concat "" (string_of_int n.(0) :: List.map format_size (List.tl (Array.to_list n))) let to_string n = if is_strictly_neg n then to_string_pos "-" (neg n) else to_string_pos "" n end (******************************************************************) (* Optimized operations on (unbounded) integer numbers *) (* integers smaller than base are represented as machine integers *) (******************************************************************) open ArrayInt type bigint = Obj.t (* Since base is the largest power of 10 such that base*base <= max_int, we have max_int < 100*base*base : any int can be represented by at most three blocs *) let small n = (-base <= n) && (n < base) let mkarray n = (* n isn't small, this case is handled separately below *) let lo = n mod base and hi = n / base in let t = if small hi then [|hi;lo|] else [|hi/base;hi mod base;lo|] in for i = Array.length t -1 downto 1 do if t.(i) < 0 then (t.(i) <- t.(i) + base; t.(i-1) <- t.(i-1) -1) done; t let ints_of_int n = if Int.equal n 0 then [| |] else if small n then [| n |] else mkarray n let of_int n = if small n then Obj.repr n else Obj.repr (mkarray n) let of_ints n = let n = normalize n in (* TODO: using normalize here seems redundant now *) if is_zero n then Obj.repr 0 else if Int.equal (Array.length n) 1 then Obj.repr n.(0) else Obj.repr n let coerce_to_int = (Obj.magic : Obj.t -> int) let coerce_to_ints = (Obj.magic : Obj.t -> int array) let to_ints n = if Obj.is_int n then ints_of_int (coerce_to_int n) else coerce_to_ints n let int_of_ints = let maxi = mkarray max_int and mini = mkarray min_int in fun t -> let l = Array.length t in if (l > 3) || (Int.equal l 3 && (less_than maxi t || less_than t mini)) then failwith "Bigint.to_int: too large"; let sum = ref 0 in let pow = ref 1 in for i = l-1 downto 0 do sum := !sum + t.(i) * !pow; pow := !pow*base; done; !sum let to_int n = if Obj.is_int n then coerce_to_int n else int_of_ints (coerce_to_ints n) let app_pair f (m, n) = (f m, f n) let add m n = if Obj.is_int m && Obj.is_int n then of_int (coerce_to_int m + coerce_to_int n) else of_ints (add (to_ints m) (to_ints n)) let sub m n = if Obj.is_int m && Obj.is_int n then of_int (coerce_to_int m - coerce_to_int n) else of_ints (sub (to_ints m) (to_ints n)) let mult m n = if Obj.is_int m && Obj.is_int n then of_int (coerce_to_int m * coerce_to_int n) else of_ints (mult (to_ints m) (to_ints n)) let euclid m n = if Obj.is_int m && Obj.is_int n then app_pair of_int (coerce_to_int m / coerce_to_int n, coerce_to_int m mod coerce_to_int n) else app_pair of_ints (euclid (to_ints m) (to_ints n)) let less_than m n = if Obj.is_int m && Obj.is_int n then coerce_to_int m < coerce_to_int n else less_than (to_ints m) (to_ints n) let neg n = if Obj.is_int n then of_int (- (coerce_to_int n)) else of_ints (neg (to_ints n)) let of_string m = of_ints (of_string m) let to_string m = to_string (to_ints m) let zero = of_int 0 let one = of_int 1 let two = of_int 2 let sub_1 n = sub n one let add_1 n = add n one let mult_2 n = add n n let div2_with_rest n = let (q,b) = euclid n two in (q, b == one) let is_strictly_neg n = is_strictly_neg (to_ints n) let is_strictly_pos n = is_strictly_pos (to_ints n) let is_neg_or_zero n = is_neg_or_zero (to_ints n) let is_pos_or_zero n = is_pos_or_zero (to_ints n) let equal m n = if Obj.is_block m && Obj.is_block n then ArrayInt.equal (Obj.obj m) (Obj.obj n) else m == n (* spiwack: computes n^m *) (* The basic idea of the algorithm is that n^(2m) = (n^2)^m *) (* In practice the algorithm performs : k*n^0 = k k*n^(2m) = k*(n*n)^m k*n^(2m+1) = (n*k)*(n*n)^m *) let pow = let rec pow_aux odd_rest n m = (* odd_rest is the k from above *) if m<=0 then odd_rest else let quo = m lsr 1 (* i.e. m/2 *) and odd = not (Int.equal (m land 1) 0) in pow_aux (if odd then mult n odd_rest else odd_rest) (mult n n) quo in pow_aux one (** Testing suite w.r.t. OCaml's Big_int *) (* module B = struct open Big_int let zero = zero_big_int let to_string = string_of_big_int let of_string = big_int_of_string let add = add_big_int let opp = minus_big_int let sub = sub_big_int let mul = mult_big_int let abs = abs_big_int let sign = sign_big_int let euclid n m = let n' = abs n and m' = abs m in let q',r' = quomod_big_int n' m' in (if sign (mul n m) < 0 && sign q' <> 0 then opp q' else q'), (if sign n < 0 then opp r' else r') end let check () = let roots = [ 1; 100; base; 100*base; base*base ] in let rands = [ 1234; 5678; 12345678; 987654321 ] in let nums = (List.flatten (List.map (fun x -> [x-1;x;x+1]) roots)) @ rands in let numbers = List.map string_of_int nums @ List.map (fun n -> string_of_int (-n)) nums in let i = ref 0 in let compare op x y n n' = incr i; let s = Printf.sprintf "%30s" (to_string n) in let s' = Printf.sprintf "%30s" (B.to_string n') in if s <> s' then Printf.printf "%s%s%s: %s <> %s\n" x op y s s' in let test x y = let n = of_string x and m = of_string y in let n' = B.of_string x and m' = B.of_string y in let a = add n m and a' = B.add n' m' in let s = sub n m and s' = B.sub n' m' in let p = mult n m and p' = B.mul n' m' in let q,r = try euclid n m with Division_by_zero -> zero,zero and q',r' = try B.euclid n' m' with Division_by_zero -> B.zero, B.zero in compare "+" x y a a'; compare "-" x y s s'; compare "*" x y p p'; compare "/" x y q q'; compare "%" x y r r' in List.iter (fun a -> List.iter (test a) numbers) numbers; Printf.printf "%i tests done\n" !i *)